請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84068
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 蔡幸真(Hsing-Chen Tsai) | |
dc.contributor.author | Yu-Ting Lee | en |
dc.contributor.author | 李侑庭 | zh_TW |
dc.date.accessioned | 2023-03-19T21:30:29Z | - |
dc.date.copyright | 2022-10-07 | |
dc.date.issued | 2022 | |
dc.date.submitted | 2022-09-26 | |
dc.identifier.citation | 1 World Health Organization. Cancer, <https://www.who.int/news-room/fact-sheets/detail/cancer> (2022). 2 Ministry of Health and Welfare. 109年國人死因統計結果, <https://www.mohw.gov.tw/cp-5017-61533-1.html#:~:text=109%E5%B9%B4%E6%AD%BB%E5%9B%A0%E7%B5%B1%E8%A8%88%E7%B5%90%E6%9E%9C%E5%88%86%E6%9E%90(%E5%90%AB%E9%99%84%E8%A1%A8).pdf> (2021). 3 Johns Hopkins. Lung Cancer Types, <https://www.hopkinsmedicine.org/health/conditions-and-diseases/lung-cancer/lung-cancer-types> ( 4 Kuo, C.-N. et al. Cancers in Taiwan: Practical insight from epidemiology, treatments, biomarkers, and cost. Journal of the Formosan Medical Association 119, 1731-1741, doi:https://doi.org/10.1016/j.jfma.2019.08.023 (2020). 5 Skok, K., Hladnik, G., Grm, A. & Crnjac, A. Malignant Pleural Effusion and Its Current Management: A Review. Medicina (Kaunas) 55, doi:10.3390/medicina55080490 (2019). 6 Charalampidis, C. et al. Pleura space anatomy. J Thorac Dis 7, S27-32, doi:10.3978/j.issn.2072-1439.2015.01.48 (2015). 7 Dhupar, R. et al. Characteristics of Malignant Pleural Effusion Resident CD8(+) T Cells from a Heterogeneous Collection of Tumors. Int J Mol Sci 21, doi:10.3390/ijms21176178 (2020). 8 Saguil, A., Wyrick, K. & Hallgren, J. Diagnostic approach to pleural effusion. Am Fam Physician 90, 99-104 (2014). 9 Semaan, R., Feller-Kopman, D., Slatore, C. & Sockrider, M. Malignant Pleural Effusions. Am J Respir Crit Care Med 194, P11-12, doi:10.1164/rccm.1946P11 (2016). 10 Henke, E., Nandigama, R. & Erg?n, S. Extracellular Matrix in the Tumor Microenvironment and Its Impact on Cancer Therapy. Frontiers in Molecular Biosciences 6, doi:10.3389/fmolb.2019.00160 (2020). 11 Anderson, N. M. & Simon, M. C. The tumor microenvironment. Curr Biol 30, R921-r925, doi:10.1016/j.cub.2020.06.081 (2020). 12 Vinay, D. S. et al. Immune evasion in cancer: Mechanistic basis and therapeutic strategies. Seminars in Cancer Biology 35, S185-S198, doi:https://doi.org/10.1016/j.semcancer.2015.03.004 (2015). 13 Gu, S. & Feng, X.-H. TGF-β signaling in cancer. Acta Biochimica et Biophysica Sinica 50, 941-949, doi:10.1093/abbs/gmy092 (2018). 14 Gabrilovich, D. I. et al. Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nature Medicine 2, 1096-1103, doi:10.1038/nm1096-1096 (1996). 15 Chen, K.-C., Tsai, S.-W., Zhang, X., Zeng, C. & Yang, H.-Y. The investigation of the volatile metabolites of lung cancer from the microenvironment of malignant pleural effusion. Scientific Reports 11, 13585, doi:10.1038/s41598-021-93032-y (2021). 16 Hsu, L. H. et al. The Inflammatory Cytokine Profile of Patients with Malignant Pleural Effusion Treated with Pleurodesis. J Clin Med 9, doi:10.3390/jcm9124010 (2020). 17 Good, J. T., Jr., Taryle, D. A. & Sahn, S. A. The pathogenesis of low glucose, low pH malignant effusions. Am Rev Respir Dis 131, 737-741, doi:10.1164/arrd.1985.131.5.737 (1985). 18 Zhang, Z. et al. T Cell Dysfunction and Exhaustion in Cancer. Frontiers in Cell and Developmental Biology 8, doi:10.3389/fcell.2020.00017 (2020). 