Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84029
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李翔傑zh_TW
dc.contributor.advisorHsiang-Chieh Leeen
dc.contributor.author李俞萱zh_TW
dc.contributor.authorYu-Hsuan Leeen
dc.date.accessioned2023-03-19T21:28:32Z-
dc.date.available2024-04-03-
dc.date.copyright2024-04-02-
dc.date.issued2022-
dc.date.submitted2002-01-01-
dc.identifier.citation[1] " DermLite DL4." DermLite. https://dermlite.com/products/dermlite-dl4
[2] "Dermoscopy." dermnetnz. https://dermnetnz.org/topics/dermoscopy
[3] "VISIA-CR." Canfield Scientific. https://www.canfieldsci.com/imaging-systems/visia-cr/
[4] " VivaScope 1500/3000 Confocal Laser Scanning Microscope." VivaScope. https://www.vivascope.de/optical-biopsy/
[5] A. Batani et al., "Assessment of dermal papillary and microvascular parameters in psoriasis vulgaris using in vivo reflectance confocal microscopy," Experimental and Therapeutic Medicine, vol. 15, pp. 1241-1246, 11/22 2017, doi: 10.3892/etm.2017.5542.
[6] T.-S. Ho, M.-R. Tsai, C.-W. Lu, H.-S. Chang, and S.-L. Huang, "Mirau-type full-field optical coherence tomography with switchable partially spatially coherent illumination modes," Biomed. Opt. Express, vol. 12, no. 5, pp. 2670-2683, 2021/05/01 2021.
[7] A. Taghavikhalilbad, S. Adabi, A. Clayton, H. Soltanizadeh, D. Mehregan, and M. R. N. Avanaki, "Semi-automated localization of dermal epidermal junction in optical coherence tomography images of skin," Appl. Opt., vol. 56, no. 11, pp. 3116-3121, 2017/04/10 2017.
[8] S. Neerken, G. Lucassen, M. Bisschop, E. Lenderink, and T. Nuijs, "Characterization of age-related effects in human skin: A comparative study that applies confocal laser scanning microscopy and optical coherence tomography," J Biomed Opt, vol. 9, no. 2, 2004. [Online]. Available: https://doi.org/10.1117/1.1645795.
[9] S. Koller et al., "In vivo reflectance confocal microscopy: Automated diagnostic image analysis of melanocytic skin tumours," Journal of the European Academy of Dermatology and Venereology : JEADV, vol. 25, pp. 554-8, 05/01 2011.
[10] M. COPELAND. "What’s the Difference Between Artificial Intelligence, Machine Learning and Deep Learning?" NVIDA.
[11] E. Touger. "What’s the Difference Between Artificial Intelligence (AI), Machine Learning, and Deep Learning?" https://www.prowesscorp.com/whats-the-difference-between-artificial-intelligence-ai-machine-learning-and-deep-learning/.
[12] U. S. D. S. Fidan Boylu, Azure CAT, "GPUs vs CPUs for deployment of deep learning models."
[13] H.-Y. LEE. "MACHINE LEARNING 2021 SPRING." https://speech.ee.ntu.edu.tw/~hylee/ml/2021-spring.html.
[14] J. Long, E. Shelhamer, and T. Darrell, "Fully Convolutional Networks for Semantic Segmentation," p. arXiv:1411.4038. [Online]. Available: https://ui.adsabs.harvard.edu/abs/2014arXiv1411.4038L
[15] I. Rizwan I Haque and J. Neubert, "Deep learning approaches to biomedical image segmentation," Informatics in Medicine Unlocked, vol. 18, p. 100297, 2020/01/01/ 2020.
[16] H.-Y. Chou, S.-L. Huang, J.-W. Tjiu, and H. H. Chen, "Dermal epidermal junction detection for full-field optical coherence tomography data of human skin by deep learning," Computerized Medical Imaging and Graphics, vol. 87, p. 101833, 2021/01/01/ 2021.
[17] R. del Amor et al., "Automatic Segmentation of Epidermis and Hair Follicles in Optical Coherence Tomography Images of Normal Skin by Convolutional Neural Networks," (in English), Frontiers in Medicine, Methods vol. 7, 2020-June-04 2020.
[18] J. Yubo et al., "Deep-learning approach for automated thickness measurement of epithelial tissue and scab using optical coherence tomography," J Biomed Opt, vol. 27, no. 1, pp. 1-20, 1/1 2022.
[19] M. Matthew Hoffman. " Picture of the Skin." WebMD, LLC.
[20] s. Sharma and H. Yousef, "Anatomy, Skin (Integument), Epidermis," 2017.
