請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8405
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林淑華(Shu-Wha Lin) | |
dc.contributor.author | Chih-Hsiang Yu | en |
dc.contributor.author | 游智翔 | zh_TW |
dc.date.accessioned | 2021-05-20T00:53:42Z | - |
dc.date.available | 2022-08-01 | |
dc.date.available | 2021-05-20T00:53:42Z | - |
dc.date.copyright | 2020-09-03 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-07-28 | |
dc.identifier.citation | 財團法人中華民國兒童癌症基金會, 財團法人中華民國兒童癌症基金會2018年度報告. 2019. 2. Pui, C.H., et al., Treating Childhood Acute Lymphoblastic Leukemia without Cranial Irradiation. New England Journal of Medicine, 2009. 360(26): p. 2730-2741. 3. Hunger, S.P. and C.G. Mullighan, Acute Lymphoblastic Leukemia in Children. New England Journal of Medicine, 2015. 373(16): p. 1541-1552. 4. Pui, C.H., K.E. Nichols, and J.J. Yang, Somatic and germline genomics in paediatric acute lymphoblastic leukaemia. Nature Reviews Clinical Oncology, 2019. 16(4): p. 227-240. 5. Heikamp, E.B. and C.H. Pui, Next-Generation Evaluation and Treatment of Pediatric Acute Lymphoblastic Leukemia. Journal of Pediatrics, 2018. 203: p. 14-24. 6. Ladetto, M., et al., Next-generation sequencing and real-time quantitative PCR for minimal residual disease detection in B-cell disorders. Leukemia, 2014. 28(6): p. 1299-1307. 7. Pui, C.H., et al., Clinical impact of minimal residual disease in children with different subtypes of acute lymphoblastic leukemia treated with Response-Adapted therapy. Leukemia, 2017. 31(2): p. 333-339. 8. O'Connor, D., et al., Genotype-Specific Minimal Residual Disease Interpretation Improves Stratification in Pediatric Acute Lymphoblastic Leukemia. Journal of Clinical Oncology, 2018. 36(1): p. 34-43. 9. Gu, Z.H., et al., PAX5-driven subtypes of B-progenitor acute lymphoblastic leukemia. Nature Genetics, 2019. 51(2): p. 296-307. 10. Li, J.F., et al., Transcriptional landscape of B cell precursor acute lymphoblastic leukemia based on an international study of 1,223 cases. Proceedings of the National Academy of Sciences of the United States of America, 2018. 115(50): p. E11711-E11720. 11. Paulsson, K. and B. Johansson, High Hyperdiploid Childhood Acute Lymphoblastic Leukemia. Genes Chromosomes Cancer, 2009. 48(8): p. 637-660. 12. Moorman, A.V., et al., Outcome heterogeneity in childhood high-hyperdiploid acute lymphoblastic leukemia. Blood, 2003. 102(8): p. 2756-2762. 13. Oudot, C., et al., Prognostic factors for leukemic induction failure in children with acute lymphoblastic leukemia and outcome after salvage therapy: The FRALLE 93 study. Journal of Clinical Oncology, 2008. 26(9): p. 1496-1503. 14. Harrison, C.J., et al., Three distinct subgroups of hypodiploidy in acute lymphoblastic leukaemia. British Journal of Haematology, 2004. 125(5): p. 552-559. 15. Holmfeldt, L., et al., The genomic landscape of hypodiploid acute lymphoblastic leukemia. Nature Genetics, 2013. 45(3): p. 242-252. 16. Callen, D.F., et al., Acute lymphoblastic leukemia with a hypodiploid karyotype with less than 40 chromosomes: the basis for division into two subgroups. Leukemia, 1989. 3(10): p. 749-52. 