19 Wherry, E. J. T cell exhaustion. Nature Immunology 12, 492-499, doi:10.1038/ni.2035 (2011). 20 Zhao, Y., Shao, Q. & Peng, G. Exhaustion and senescence: two crucial dysfunctional states of T cells in the tumor microenvironment. Cellular & Molecular Immunology 17, 27-35, doi:10.1038/s41423-019-0344-8 (2020). 21 Wherry, E. J. & Kurachi, M. Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol 15, 486-499, doi:10.1038/nri3862 (2015). 22 Jiang, Y., Li, Y. & Zhu, B. T-cell exhaustion in the tumor microenvironment. Cell Death & Disease 6, e1792-e1792, doi:10.1038/cddis.2015.162 (2015). 23 Buchbinder, E. I. & Desai, A. CTLA-4 and PD-1 Pathways: Similarities, Differences, and Implications of Their Inhibition. American Journal of Clinical Oncology 39, 98-106, doi:10.1097/coc.0000000000000239 (2016). 24 Park, J. A. & Cheung, N. V. Limitations and opportunities for immune checkpoint inhibitors in pediatric malignancies. Cancer Treat Rev 58, 22-33, doi:10.1016/j.ctrv.2017.05.006 (2017). 25 Darvin, P., Toor, S. M., Sasidharan Nair, V. & Elkord, E. Immune checkpoint inhibitors: recent progress and potential biomarkers. Exp Mol Med 50, 1-11, doi:10.1038/s12276-018-0191-1 (2018). 26 Wei, S. C., Duffy, C. R. & Allison, J. P. Fundamental Mechanisms of Immune Checkpoint Blockade Therapy. Cancer Discovery 8, 1069-1086, doi:10.1158/2159-8290.Cd-18-0367 (2018). 27 Cui, P. et al. Comparative effectiveness of pembrolizumab vs. nivolumab in patients with recurrent or advanced NSCLC. Scientific Reports 10, 13160, doi:10.1038/s41598-020-70207-7 (2020). 28 Graziani, G., Tentori, L. & Navarra, P. Ipilimumab: A novel immunostimulatory monoclonal antibody for the treatment of cancer. Pharmacological Research 65, 9-22, doi:https://doi.org/10.1016/j.phrs.2011.09.002 (2012). 29 Jiang, W. et al. Exhausted CD8+T Cells in the Tumor Immune Microenvironment: New Pathways to Therapy. Frontiers in Immunology 11, doi:10.3389/fimmu.2020.622509 (2021). 30 Pauken, K. E. et al. Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade. Science 354, 1160-1165, doi:10.1126/science.aaf2807 (2016). 31 Feinberg, A. P. Phenotypic plasticity and the epigenetics of human disease. Nature 447, 433-440, doi:10.1038/nature05919 (2007). 32 Tsankova, N., Renthal, W., Kumar, A. & Nestler, E. J. Epigenetic regulation in psychiatric disorders. Nature Reviews Neuroscience 8, 355-367, doi:10.1038/nrn2132 (2007). 33 Moore, L. D., Le, T. & Fan, G. DNA Methylation and Its Basic Function. Neuropsychopharmacology 38, 23-38, doi:10.1038/npp.2012.112 (2013). 34 Bannister, A. J. & Kouzarides, T. Regulation of chromatin by histone modifications. Cell Research 21, 381-395, doi:10.1038/cr.2011.22 (2011). 35 Sen, D. R. et al. The epigenetic landscape of T cell exhaustion. Science 354, 1165-1169, doi:10.1126/science.aae0491 (2016). 36 Yates, K. B. et al. Epigenetic scars of CD8(+) T cell exhaustion persist after cure of chronic infection in humans. Nat Immunol 22, 1020-1029, doi:10.1038/s41590-021-00979-1 (2021). 37 Zeng, Z., Wei, F. & Ren, X. Exhausted T cells and epigenetic status. Cancer Biol Med 17, 923-936, doi:10.20892/j.issn.2095-3941.2020.0338 (2020). 38 Abdel-Hakeem, M. S. et al. Epigenetic scarring of exhausted T cells hinders memory differentiation upon eliminating chronic antigenic stimulation. Nat Immunol 22, 1008-1019, doi:10.1038/s41590-021-00975-5 (2021). 39 Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646-674, doi:10.1016/j.cell.2011.02.013 (2011). 