[21] O. services. " Structure and Function of Skin." https://courses.lumenlearning.com/suny-wmopen-biology2/chapter/structure-and-function-of-skin/
[22] earthslab. "CELLS AND LAYERS OF THE EPIDERMIS." https://www.earthslab.com/physiology/cells-layers-epidermis/
[23] "dermis." smallcollation. https://smallcollation.blogspot.com/2013/09/dermis.html#gsc.tab=0
[24] Y.-W. Chiang. "Structures of the Skin." ACHELOY BIOMED. https://www.acheloy.com/cc-22
[25] N. Betzalel, Y. Feldman, and P. Ishai, "The Modeling of the Absorbance of Sub-THz Radiation by Human Skin," IEEE Transactions on Terahertz Science and Technology, vol. PP, pp. 1-8, 08/25 2017, doi: 10.1109/TTHZ.2017.2736345.
[26] A. Mamalis, D. Ho, and J. Jagdeo, "Optical Coherence Tomography Imaging of Normal, Chronologically Aged, Photoaged and Photodamaged Skin: A Systematic Review," (in eng), Dermatol Surg, vol. 41, no. 9, pp. 993-1005, 2015.
[27] M. Charlotte M Clark, MS, Joint Mt Sinai- Downstate Medical Center Clinical Research Fellow in Dermatology, and Orit Markowitz, MD, Assistant professor of dermatology, Mt Sinai Medical Center NY, NY;. "Optical coherence tomography." DermNet NZ. https://dermnetnz.org/topics/optical-coherence-tomography.
[28] Y. Winetraub et al., "OCT2Hist: Non-Invasive Virtual Biopsy Using Optical Coherence Tomography," medRxiv, p. 2021.03.31.21254733, 2021.
[29] J. Welzel, "Optical coherence tomography in dermatology: a review," Skin Research and Technology, vol. 7, pp. 1-9, 02/01 2001.
[30] D. Huang et al., "Optical coherence tomography," (in eng), Science, vol. 254, no. 5035, pp. 1178-81, Nov 22 1991.
[31] J. K. Barton et al., "Investigating Sun-damaged Skin and Actinic Keratosis with Optical Coherence Tomography: A Pilot Study," Technology in Cancer Research & Treatment, vol. 2, no. 6, pp. 525-535, 2003/12/01 2003.
[32] T. Gambichler et al., "Acute skin alterations following ultraviolet radiation investigated by optical coherence tomography and histology," (in eng), Arch Dermatol Res, vol. 297, no. 5, pp. 218-25, Nov 2005.
[33] V. R. Korde et al., "Using optical coherence tomography to evaluate skin sun damage and precancer," Lasers in Surgery and Medicine, https://doi.org/10.1002/lsm.20573 vol. 39, no. 9, pp. 687-695, 2007/10/01 2007.
[34] S. Wu, H. Li, X. Zhang, and Z. Li, "Optical features for chronological aging and photoaging skin by optical coherence tomography," Lasers in Medical Science, vol. 28, no. 2, pp. 445-450, 2013/02/01 2013.
[35] "WHAT IS COLLAGEN?" awsom. http://awsom.co.in/what-is-collagen/
[36] G. Bezerra Hiram, A. Costa Marco, G. Guagliumi, M. Rollins Andrew, and I. Simon Daniel, "Intracoronary Optical Coherence Tomography: A Comprehensive Review," JACC: Cardiovascular Interventions, vol. 2, no. 11, pp. 1035-1046, 2009/11/01 2009.
[37] J. A. Izatt, M. A. Choma, and A.-H. Dhalla, "Theory of Optical Coherence Tomography," in Optical Coherence Tomography: Technology and Applications, W. Drexler and J. G. Fujimoto Eds. Cham: Springer International Publishing, 2015, pp. 65-94.
[38] M. A. C. J. A. Izatt, and A.-H. Dhalla,, W. D. a. J. G. Fujimoto, Ed. "Theory of Optical Coherence Tomography," in Optical Coherence Tomography: Technology and Applications. Springer International Publishing, 2015.
[39] T.-A. W. CHAU YEE NG, HSIANG-CHIEH LEE, BOE-HUEI HUANG, MENG-TSAN TSAI, "Comparison of photodamages induced by fractional CO2 and picosecond Nd: YAG lasers with optical coherence tomography," 2022.
[40] Y. P. Huang et al., "A Generic Framework for Fourier-Domain Optical Coherence Tomography Imaging: Software Architecture and Hardware Implementations," IEEE Access, vol. 8, pp. 191726-191736, 2020.
[41] O. T. Inc. "3D SKIN VIEWER." https://opxiontech.com/#/MainPlatform/home.