17. Ma, S.K., et al., Near-haploid common acute lymphoblastic leukaemia of childhood with a second hyperdiploid line: a DNA ploidy and fluorescence in-situ hybridization study. British Journal of Haematology, 1998. 103(3): p. 750-755. 18. Gibbons, B., et al., Near haploid acute lymphoblastic leukemia: seven new cases and a review of the literature. Leukemia, 1991. 5(9): p. 738-43. 19. Oshimura, M., A.I. Freeman, and A.A. Sandberg, Chromosomes and causation of human cancer and leukemia. XXIII. Near-haploidy in acute leukemia. Cancer, 1977. 40(3): p. 1143-8. 20. Safavi, S., et al., Loss of chromosomes is the primary event in near-haploid and low-hypodiploid acute lymphoblastic leukemia. Leukemia, 2013. 27(1): p. 248-250. 21. Paulsson, K., et al., Genetic landscape of high hyperdiploid childhood acute lymphoblastic leukemia. Proceedings of the National Academy of Sciences of the United States of America, 2010. 107(50): p. 21719-21724. 22. Arber, D.A., et al., The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood, 2016. 127(20): p. 2391-2405. 23. Harewood, L., et al., Amplification of AML1 on a duplicated chromosome 21 in acute lymphoblastic leukemia: a study of 20 cases. Leukemia, 2003. 17(3): p. 547-553. 24. Soulier, J., et al., Amplification of band q22 of chromosome 21, including AML1, in older children with acute lymphoblastic leukemia: an emerging molecular cytogenetic subgroup. Leukemia, 2003. 17(8): p. 1679-1682. 25. Li, Y.L., et al., Constitutional and somatic rearrangement of chromosome 21 in acute lymphoblastic leukaemia. Nature, 2014. 508(7494): p. 98-102. 26. Harrison, C.J., et al., An international study of intrachromosomal amplification of chromosome 21 (iAMP21): cytogenetic characterization and outcome. Leukemia, 2014. 28(5): p. 1015-1021. 27. Golub, T.R., et al., Fusion of the Tel Gene on 12p13 to the Aml1 Gene on 21q22 in Acute Lymphoblastic-Leukemia. Proceedings of the National Academy of Sciences of the United States of America, 1995. 92(11): p. 4917-4921. 28. Romana, S.P., M. Leconiat, and R. Berger, t(12;21): a New Recurrent Translocation in Acute Lymphoblastic-Leukemia. Genes Chromosomes Cancer, 1994. 9(3): p. 186-191. 29. Lilljebjorn, H., et al., Identification of ETV6-RUNX1-like and DUX4-rearranged subtypes in paediatric B-cell precursor acute lymphoblastic leukaemia. Nature Communications, 2016. 7: p. 11790. 30. Zaliova, M., et al., ETV6/RUNX1-like acute lymphoblastic leukemia: A novel B-cell precursor leukemia subtype associated with the CD27/CD44 immunophenotype. Genes Chromosomes Cancer, 2017. 56(8): p. 608-616. 31. Jeha, S., et al., Increased risk for CNS relapse in pre-B cell leukemia with the t(1;19)/TCF3-PBX1. Leukemia, 2009. 23(8): p. 1406-9. 32. Shikano, T., et al., Balanced and unbalanced 1;19 translocation-associated acute lymphoblastic leukemias. Cancer, 1986. 58(10): p. 2239-43. 33. Paulsson, K., et al., Characterisation of genomic translocation breakpoints and identification of an alternative TCF3/PBX1 fusion transcript in t(1;19)(q23;p13)-positive acute lymphoblastic leukaemias. Br J Haematol, 2007. 138(2): p. 196-201. 34. Gabert, J., et al., Standardization and quality control studies of 'real-time' quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia - A Europe Against Cancer Program. Leukemia, 2003. 