40 Darwiche, N. Epigenetic mechanisms and the hallmarks of cancer: an intimate affair. Am J Cancer Res 10, 1954-1978 (2020). 41 Yu, G. et al. Low-dose decitabine enhances the effect of PD-1 blockade in colorectal cancer with microsatellite stability by re-modulating the tumor microenvironment. Cellular & Molecular Immunology 16, 401-409, doi:10.1038/s41423-018-0026-y (2019). 42 Ghasemi, S. Cancer's epigenetic drugs: where are they in the cancer medicines? The Pharmacogenomics Journal 20, 367-379, doi:10.1038/s41397-019-0138-5 (2020). 43 P?rez-Salvia, M. & Esteller, M. Bromodomain inhibitors and cancer therapy: From structures to applications. Epigenetics 12, 323-339, doi:10.1080/15592294.2016.1265710 (2017). 44 Taniguchi, Y. The Bromodomain and Extra-Terminal Domain (BET) Family: Functional Anatomy of BET Paralogous Proteins. Int J Mol Sci 17, doi:10.3390/ijms17111849 (2016). 45 Zhou, S. et al. BET protein inhibitor JQ1 downregulates chromatin accessibility and suppresses metastasis of gastric cancer via inactivating RUNX2/NID1 signaling. Oncogenesis 9, 33, doi:10.1038/s41389-020-0218-z (2020). 46 Shi, J. & Vakoc, C. R. The mechanisms behind the therapeutic activity of BET bromodomain inhibition. Mol Cell 54, 728-736, doi:10.1016/j.molcel.2014.05.016 (2014). 47 White, M. E., Fenger, J. M. & Carson, W. E., 3rd. Emerging roles of and therapeutic strategies targeting BRD4 in cancer. Cell Immunol 337, 48-53, doi:10.1016/j.cellimm.2019.02.001 (2019). 48 Delmore, J. E. et al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 146, 904-917, doi:10.1016/j.cell.2011.08.017 (2011). 49 da Motta, L. L. et al. The BET inhibitor JQ1 selectively impairs tumour response to hypoxia and downregulates CA9 and angiogenesis in triple negative breast cancer. Oncogene 36, 122-132, doi:10.1038/onc.2016.184 (2017). 50 Mao, W. et al. Immunogenicity of prostate cancer is augmented by BET bromodomain inhibition. Journal for ImmunoTherapy of Cancer 7, 277, doi:10.1186/s40425-019-0758-y (2019). 51 Wang, H. et al. BET inhibitor JQ1 enhances anti-tumor immunity and synergizes with PD-1 blockade in CRC. J Cancer 13, 2126-2137, doi:10.7150/jca.69375 (2022). 52 DeBerardinis, R. J. & Thompson, C. B. Cellular metabolism and disease: what do metabolic outliers teach us? Cell 148, 1132-1144, doi:10.1016/j.cell.2012.02.032 (2012). 53 Chi, H. Immunometabolism at the intersection of metabolic signaling, cell fate, and systems immunology. Cellular & Molecular Immunology 19, 299-302, doi:10.1038/s41423-022-00840-x (2022). 54 Hotamisligil, G. S. Foundations of Immunometabolism and Implications for Metabolic Health and Disease. Immunity 47, 406-420, doi:10.1016/j.immuni.2017.08.009 (2017). 55 O'Neill, L. A. J., Kishton, R. J. & Rathmell, J. A guide to immunometabolism for immunologists. Nature Reviews Immunology 16, 553-565, doi:10.1038/nri.2016.70 (2016). 56 Zhao, J. et al. Nrf2 Mediates Metabolic Reprogramming in Non-Small Cell Lung Cancer. Frontiers in Oncology 10, doi:10.3389/fonc.2020.578315 (2020). 57 Andrejeva, G. & Rathmell, J. C. Similarities and Distinctions of Cancer and Immune Metabolism in Inflammation and Tumors. Cell Metab 26, 49-70, doi:10.1016/j.cmet.2017.06.004 (2017). 58 Saravia, J., Raynor, J. L., Chapman, N. M., Lim, S. A. & Chi, H. Signaling networks in immunometabolism. Cell Res 30, 328-342, doi:10.1038/s41422-020-0301-1 (2020). 