[42] I. Thorlabs. "Grid Distortion Test Targets." https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=7501.
[43] H. Ding, J. Q. Lu, W. A. Wooden, P. J. Kragel, and X.-H. Hu, "Refractive indices of human skin tissues at eight wavelengths and estimated dispersion relations between 300 and 1600 nm," Physics in Medicine and Biology, vol. 51, no. 6, pp. 1479-1489, 2006/03/01 2006.
[44] K. A. Vermeer, J. Mo, J. J. A. Weda, H. G. Lemij, and J. F. de Boer, "Depth-resolved model-based reconstruction of attenuation coefficients in optical coherence tomography," Biomed. Opt. Express, vol. 5, no. 1, pp. 322-337, 2014/01/01 2014.
[45] D. J. Faber, F. J. v. d. Meer, M. C. G. Aalders, and T. G. v. Leeuwen, "Quantitative measurement of attenuation coefficients of weakly scattering media using optical coherence tomography," Opt. Express, vol. 12, no. 19, pp. 4353-4365, 2004/09/20 2004, doi: 10.1364/OPEX.12.004353.
[46] O. Ronneberger, P. Fischer, and T. Brox, "U-Net: Convolutional Networks for Biomedical Image Segmentation," in Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Cham, N. Navab, J. Hornegger, W. M. Wells, and A. F. Frangi, Eds., 2015// 2015: Springer International Publishing, pp. 234-241.
[47] V. Bushaev. " Adam — latest trends in deep learning optimization." towardsdatascience. https://towardsdatascience.com/adam-latest-trends-in-deep-learning-optimization-6be9a291375c.
[48] Diederik and J. Ba, "Adam: A Method for Stochastic Optimization," arXiv pre-print server, 2017-01-30 2017.
[49] S. Ud-Din et al., "Objective assessment of dermal fibrosis in cutaneous scarring, using optical coherence tomography, high-frequency ultrasound and immunohistomorphometry of human skin," British Journal of Dermatology, https://doi.org/10.1111/bjd.17739 vol. 181, no. 4, pp. 722-732, 2019/10/01 2019.
[50] J. Lu et al., "Application of OCT‐Derived Attenuation Coefficient in Acute Burn‐Damaged Skin," Lasers in Surgery and Medicine, vol. 53, no. 9, pp. 1192-1200, 2021.
[51] T. Gambichler, R. Matip, G. Moussa, P. Altmeyer, and K. Hoffmann, "In vivo data of epidermal thickness evaluated by optical coherence tomography: Effects of age, gender, skin type, and anatomic site," Journal of Dermatological Science, vol. 44, no. 3, pp. 145-152, 2006/12/01/ 2006.
[52] M. Mogensen, H. A. Morsy, L. Thrane, and G. B. Jemec, "Morphology and epidermal thickness of normal skin imaged by optical coherence tomography," (in eng), Dermatology, vol. 217, no. 1, pp. 14-20, 2008.
[53] R. Maiti, M. Duan, S. G. Danby, R. Lewis, S. J. Matcher, and M. J. Carré, "Morphological parametric mapping of 21 skin sites throughout the body using optical coherence tomography," Journal of the Mechanical Behavior of Biomedical Materials, vol. 102, p. 103501, 2020/02/01/ 2020, doi: https://doi.org/10.1016/j.jmbbm.2019.103501.
[54] F. Mahdi, K. Motoki, and S. Kobashi, "Optimization technique combined with deep learning method for teeth recognition in dental panoramic radiographs," Scientific Reports, vol. 10, 11/06 2020, doi: 10.1038/s41598-020-75887-9.