17(12): p. 2318-2357. 35. Sakurai, M. and G.J. Swansbury, Fourth International Workshop on Chromosomes in Leukemia 1982: Overview of association between chromosome pattern and cell morphology, age, sex, and race. Cancer Genet Cytogenet, 1984. 11(3): p. 265-74. 36. Pieters, R., et al., A treatment protocol for infants younger than 1 year with acute lymphoblastic leukaemia (Interfant-99): an observational study and a multicentre randomised trial. Lancet, 2007. 370(9583): p. 240-250. 37. Meyer, C., et al., The MLL recombinome of acute leukemias in 2017. Leukemia, 2018. 32(2): p. 273-284. 38. Basso, G., et al., The Role of Immunophenotype in Acute Lymphoblastic-Leukemia of Infant Age. Leukemia Lymphoma, 1994. 15(1-2): p. 51-60. 39. Dankbaar, H., et al., Philadelphia-Chromosome Positive T-All. British Journal of Haematology, 1982. 50(3): p. 543-543. 40. Keung, Y.K., et al., Philadelphia chromosome positive myelodysplastic syndrome and acute myeloid leukemia-retrospective study and review of literature. Leukemia Research, 2004. 28(6): p. 579-586. 41. P. Nowell, D.H., PC Nowell, A minute chromosome in human chronic granulocytic leukemia. Science, 1960. 132: p. 1197. 42. Melo, J.V., The diversity of BCR-ABL fusion proteins and their relationship to leukemia phenotype. Blood, 1996. 88(7): p. 2375-2384. 43. Mullighan, C.G., et al., BCR-ABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros. Nature, 2008. 453(7191): p. 110-114. 44. Churchman, M.L., et al., Efficacy of Retinoids in IKZF1-Mutated BCR-ABL1 Acute Lymphoblastic Leukemia. Cancer Cell, 2015. 28(3): p. 343-356. 45. Mullighan, C.G., et al., Deletion of IKZF1 and Prognosis in Acute Lymphoblastic Leukemia. New England Journal of Medicine, 2009. 360(5): p. 470-480. 46. Den Boer, M.L., et al., A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide classification study. Lancet Oncology, 2009. 10(2): p. 125-134. 47. Roberts, K.G., et al., Targetable Kinase-Activating Lesions in Ph-like Acute Lymphoblastic Leukemia. New England Journal of Medicine, 2014. 371(11): p. 1005-1015. 48. Reshmi, S.C., et al., Targetable kinase gene fusions in high-risk B-ALL: a study from the Children's Oncology Group. Blood, 2017. 129(25): p. 3352-3361. 49. Kobayashi, K., et al., TKI Dasatinib Monotherapy for a Patient With Ph-Like ALL Bearing ATF7IP/PDGFRB Translocation. Pediatric Blood Cancer, 2015. 62(6): p. 1058-1060. 50. Lengline, E., et al., Successful tyrosine kinase inhibitor therapy in a refractory B-cell precursor acute lymphoblastic leukemia with EBF1-PDGFRB fusion. Haematologica, 2013. 98(11): p. E146-E148. 51. Schwab, C., et al., EBF1-PDGFRB fusion in pediatric B-cell precursor acute lymphoblastic leukemia (BCP-ALL): genetic profile and clinical implications. Blood, 2016. 127(18): p. 2214-2218. 52. Weston, B.W., et al., Tyrosine Kinase Inhibitor Therapy Induces Remission in a Patient With Refractory EBF1-PDGFRB-Positive Acute Lymphoblastic Leukemia. Journal of Clinical Oncology, 2013. 31(25): p. E413-E416. 53. Zhang, J.H., et al., Deregulation of DUX4 and ERG in acute lymphoblastic leukemia. Nature Genetics, 2016. 48(12): p. 1481-1489. 54. Yasuda, T., et al., Recurrent DUX4 fusions in B cell acute lymphoblastic leukemia of adolescents and young adults. Nature Genetics, 2016. 