59 Porta, C., Paglino, C. & Mosca, A. Targeting PI3K/Akt/mTOR Signaling in Cancer. Frontiers in Oncology 4, doi:10.3389/fonc.2014.00064 (2014). 60 Hoxhaj, G. & Manning, B. D. The PI3K–AKT network at the interface of oncogenic signalling and cancer metabolism. Nature Reviews Cancer 20, 74-88, doi:10.1038/s41568-019-0216-7 (2020). 61 Gabriel, S. S. et al. Transforming growth factor-β-regulated mTOR activity preserves cellular metabolism to maintain long-term T cell responses in chronic infection. Immunity 54, 1698-1714.e1695, doi:https://doi.org/10.1016/j.immuni.2021.06.007 (2021). 62 Shyer, J. A., Flavell, R. A. & Bailis, W. Metabolic signaling in T cells. Cell Research 30, 649-659, doi:10.1038/s41422-020-0379-5 (2020). 63 Rathmell, J. C. T cell Myc-tabolism. Immunity 35, 845-846, doi:10.1016/j.immuni.2011.12.001 (2011). 64 Stine, Z. E., Walton, Z. E., Altman, B. J., Hsieh, A. L. & Dang, C. V. MYC, Metabolism, and Cancer. Cancer Discov 5, 1024-1039, doi:10.1158/2159-8290.Cd-15-0507 (2015). 65 Kouidhi, S., Elgaaied, A. B. & Chouaib, S. Impact of Metabolism on T-Cell Differentiation and Function and Cross Talk with Tumor Microenvironment. Frontiers in Immunology 8, doi:10.3389/fimmu.2017.00270 (2017). 66 Almeida, L., Lochner, M., Berod, L. & Sparwasser, T. Metabolic pathways in T cell activation and lineage differentiation. Seminars in Immunology 28, 514-524, doi:https://doi.org/10.1016/j.smim.2016.10.009 (2016). 67 Yerinde, C., Siegmund, B., Glauben, R. & Weidinger, C. Metabolic Control of Epigenetics and Its Role in CD8+ T Cell Differentiation and Function. Frontiers in Immunology 10, doi:10.3389/fimmu.2019.02718 (2019). 68 Guo, Y. et al. Metabolic reprogramming of terminally exhausted CD8+ T cells by IL-10 enhances anti-tumor immunity. Nature Immunology 22, 746-756, doi:10.1038/s41590-021-00940-2 (2021). 69 Franco, F., Jaccard, A., Romero, P., Yu, Y.-R. & Ho, P.-C. Metabolic and epigenetic regulation of T-cell exhaustion. Nature Metabolism 2, 1001-1012, doi:10.1038/s42255-020-00280-9 (2020). 70 Patsoukis, N. et al. PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation. Nature Communications 6, 6692, doi:10.1038/ncomms7692 (2015). 71 Chapman, N. M. & Chi, H. Metabolic adaptation of lymphocytes in immunity and disease. Immunity 55, 14-30, doi:10.1016/j.immuni.2021.12.012 (2022). 72 Patra, K. C. & Hay, N. The pentose phosphate pathway and cancer. Trends Biochem Sci 39, 347-354, doi:10.1016/j.tibs.2014.06.005 (2014). 73 van der Windt, G. J. W. & Pearce, E. L. Metabolic switching and fuel choice during T-cell differentiation and memory development. Immunol Rev 249, 27-42, doi:10.1111/j.1600-065X.2012.01150.x (2012). 74 Lu, C. et al. G6PD functions as a metabolic checkpoint to regulate granzyme B expression in tumor-specific cytotoxic T lymphocytes. Journal for ImmunoTherapy of Cancer 10, e003543, doi:10.1136/jitc-2021-003543 (2022). 75 Liu, Q. et al. Non-oxidative pentose phosphate pathway controls regulatory T cell function by integrating metabolism and epigenetics. Nature Metabolism, doi:10.1038/s42255-022-00575-z (2022). 76 Hope, H. C. & Salmond, R. J. The Role of Non-essential Amino Acids in T Cell Function and Anti-tumour Immunity. Archivum Immunologiae et Therapiae Experimentalis 69, 29, doi:10.1007/s00005-021-00633-6 (2021). 77 Hesterberg, R. S., Cleveland, J. L. & Epling-Burnette, P. K. Role of Polyamines in Immune Cell Functions. Med Sci (Basel) 6, doi:10.3390/medsci6010022 (2018). 78 Gnanaprakasam, J. N. & Wang, R. MYC in Regulating Immunity: Metabolism and Beyond. Genes (Basel) 8, doi:10.3390/genes8030088 (2017). 79 Puleston, D. J. et al. Polyamine metabolism is a central determinant of helper T cell lineage fidelity. Cell 184, 4186-4202.e4120, doi:10.1016/j.cell.2021.06.007 (2021). 80 Proietti, E., Rossini, S., Grohmann, U. & Mondanelli, G. Polyamines and Kynurenines at the Intersection of Immune Modulation. Trends Immunol 41, 1037-1050, doi:10.1016/j.it.2020.09.007 (2020). 81 Fu, Y.-Y. Immunomodulatory effects of BET bromodomain inhibitors on tumor-reactive T cells in lung cancer. (2020). 82 Wu, Y.-C. Immunomodulatory Effects of Epigenetic Therapy on Tumor Reactive T Cells in Lung Cancer. (2018). 83 Balkhi, M. Y., Wittmann, G., Xiong, F. & Junghans, R. P. YY1 Upregulates Checkpoint Receptors and Downregulates Type I Cytokines in Exhausted, Chronically Stimulated Human T Cells. iScience 2, 105-122, doi:10.1016/j.isci.2018.03.009 (2018). 84 Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15-21, doi:10.1093/bioinformatics/bts635 (2013). 85 Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923-930, doi:10.1093/bioinformatics/btt656 (2014). 86 Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43, e47, doi:10.1093/nar/gkv007 (2015). 87 Wolock, S. L., Lopez, R. & Klein, A. M. Scrublet: Computational Identification of Cell Doublets in Single-Cell Transcriptomic Data. Cell Syst 8, 281-291.e289, doi:10.1016/j.cels.2018.11.005 (2019). 88 Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nature Methods 16, 1289-1296, doi:10.1038/s41592-019-0619-0 (2019). 89 Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573-3587.e3529, doi:10.1016/j.cell.2021.04.048 (2021). 90 Alquicira-Hernandez, J. & Powell, J. E. Nebulosa recovers single cell gene expression signals by kernel density estimation. Bioinformatics, doi:10.1093/bioinformatics/btab003 (2021). 91 Corces, M. R. et al. An improved ATAC-seq protocol reduces background and enables interrogation of frozen tissues. Nat Methods 14, 959-962, doi:10.1038/nmeth.4396 (2017). 92 Yu, G., Wang, L. G. & He, Q. Y. ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization. Bioinformatics 31, 2382-2383, doi:10.1093/bioinformatics/btv145 (2015). 93 Sikora, J. J., Dworacki, G. T., Kaczmarek, M. T., Jenek, R. E. & ?eromski, J. O. Immunosuppressive mechanisms in the microenvironment of malignant pleural effusions. Cancer Detection and Prevention 28, 325-330, doi:https://doi.org/10.1016/j.cdp.2004.04.003 (2004). 94 Gumber, D. & Wang, L. D. Improving CAR-T immunotherapy: Overcoming the challenges of T cell exhaustion. EBioMedicine 77, 103941, doi:10.1016/j.ebiom.2022.103941 (2022). 95 Perrier, A., Didelot, A., Laurent-Puig, P., Blons, H. & Garinet, S. Epigenetic Mechanisms of Resistance to Immune Checkpoint Inhibitors. Biomolecules 10, doi:10.3390/biom10071061 (2020). 96 Jia, Y., Liu, L. & Shan, B. Future of immune checkpoint inhibitors: focus on tumor immune microenvironment. Annals of Translational Medicine 8, 1095 (2020). 97 Pan, Y. et al. Synergistic inhibition of pancreatic cancer with anti-PD-L1 and c-Myc inhibitor JQ1. Oncoimmunology 8, e1581529, doi:10.1080/2162402x.2019.1581529 (2019). 98 Wang, J. L. & Han, M. Z. [Tole of T cell exhaustion in inducing immune tolerance and preventing graft-versus-host disease]. Zhonghua Xue Ye Xue Za Zhi 40, 164-167, doi:10.3760/cma.j.issn.0253-2727.2019.02.015 (2019). 99 Kelly, B. & Pearce, E. L. Amino Assets: How Amino Acids Support Immunity. Cell Metab 32, 154-175, doi:10.1016/j.cmet.2020.06.010 (2020). 100 Latour, Y. L., Gobert, A. P. & Wilson, K. T. The role of polyamines in the regulation of macrophage polarization and function. Amino Acids 52, 151-160, doi:10.1007/s00726-019-02719-0 (2020). 101 Carriche, G. M. et al. Regulating T-cell differentiation through the polyamine spermidine. Journal of Allergy and Clinical Immunology 147, 335-348.e311, doi:https://doi.org/10.1016/j.jaci.2020.04.037 (2021). 102 Segr?, C. V. & Chiocca, S. Regulating the regulators: the post-translational code of class I HDAC1 and HDAC2. J Biomed Biotechnol 2011, 690848, doi:10.1155/2011/690848 (2011). 103 Delcuve, G. P., Khan, D. H. & Davie, J. R. Roles of histone deacetylases in epigenetic regulation: emerging paradigms from studies with inhibitors. Clinical Epigenetics 4, 5, doi:10.1186/1868-7083-4-5 (2012). 104 Lagger, S. et al. Crucial function of histone deacetylase 1 for differentiation of teratomas in mice and humans. Embo j 29, 3992-4007, doi:10.1038/emboj.2010.264 (2010). 105 Dey, A., Uppal, S., Giri, J. & Misra, H. S. Emerging roles of bromodomain protein 4 in regulation of stem cell identity. Stem Cells 39, 1615-1624, doi:10.1002/stem.3454 (2021). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84068 | - |
dc.description.abstract | 肺癌為全球癌症死亡率之冠,即使現已開發免疫檢查點抑制劑,為肺癌治療帶來新曙光,仍有一定比例的患者因體內耗竭T細胞(Exhausted T cell, TEX)受到既有表觀遺傳基因體 (epigenetic landscapes)的限制,無法完全恢復成為功能T細胞,而導致其治療效果不彰。惡性胸水 (Malignant pleural effusion, MPE) 為晚期肺腺癌患者常見的併發症,胸水內含有轉移的癌細胞以及大量耗竭T細胞,為免疫失能之腫瘤微環境。本實驗室先前的研究中,透過145個表觀遺傳藥物進行藥物篩選,發現含溴結構域抑制劑 (bromodomain inhibitors, BETi) 中的JQ1在體外能夠顯著改善惡性胸水內耗竭性T細胞的功能。然而JQ1改善耗竭性T細胞功能的機制仍未清楚,因此本研究的目標為進一步探討JQ1調節耗竭性T細胞免疫功能的機制。首先,我們進行 RNA定序以鑑定在耗竭性T細胞中受JQ1影響的基因譜,從中發現JQ1治療後顯著上調耗竭性T細胞中代謝相關途徑的基因群,其中包括氨基酸代謝及五碳糖磷酸途徑等。我們進一步藉由不同的代謝抑制劑阻斷相關的代謝途徑,發現氨基酸代謝抑制劑Difluoromethylornithine (DFMO)可顯著降低JQ1提升T細胞的多功能性,表示JQ1可能是透過氨基酸代謝調控T細胞的功能。接著,我們透過即時聚合?連鎖反應驗證JQ1治療顯著上調編碼鳥胺酸脫羧? (ornithine decarboxylase, ODC)的基因ODC1,並利用小分子干擾RNA (small interfering RNA, siRNA)的方式抑制ODC1表現後,釐清JQ1確實透過提升ODC1基因表現而增加分泌細胞因子。最後,我們使用定序轉座?可接觸的染色質分析法(Assay for Transposase-Accessible Chromatin using sequencing, ATAC-seq) 發現經JQ1處理後,惡性胸水中耗竭性T細胞的ODC1基因,其位於啟動子附近的染色質可及性增加,並由單細胞定序 (single-cell RNA sequencing, scRNA-seq) 發現JQ1可能透過組蛋白修飾影響衰竭性T細胞的基因表現。綜合上述結果,本研究探討JQ1透過表觀遺傳調控代謝重整的方式於晚期肺癌患者體內的耗竭性T細胞進行免疫調節作用,而可為發展肺癌惡性胸水的表觀遺傳治療提供新方向。 | zh_TW |
dc.description.abstract | Lung cancer causes the leading mortality rate worldwide. Even if immune checkpoint inhibitors (ICIs) have been developed to bring light to lung cancer treatment, there are still patients experiencing poor therapeutic efficacy of ICIs, possibly due to static epigenetic landscapes in exhausted T cells (TEX). Malignant pleural effusion (MPE) is a common complication in patients with advanced lung adenocarcinoma. MPE is an immune dysfunctional tumor microenvironment containing metastatic cancer cells and TEX. In our previous study, we performed a drug screening of 145 epigenetic drugs and found that JQ1 and other bromodomain inhibitors (BETi) significantly improved the function of TEX in MPE ex vivo. However, the mechanism by which JQ1 improved the function of exhausted T cells remained unclear, and we aimed to further explore the mechanism in this study. First, we performed genome-wide RNA-seq analysis to investigate transcriptomic profiles affected by JQ1 in the TEX of MPE. Gene set enrichment analysis (GSEA) analysis revealed that several metabolic pathway-related gene sets were significantly upregulated by JQ1 treatment, including amino acid metabolism and pentose phosphate pathway, etc. Next, we blocked individual metabolic pathways with respective inhibitors and found that difluoromethylornithine (DFMO), an inhibitor for amino acid metabolism, significantly abolished the JQ1-mediated enhancement of T cell polyfunctionality. The data indicated that JQ1 may regulate the function of T cells through amino acid metabolism. We also verified that JQ1 significantly upregulated ornithine decarboxylase (ODC1), an enzyme involved in polyamine synthesis, in primary malignant pleural effusion T cells by real-time polymerase chain reaction (RT-PCR). Through siRNA-mediated knock-down experiments, we discovered that ODC1 enhanced effector functions in T cells. Finally, we dissected the epigenetic landscape of exhausted T cells in malignant pleural effusions after JQ1 treatment by performing an Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq). We found that JQ1 increased chromatin accessibility at the promoter region in ODC1. Moreover, analysis of single-cell RNA sequencing (scRNA-seq) indicated that JQ1 may affect histone modifications in exhausted CD8 T cells. In summary, JQ1 exerted immunomodulatory effects on TEX in patients with advanced lung cancer through epigenetic regulation of metabolic reprogramming. This study may provide a new direction for the development of epigenetic immunotherapy for malignant pleural effusion in lung cancer. | en |
dc.description.provenance | Made available in DSpace on 2023-03-19T21:30:29Z (GMT). No. of bitstreams: 1 U0001-2908202210354000.pdf: 8776957 bytes, checksum: 2c7071ff2d9a32e7fa535b26a85de87f (MD5) Previous issue date: 2022 | en |
dc.description.tableofcontents | 序言及謝辭 1 中文摘要 2 Abstract 3 List of Figures 10 List of Tables 12 List of abbreviations 13 1. Introduction 14 1.1. Lung cancer 14 1.1.1. The epidemiology of lung cancer 14 1.1.2. Types of lung cancer 14 1.2. Tumor immune microenvironment 15 1.2.1. Tumor microenvironment in MPE 15 1.2.2. Characterization of exhausted T cells 16 1.2.3. Immune checkpoints inhibitors therapy in NSCLC 16 1.2.4. Current challenges of immune checkpoint inhibitors therapy in NSCLC 17 1.3. Epigenetic therapy in immune-oncology 18 1.3.1. Epigenetic regulation 18 1.3.2. The epigenetic landscape of T cell exhaustion 19 1.3.3. Epigenetic regulation in T cell exhaustion 19 1.3.4. Bromodomain and extra-terminal inhibitors (BETi) 20 1.4. Immunometabolism 21 1.4.1. Definition of immunometabolism 21 1.4.3. Metabolic features of T cell activation 23 1.4.4. Metabolic reprogramming in T cell exhaustion 24 1.4.5. Pentose phosphate pathway 25 1.4.6. Polyamine metabolism 26 1.5. Previous studies from our laboratory 27 2. Aim of the study 29 3. Materials and Methods 30 3.1. Malignant pleural effusion (MPE) 30 3.2. Lymphocytes isolated from MPE 30 3.3. Cell culture 30 3.3.1. Cryopreservation of lymphocytes 30 3.3.2. Ex vivo expansion of primary T cells 31 3.3.3. Jurkat cell 31 3.3.4. T cell Exhaustion model in Jurkat cells 31 3.4. Drug treatment on T cells 32 3.5. siRNA transfection 33 3.6. Flow cytometry analysis 33 3.6.1. PMA and ionomycin T cell stimulation 33 3.6.2. Intracellular cytokine staining 33 3.6.3. Inhibitory receptors staining 34 3.6.4. Staining of Ki-67 34 3.7. IL-2 Enzyme-linked immunosorbent assay (ELISA) 35 3.8. Quantitative RT-PCR analysis 36 3.8.1. RNA extraction 36 3.8.2. DNase I treatment 37 3.8.3. Reverse transcription (RT) reaction 37 3.8.4. Real-time PCR 37 3.8.5. RNA sequencing data analysis 38 3.8.6. Gene set enrichment analysis (GSEA) 39 3.8.7. Functional enrichment analysis 39 3.9. Single-cell RNA sequencing (scRNA-seq) 39 3.10. Bioinformatic analysis of the scRNA-seq data 40 3.10.1. Pre-processing of Single-cell RNA sequencing raw data 40 3.10.2. Gene marker analysis 41 3.11. Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) 41 3.11.1. Bioinformatic analysis of the ATAC-seq 42 3.12. Quantification and statistical analysis 43 4. Results 44 4.1. Gene characterization of tumor-reactive T cells in malignant pleural effusions 44 4.1.1. T cells in MPE exhibit a widely altered gene profile after JQ1 treatment 44 4.1.2. JQ1 upregulates gene expression related to metabolic pathways 44 4.1.3. JQ1 reinvigorated T cell exhausted-related gene expression 45 4.2. Metabolic inhibition assay for targeting the potential metabolic pathways on which JQ1 elevates T cell polyfunctionality 46 4.2.1. Metabolic pathways and their inhibitors involved in this study 46 4.2.2. The efficacy of metabolic inhibitors maintained for 48 hours in general 47 4.2.3. Block of polyamine biosynthesis suppressed JQ1 from elevating T cell polyfunctionality 48 4.3. Genome-wide mRNA-sequencing validation on MPE T cells 48 4.3.1. Leading-edge genes from GSEA represent the most contribution of enrichment scores specific to the dataset 48 4.3.2. JQ1 significantly upregulated ODC1 in amino acid metabolism in MPE T cells 49 4.3.3. Genes in the pentose phosphate pathway and fatty acid metabolism were not upregulated after JQ1 treatment 49 4.4. ODC1 gene knockdown assay to specify the immunomodulatory effect between JQ1 and polyamine metabolism 49 4.4.1. JQ1 exerts its immunomodulatory effects through upregulating ODC1 49 4.5. The epigenetic landscape of MPE in bromodomain inhibitor JQ1 intervention 50 4.5.1. Bromodomain inhibition induces epigenetic patterns in tumor-reactive T cells in MPE 50 4.6. The single-cell transcriptomics of CD8+ T cells in MPE after JQ1 intervention 51 4.6.1. Different subsets were expressed in CD8+ T cells of MPE 51 4.6.2. JQ1 upregulated ODC1 and effector cytokine genes in the subset of CD8+ effector T cells and exhausted T cells 53 4.6.3. Histone modification drove the transcriptional regulation of JQ1 53 5. Discussion 55 6. Conclusion 60 7. Reference 84 | |
dc.language.iso | zh-TW | |
dc.title | 探討含溴結構域抑制劑對肺癌反應T細胞的代謝重整作用 | zh_TW |
dc.title | Metabolic reprogramming effect of bromodomain inhibitor JQ1 on tumor-reactive T cells in lung cancer patients | en |
dc.type | Thesis | |
dc.date.schoolyear | 110-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 林妙霞(Miao-Hsia Lin),邱彥霖(Yen-Ling Chiu) | |
dc.subject.keyword | 惡性胸水,表觀遺傳學,耗竭性T細胞,代謝重整, | zh_TW |
dc.subject.keyword | Malignant pleural effusion,Epigenetics,T cell exhaustion,Metabolic reprogramming, | en |
dc.relation.page | 92 | |
dc.identifier.doi | 10.6342/NTU202202911 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2022-09-26 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 毒理學研究所 | zh_TW |
顯示於系所單位: | 毒理學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-2908202210354000.pdf 目前未授權公開取用 | 8.57 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。