[55] A. F. Gad. "Evaluating Deep Learning Models: The Confusion Matrix, Accuracy, Precision, and Recall." https://blog.paperspace.com/deep-learning-metrics-precision-recall-accuracy/.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84029-
dc.description.abstract現今在評估皮膚疾病時,醫生通常需透過皮膚鏡來放大檢查可疑之病灶區域,故皮膚鏡常被作為第一線的檢查儀器。然而,經由皮膚鏡診斷的準確性需高度仰賴醫生的經驗。近來,不少先進生醫光學影像技術被提出,像是反射式共軛焦顯微術(reflectance confocal microscopy, RCM)和光學同調斷層掃描術(optical coherence tomography, OCT)。儘管RCM可達到細胞級的皮膚結構影像,但視野(field of view, FOV)和成像深度皆受到限制。對於OCT而言,雖然OCT可提供三維皮膚結構影像,但目前大多數的OCT系統不論是成像分辨率或是成像深度都有所限制。除此之外、目前市面上 RCM 或 OCT 系統體積皆較為龐大。除前述硬體限制之外、前述兩項技術或市面上的系統對於提供定量化影像分析則相當具有挑戰性。

在本篇論文中,我們將致力於突破前述系統或技術在硬體及軟體層面的限制。在硬體方面,我們使用芯聖科技(OPXION Technology, Inc.)所開發之手持式3D皮膚影像掃描儀,其基於OCT技術並具有三維皮膚組織成像特點,與市面上OCT相比,體積小且輕量化。至於軟體方面,我們根據手持式OCT系統中獲取的皮膚OCT影像和OCT影像中局部光學衰減係數(optical attenuation coefficient, OAC),開發了全自動化OCT皮膚影像分析演算法。此演算法可量化皮膚狀況並計算多項皮膚參數,包括表皮厚度、皮膚粗糙度及表皮和真皮的紋理。

為了提升全自動化皮膚影像分割演算法中的準確率與處理速度,我們開發以U-net模型為基底的深度學習演算法。在深度學習演算法當中,我們使用局部光學衰減係數計算的分割結果並且進一步透過人為檢視針對不正確的分割結果進行手動校正,且以此一校正過的分割結果作為模型開發的基礎。初步的研究結果顯示可有效改善分割之準確率和處理速度。

此外,我們探討市售肌膚水份檢測儀與OCT之關聯性,使用市售保濕面膜進行試驗,比較受試者使用前後的皮膚參數與OCT影像之差異。在未來的研究中,我們將致力整合演算法於客製化OCT使用者介面(Graphical User Interface, GUI),並對深度學習模型進行優化,增加更多不同部位之人體皮膚影像,以期在面對各式皮膚型態時也能有效準確分割。我們期望本碩士論文的研究成果能成為未來OCT跨足醫美的基石,尤其是肌膚護理領域。再通過與臨床醫學及醫美診所的團隊們多方合作,以期最大化本研究成果。
zh_TW
dc.description.abstractCurrently, for the assessment of skin diseases, physicians usually rely on dermoscopy to provide magnified visualization of the suspected regions as the first-in-line screen tool. However, the diagnostic accuracy of dermoscopy often relies on physicians’ experience. Recently, the emergence of advanced biomedical optical imaging technologies, such as reflectance confocal microscopy (RCM) and optical coherence tomography (OCT). Although RCM can provide cellular-level imaging of the skin architecture, both the field of view (FOV) and the imaging depth are limited. On the other hand, although OCT can provide volumetric images of the skin architectures, most of the currently available OCT system, either the imaging resolution or the imaging depth, is limited. Also, the size of either the commercially available RCM or OCT system is relatively bulky. Furthermore, in addition to above existing hardware limitations, it is relatively challenging to provide quantitative analysis with either system or technologies.

In this master thesis work, we aim to address the above limitations from both the hardware and software perspectives. For the hardware side, we used the handheld 3D skin viewer system developed by OPXION Technology, Inc., which can provide volumetric imaging of the skin tissue architectures based on the OCT technology but exhibits a smaller size and weight compared to the existing OCT systems. As for the software side, we have developed a fully automatic analysis algorithm based on the skin OCT images acquired using the handheld OCT system and the local attenuation coefficient in the OCT images. Various parameters quantifying the skin conditions, including the thickness of the epidermis, skin roughness, and texture of the epidermis and dermis, can be computed with the developed algorithm.

In addition, in order to improve the accuracy and computation speed of the above skin image segmentation algorithm, we have developed a deep-learning algorithm based on the U-net model. In this deep-learning algorithm, we used the segmentation results computed based on the local attenuation coefficient where incorrect segmentation results have been manually corrected as the basis for the development of the deep-learning model. The preliminary results have shown an improved performance in both segmentation accuracy and computation time.

Furthermore, we also investigated the correlation between the commercial skin moisture tester and OCT and compared the differences in the skin OCT parameters for participants before and after applying the farcical mask. In the future, we will focus on integrating the algorithm into the OCT customized graphical user interface (GUI) and optimizing the deep learning model, for example, by including more skin images collected from different parts of the human skin. Therefore, the segmented results can be more effectively and accurately predicted in the face of various skin types. We believe the results of this master thesis work set the footstone for future translation of OCT into aesthetic medicine, particularly the skincare regime. In future research, through the cooperation with clinical medicine and medical aesthetic clinics teams, we expect our research can produce the best results.