48(5): p. 569-574. 55. Clappier, E., et al., An intragenic ERG deletion is a marker of an oncogenic subtype of B-cell precursor acute lymphoblastic leukemia with a favorable outcome despite frequent IKZF1 deletions. Leukemia, 2014. 28(1): p. 70-77. 56. Zaliova, M., et al., ERG deletion is associated with CD2 and attenuates the negative impact of IKZF1 deletion in childhood acute lymphoblastic leukemia. Leukemia, 2014. 28(1): p. 182-185. 57. Martini, A., et al., Recurrent rearrangement of the Ewing's sarcoma gene, EWSR1, or its homologue, TAF15, with the transcription factor CIZ/NMP4 in acute leukemia. Cancer Research, 2002. 62(19): p. 5408-5412. 58. Alexander, T.B., et al., The genetic basis and cell of origin of mixed phenotype acute leukaemia. Nature, 2018. 562(7727): p. 373-379. 59. Krance, R.A., et al., T(12 17)(P13 Q21) in Early Pre-B Acute Lymphoid Leukemia. Leukemia, 1992. 6(4): p. 251-255. 60. Hirabayashi, S., et al., ZNF384-related fusion genes define a subgroup of childhood B-cell precursor acute lymphoblastic leukemia with a characteristic immunotype. Haematologica, 2017. 102(1): p. 118-129. 61. Gocho, Y., et al., A novel recurrent EP300-ZNF384 gene fusion in B-cell precursor acute lymphoblastic leukemia. Leukemia, 2015. 29(12): p. 2445-2448. 62. Liu, Y.F., et al., Genomic Profiling of Adult and Pediatric B-cell Acute Lymphoblastic Leukemia. Ebiomedicine, 2016. 8: p. 173-183. 63. Griffith, M., et al., Comprehensive genomic analysis reveals FLT3 activation and a therapeutic strategy for a patient with relapsed adult B-lymphoblastic leukemia. Experimental Hematology, 2016. 44(7): p. 603-613. 64. Suzuki, K., et al., MEF2D-BCL9 Fusion Gene Is Associated With High-Risk Acute B-Cell Precursor Lymphoblastic Leukemia in Adolescents. Journal of Clinical Oncology, 2016. 34(28): p. 3451-3459. 65. Gu, Z., et al., Genomic analyses identify recurrent MEF2D fusions in acute lymphoblastic leukaemia. Nature Communications, 2016. 7: p. 13331. 66. Ohki, K., et al., Clinical and molecular characteristics of MEF2D fusion-positive B-cell precursor acute lymphoblastic leukemia in childhood, including a novel translocation resulting in MEF2D-HNRNPH1 gene fusion. Haematologica, 2019. 104(1): p. 128-137. 67. Coyaud, E., et al., Wide diversity of PAX5 alterations in B-ALL: a Groupe Francophone de Cytogenetique Hematologique study. Blood, 2010. 115(15): p. 3089-3097. 68. Schwab, C., et al., Intragenic amplification of PAX5: a novel subgroup in B-cell precursor acute lymphoblastic leukemia? Blood Advances, 2017. 1(19): p. 1473-1477. 69. Familiades, J., et al., PAX5 mutations occur frequently in adult B-cell progenitor acute lymphoblastic leukemia and PAX5 haploinsufficiency is associated with BCR-ABL1 and TCF3-PBX1 fusion genes: a GRAALL study. Leukemia, 2009. 23(11): p. 1989-1998. 70. Mullighan, C.G., et al., Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature, 2007. 446(7137): p. 758-764. 71. Passet, M., et al., PAX5 P80R mutation identifies a novel subtype of B-cell precursor acute lymphoblastic leukemia with favorable outcome. Blood, 2019. 133(3): p. 280-284. 72. Look, A.T., Oncogenic transcription factors in the human acute leukemias. Science, 1997. 278(5340): p. 1059-1064. 73. Fischer, U., et al., Genomics and drug profiling of fatal TCF3-HLF-positive acute lymphoblastic leukemia identifies recurrent mutation patterns and therapeutic options. Nature Genetics, 2015. 47(9): p. 1020-1029. 74. Mouttet, B., et al., Durable remissions in TCF3-HLF positive acute lymphoblastic leukemia with blinatumomab and stem cell transplantation. Haematologica, 2019. 104(6): p. E244-E247. 75. French, C., NUT midline carcinoma. Nature Reviews Cancer, 2014. 14(3): p. 149-150. 76. Pui, C.H., et al., Childhood Acute Lymphoblastic Leukemia: Progress Through Collaboration. Journal of Clinical Oncology, 2015. 33(27): p. 2938-2948. 77. Tien, H.F., et al., Correlation of cytogenetic results with immunophenotype, genotype, clinical features, and ras mutation in acute myeloid leukemia - A study of 235 Chinese patients in Taiwan. Cancer Genetics and Cytogenetics, 1995. 84(1): p. 60-68. 78. Liang, D.C., et al., Long-term results of Taiwan Pediatric Oncology Group studies 1997 and 2002 for childhood acute lymphoblastic leukemia. Leukemia, 2010. 24(2): p. 397-405. 79. Yang, Y.L., et al., IKZF1 deletions predict a poor prognosis in children with B-cell progenitor acute lymphoblastic leukemia: A multicenter analysis in Taiwan. Cancer Science, 2011. 102(10): p. 1874-1881. 80. Li, M.J., et al., Treatment for childhood acute lymphoblastic leukemia in Taiwan: Taiwan Pediatric Oncology Group ALL-2002 study emphasizing optimal reinduction therapy and central nervous system preventive therapy without cranial radiation. Pediatric Blood Cancer, 2017. 64(2): p. 234-241. 81. Stanulla, M., et al., IKZF1plus Defines a New Minimal Residual Disease-Dependent Very-Poor Prognostic Profile in Pediatric B-Cell Precursor Acute Lymphoblastic Leukemia. Journal of Clinical Oncology, 2018. 36(12): p. 1240-1249. 82. Yu, C.H., et al., MLPA and DNA index improve the molecular diagnosis of childhood B-cell acute lymphoblastic leukemia. Sci Rep, 2020. 10(1): p. 11501. 83. Rachieru-Sourisseau, P., et al., DNA Index in childhood acute lymphoblastic leukaemia: a karyotypic method to validate the flow cytometric measurement. International Journal of Laboratory Hematology, 2010. 32(3): p. 288-298. 84. Ge, S.X., E.W. Son, and R.N. Yao, iDEP: an integrated web application for differential expression and pathway analysis of RNA-Seq data. Bmc Bioinformatics, 2018. 19(1): p. 534. 85. Zhou, X., et al., Exploring genomic alteration in pediatric cancer using ProteinPaint. Nature Genetics, 2016. 48(1): p. 4-6. 86. Harrison, C.J., et al., Interphase molecular cytogenetic screening for chromosomal abnormalities of prognostic significance in childhood acute lymphoblastic leukaemia: a UK Cancer Cytogenetics Group Study. British Journal of Haematology, 2005. 129(4): p. 520-530. 87. Liang, D.C., et al., Frequencies of ETV6 RUNX1 Fusion and Hyperdiploidy in Pediatric Acute Lymphoblastic Leukemia Are Lower in Far East Than West. Pediatric Blood Cancer, 2010. 55(3): p. 430-433. 88. Raynaud, S., et al., The 12;21 translocation involving TEL and deletion of the other TEL allele: Two frequently associated alterations found in childhood acute lymphoblastic leukemia. Blood, 1996. 87(7): p. 2891-2899. 89. Hock, H., et al., Tel/Etv6 is an essential and selective regulator of adult hematopoietic stem cell survival. Genes Development, 2004. 18(19): p. 2336-2341. 90. Moriyama, T., et al., Germline genetic variation in ETV6 and risk of childhood acute lymphoblastic leukaemia: a systematic genetic study. Lancet Oncology, 2015. 16(16): p. 1659-1666. 91. van der Veer, A., et al., Independent prognostic value of BCR-ABL1-like signature and IKZF1 deletion, but not high CRLF2 expression, in children with B-cell precursor ALL. Blood, 2013. 122(15): p. 2622-2629. 92. Yeoh, A.E.J., et al., RNA Sequencing in Childhood B-Lymphoblastic Leukemia Improves Molecular and Risk Assignment. Blood, 2019. 134(Supplement_1): p. 651. 93. Tasian, S.K., et al., A Phase 2 Study of Ruxolitinib with Chemotherapy in Children with Philadelphia Chromosome-like Acute Lymphoblastic Leukemia (INCB18424-269/AALL1521): Dose-Finding Results from the Part 1 Safety Phase. Blood, 2018. 132(Supplement 1): p. 555. 94. Roberts, K.G., et al., Oncogenic role and therapeutic targeting of ABL-class and JAK-STAT activating kinase alterations in Ph-like ALL. Blood Advances, 2017. 1(20): p. 1657-1671. 95. Jiang, C., et al., Novel MEIS1-FOXO1 Fusion Gene in a Case of Pediatric B-Cell Precursor Acute Lymphoblastic Leukemia. Blood, 2018. 132(Supplement 1): p. 5283. 96. Li, B.S., et al., Therapy-induced mutations drive the genomic landscape of relapsed acute lymphoblastic leukemia. Blood, 2020. 135(1): p. 41-55. 97. Marshall, A.D. and G.C. Grosveld, Alveolar rhabdomyosarcoma - The molecular drivers of PAX3/7-FOXO1-induced tumorigenesis. Skeletal Muscle, 2012. 2: p. 25. 98. Akasaka, T., et al., Five members of the CEBP transcription factor family are targeted by recurrent IGH translocations in B-cell precursor acute lymphoblastic leukemia (BCP-ALL). Blood, 2007. 109(8): p. 3451-3461. 99. Tibshirani, R., et al., Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proceedings of the National Academy of Sciences of the United States of America, 2002. 99(10): p. 6567-6572. 100. Nigro, J.M., et al., Mutations in the P53 Gene Occur in Diverse Human-Tumor Types. Nature, 1989. 342(6250): p. 705-708. 101. Kandoth, C., et al., Mutational landscape and significance across 12 major cancer types. Nature, 2013. 502(7471): p. 333-339. 102. Forero-Castro, M., et al., Mutations in TP53 and JAK2 are independent prognostic biomarkers in B-cell precursor acute lymphoblastic leukaemia. British Journal of Cancer, 2017. 117(2): p. 256-265. 103. Yu, C.H., et al., TP53 alterations in relapsed childhood acute lymphoblastic leukemia. Cancer Science, 2020. 111(1): p. 229-238. 104. Hof, J., et al., Alterations of TP53 are associated with poor outcome in relapsed childhood acute lymphoblastic leukemia. Klinische Padiatrie, 2010. 222(3): p. 216-216. 105. Kony, S.J., et al., Radiation and genetic factors in the risk of second malignant neoplasms after a first cancer in childhood. Lancet, 1997. 350(9071): p. 91-95. 106. Felix, C.A., et al., The p53 gene in pediatric therapy-related leukemia and myelodysplasia. Blood, 1996. 87(10): p. 4376-4381. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8405 | - |
dc.description.abstract | B細胞急性淋巴性白血病是最常見的兒童癌症。藉由危險分群導向的治療方案,其治療成績在過去幾十年間已有大幅度的進步。主要的預後相關危險因子包括了基因亞群例如非整倍體 (高二倍體或低二倍體),融合基因,以及參與B細胞發育相關的基因突變,例如IKZF1及ERG基因等。近幾年來,數個研究團隊利用轉錄體定序對兒童B細胞急性淋巴性白血病進行全面性的研究,發現了數個具有獨特基因表達的新型基因亞群,且註明這些基因亞群也具有預後意義。為了進一步了解在台灣兒童的B細胞急性淋巴性白血病的基因變化,我利用多重連接依賴性探針擴增、DNA指數及反轉錄聚合酶連鎖反應分析常見的基因亞群在台灣的分布率,而未定出基因型的樣本則再以轉錄體定序偵測。藉由轉錄體定序,90%的B細胞急性淋巴性白血病皆可以被分類到特定的基因亞群。藉由與先前所發表的研究進行比較,我也發現了專屬於基因亞群的基因變化,例如在DUX4基因轉位急性淋巴性白血病中發現到高頻率的IKZF1及TP53基因突變,以及在ZNF384基因轉位急性淋巴性白血病發現高頻率的ETV6基因突變。另外也發現到台灣族群的B細胞急性淋巴性白血病基因亞群的分布頻率與先前已發表研究有所差異,例如類費城染色體急性淋巴性白血病在高加索人族群中佔了10-15%,但在台灣族群中卻只有2%。最後我利用多變項分析方法分析,並且確定基因亞群是具有顯著意義的危險因子。藉由本研究的結果,顯示利用轉錄體定序可以檢測B細胞急性淋巴性白血病的基因亞群,且基因亞群的鑑定可以幫助B細胞急性淋巴性白血病的病人進行危險分群。 | zh_TW |
dc.description.abstract | B-cell acute lymphoblastic leukemia (B-ALL) is the most frequent pediatric malignancy and the outcome had been dramatically improved with risk–directed therapy over the past few decades. The major risk factors include genetic subgroup defined as aneuploidy (high hyperdiploidy or hypodiploidy) or fusion genes and genetic alterations that disrupt B-cell development such as IKZF1 and ERG deletions. Recent years, several large cohort studies had comprehensively analyzed pediatric B-ALL and revealed novel subgroups with distinct gene expression profiles by using RNA-sequencing (RNA-seq) and these subgroups have prognostic significance. To better understand the genomic landscape of pediatric B-ALL in Taiwan, I analyzed recurrent alterations by Multiplex Ligation-dependent Probe Amplification (MLPA), DNA index and RT-PCR. RNA-seq was performed for those cases without known alterations to identify the genetic subgroups. Previous unidentified novel subgroup was discovered by RNA-seq and 90% of cases could be classified as one of the defined genetic subgroups. I also found subgroup-specific alterations that had never been reported such as significant higher rate of IKZF1 deletion and TP53 mutation in DUX4-rearranged ALL and frequent ETV6 alteration in ZNF384-rearranged ALL. The distribution of B-ALL subgroup was different from previous studies such as only 2% of cases were classified as Ph-like in our cohort compared to 10-15% in Caucasian cohorts. Multivariable analysis was performed and subgroup was the significant risk factor. This study showed that RNA-seq can be implemented to discover B-ALL subgroups and identification of genetic subgroup can enhance risk classification of B-ALL. | en |
dc.description.provenance | Made available in DSpace on 2021-05-20T00:53:42Z (GMT). No. of bitstreams: 1 U0001-2407202015243900.pdf: 12443738 bytes, checksum: de3ea8717a59318fbdb25f36192a4628 (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 誌謝 i 摘要 ii Abstract iv Contents vi Abbreviation x List of figures xii List of tables xiv List of appendix tables xv List of appendixes xvi Chapter 1 Introduction 1 1.1 B-cell acute lymphoblastic leukemia 1 1.2 Risk stratification 1 1.3 Genetic subgroups of pediatric B-ALL 3 1.3.1 Aneuploidy 3 1.3.2 Intrachromosomal amplification of chromosome 21 (iAMP21) 5 1.3.3 ETV6–RUNX1 fusion and ETV6–RUNX1-like ALL 5 1.3.4 TCF3-PBX1 fusion ALL 6 1.3.5 KMT2A-rearranged (KMT2A-r) and KMT2A-like ALL 7 1.3.6 BCR-ABL1 fusion and Philadelphia chromosome (Ph)-like ALL 8 1.3.7 DUX4-rearranged (DUX4-r) ALL 10 1.3.8 ZNF384-rearranged (ZNF384-r) and ZNF384-like ALL 11 1.3.9 MEF2D-rearranged (MEF2D-r) ALL 12 1.3.10 PAX5-driven ALL 12 1.3.11 Other subgroups 13 1.4 The specific aims of this study 14 Chapter 2 Material and Methods 16 2.1 Patients and protocols 16 2.2 Purification of lymphocytes from BM or PB specimens 19 2.3 Total RNA extraction 19 2.4 Genomic DNA extraction 20 2.5 Multiplex Ligation-dependent Probe Amplification 21 2.6 Analysis of ploidy status by MLPA 23 2.7 Short tandem repeat (STR) profiling 23 2.8 Chromosomal microarray (CMA) analysis 24 2.9 DNA index (DI) analysis 24 2.10 RT-PCR for fusion genes 25 2.11 PCR for variant analysis 25 2.12 RNA-sequencing 26 2.13 Software 26 2.14 Statistical analysis 27 Chapter 3 Results 29 3.1 DNA index analysis for identification of aneuploidy 29 3.2 MLPA P036 Subtelomeres Mix 1 probemix for identification of aneuploidy 29 3.3 Compare the results between DI, MLPA P036 and karyotyping 30 3.4 High hyperdiploid cases 30 3.5 Hypodiploid cases 31 3.6 Determination of LOH status in hypodiploidy by short tandem repeat (STR) analysis 32 3.7 Identification of iAMP21 by MLPA P327 iAMP21-ERG probemix 32 3.8 RT-PCR for fusion genes 33 3.9 Determine genetic subgroup by RNA sequencing 34 3.10 Copy number abnormalities in children with B-ALL 35 3.11 DUX4-r ALL 35 3.12 MEF2D-r ALL 36 3.13 ZNF384-r ALL 36 3.14 Ph-like ALL 37 3.15 PAX5alt ALL 38 3.16 Other subgroup of B-ALL 39 3.17 Cases with aneuploidy and fusion genes simultaneously 40 3.18 Survival analysis 41 3.19 Multivariate analysis 41 Chapter 4 Discussion 43 4.1 MLPA and DNA index improve the molecular diagnosis of pediatric B-cell acute lymphoblastic leukemia 43 4.2 STR profiling would be a complementary tool for identification of LOH in masked hypodiploidy ALL 44 4.3 Genetic subgroup-specific copy number alterations 44 4.4 The distribution of subgroup of pediatric B-ALL in Taiwan 46 4.5 Pediatric B-ALL cases with multiple primary alterations 48 4.6 Screening strategy for pediatric B-ALL subgrouping in Taiwan 49 4.7 Clinical significance of risk factors 51 Chapter 5 Conclusion and Perspective 52 Figure 55 Table 92 Appendix table 111 Appendix 120 Reference 123 Curriculum Vitae and Publications 136 | |
dc.language.iso | en | |
dc.title | 兒童B細胞急性淋巴性白血病之基因分析 | zh_TW |
dc.title | Genetic Profiling of Pediatric B-cell Acute Lymphoblastic Leukemia | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-2 | |
dc.description.degree | 博士 | |
dc.contributor.coadvisor | 楊永立(Yung-Li Yang) | |
dc.contributor.oralexamcommittee | 俞松良(Sung-Liang Yu),陳璿宇(Hsuan-Yu Chen),邱世欣(Shyh-Shin Chiou),曾慶平(Ching-Ping Tseng) | |
dc.subject.keyword | 兒童B細胞急性淋巴性白血病,多重連接依賴性探針擴增,DNA指數,轉錄體定序,基因亞群, | zh_TW |
dc.subject.keyword | Pediatric B-cell acute lymphoblastic leukemia,Multiplex Ligation-dependent Probe Amplification (MLPA),DNA index (DI),RNA-seq,genetic subgroup, | en |
dc.relation.page | 145 | |
dc.identifier.doi | 10.6342/NTU202001830 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2020-07-28 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 醫事技術學研究所 | zh_TW |
顯示於系所單位: | 醫學檢驗暨生物技術學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-2407202015243900.pdf | 12.15 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。