en
dc.description.provenanceMade available in DSpace on 2023-03-19T21:28:32Z (GMT). No. of bitstreams: 1
U0001-1801202217331700.pdf: 6941570 bytes, checksum: 0997bb5f6199e3bc2ef6760127b13673 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents論文口試委員審定書–––i
誌謝–––ii
中文摘要–––iii
ABSTRACT–––v
目錄–––vii
表目錄–––x
圖目錄–––xi
Chapter 1 緒論–––1
1.1 常見評估皮膚疾病之儀器–––1
1.2 生物醫學影像分割之文獻回顧–––3
1.2.1 傳統影像標定之方法–––3
1.2.2 深度學習進行影像標定–––4
1.3 皮膚結構與特性–––10
1.4 OCT中的皮膚影像–––13
1.5 研究動機–––16
1.6 論文範疇–––17
Chapter 2 光學同調斷層掃描術 (Optical Coherence Tomography)–––18
2.1 光學同調斷層掃描術簡介–––18
2.2 光學同調斷層掃描術原理與系統特性–––20
2.2.1 低同調干涉儀 (Low coherence interferometry)–––20
2.2.2 軸向解析度(Axial resolution)–––24
2.2.3 橫向解析度 (Lateral resolution)–––24
2.3 光學同調斷層掃描術之發展–––25
2.3.1 時域式光學同調斷層掃描術(Time-domain OCT, TD-OCT)–––25
2.3.2 頻域式光學同調斷層掃描術(Spectral-domain OCT, SD-OCT)–––25
2.3.3 掃頻式光學同調斷層掃描術(Swept-source OCT, SS-OCT)–––26
Chapter 3 手持式光學同調斷層皮膚掃描儀系統–––27
3.1 手持式光學同調斷層皮膚掃描儀系統架構–––27
3.2 手持式光學同調斷層皮膚掃描儀系統特性–––29
3.2.1 軸向像素大小–––29
3.2.2 橫向像素大小–––30
3.2.3 正常健康人類皮膚組織折射率–––30
3.5 實驗數據收集–––31
Chapter 4 皮膚自動化分層演算法開發方法–––33
4.1 透過OAC (Optical Attenuation Coefficient)進行演算法開發–––33
4.2 OAC之介紹–––34
4.3 深度學習反驗證與準確性提升–––39
4.4 Ground Truth之收集–––41
4.5 U-net架構–––43
Chapter 5 皮膚自動化分層演算法開發結果–––47
5.1 表皮層厚度資訊–––47
5.1.1表皮層厚度資訊標定–––47
5.1.2不同部位之表皮層厚度–––49
5.2 光學特性分析與二維投影圖–––52
5.3 自動化分層判斷不恰當之例子–––55
5.4 深度學習之結果–––57
5.5 差異分析–––61
5.6 市售皮膚水分檢測儀與OCT影像之對比–––68
Chapter 6 結論與未來展望–––73
6.1 結論–––73
6.2 未來展望–––74
參考文獻–––75
-
dc.language.isozh_TW-
dc.subject光學同調斷層掃描術zh_TW
dc.subject皮膚參數量化zh_TW
dc.subject人體皮膚表皮厚度zh_TW
dc.subject深度學習zh_TW
dc.subjectU-netzh_TW
dc.subject自動化皮膚影像分割演算法zh_TW
dc.subjectU-neten
dc.subjectoptical coherence tomographyen
dc.subjectautomatic skin image segmentation algorithmen
dc.subjectskin parameter quantificationen
dc.subjecthuman skin epidermal thicknessen
dc.subjectdeep learningen
dc.title開發基於光學同調斷層掃描皮膚影像之自動化分層以及光學特性分析演算法zh_TW
dc.titleDevelopment of a Fully Automatic Algorithm Enabling Layer Segmentation and Optical Characteristic Analysis in Skin Optical Coherence Tomography Imagingen
dc.typeThesis-
dc.date.schoolyear110-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee蔡孟燦;黃昭瑜;林澤;蔡睿哲;李正匡zh_TW
dc.contributor.oralexamcommitteeMeng-Tsan Tsai;Chau-Yee Ng;Che Lin;Jui-Che Tsai;Cheng-Kuang Leeen
dc.subject.keyword光學同調斷層掃描術,自動化皮膚影像分割演算法,皮膚參數量化,人體皮膚表皮厚度,深度學習,U-net,zh_TW
dc.subject.keywordoptical coherence tomography,automatic skin image segmentation algorithm,skin parameter quantification,human skin epidermal thickness,deep learning,U-net,en
dc.relation.page80-
dc.identifier.doi10.6342/NTU202200092-
dc.rights.note未授權-
dc.date.accepted2022-04-13-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept光電工程學研究所-
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-110-2.pdf
  未授權公開取用
6.78 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved