請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84022完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王暉(Huei Wang) | |
| dc.contributor.author | Yu-Min Chen | en |
| dc.contributor.author | 陳毓閔 | zh_TW |
| dc.date.accessioned | 2023-03-19T21:28:10Z | - |
| dc.date.copyright | 2022-09-29 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-09-26 | |
| dc.identifier.citation | [1]Di Francesco et al., 'The science cases for building a Band 1 receiver suite for ALMA,' arXiv:1310.1604v3 [astro-ph.IM], Oct. 2013. [2]Sarah Yost, '5G—It’s Not Here Yet, But Closer Than You Think', Nov. 2017. [Online] Available: https://www.electronicdesign.com/technologies/embeddedre-volution/article/21805784/5gits-not-here-yet-but-closer-than-you-think [3]B. Jayant Baliga, Silicon RF Power MOSFETS, World Scientific, 2005. [4]Ra?l Gracia S?ez and Nicol?s Medrano Marqu?s, 'LDMOS versus GaN RF power amplifier comparison based on the computing complexity needed to linearize the output,' Electronics, vol. 8, no. 11, Nov. 2019. [5]Anthony Combs, 'A Comparative Review of GaN, LDMOS, and GaAs for RF and Microwave Applications', Aug. 2020. [Online] Available: https://nuwaves.com/wp -content/uploads/2020/08/AN-007-A-Comparative-Review-of-GaN-LDMOS-and-GaAs-for-RF-and-Microwave-Applications.pdf [6]Qorvo, 'How GaN is Changing the Satcom RF Front-End,' March 2019. [7]Di Francesco et al., 'The science cases for building a Band 1 receiver suite for ALMA,' arXiv:1310.1604v3 [astro-ph.IM], Oct. 2013. [8]Guillermo Gonzalez, Microwave Transistor Amplifier - Analysis and Design, 2nd, Pearson Prentice, 1996. [9]Behzad Razavi, RF Microelectronics, 2nd, Pearson Prentice, 2011. [10]D. K. Shaeffer and T. H. Lee, 'A 1.5-V, 1.5-GHz CMOS low noise amplifier,' in IEEE Journal of Solid-State Circuits, vol. 32, no. 5, pp. 745-759, May 1997. [11]H. Yeh and H. Wang, 'A Miniature Q-band CMOS LNA with quadruple-cascode topology,' 2011 IEEE MTT-S International Microwave Symposium, pp. 1-4, 5-10 June 2011. [12]H. -C. Yeh, Chau-Ching Chiong and H. Wang, 'A low voltage Q-band CMOS LNA with magnetic coupled cascode topology,' 2012 IEEE/MTT-S International Microwave Symposium Digest, pp. 1-3, 17-22 June 2012. [13]Chau-Ching Chiong, Wei-Je Tzeng, Yuh-Jing Hwang, Wei-Ting Wong, Huei Wang and Ming-Tang Chen, 'Design and measurements of cryogenic MHEMT IF low noise amplifier for radio astronomical receivers,' 2009 European Microwave Integrated Circuits Conference (EuMIC), pp. 1-4, Spet. 2009. [14]Shou-Hsien Weng, Chi-Hsien Lin, Hong-Yeh Chang and Chau-Ching Chiong, 'Q-band low noise amplifiers using a 0.15μm MHEMT process for broadband communication and radio astronomy applications,' 2008 IEEE MTT-S International Microwave Symposium Digest, pp. 455-458, June 2008. [15]Shou-Hsien Weng, Hong-Yeh Chang, Chau-Ching Chiong and Ming-Tang Chen, 'Cryogenic evaluation of a 30–50 GHz 0.15-μm MHEMT low noise amplifier for radio astronomy applications,' 2011 41st European Microwave Conference, pp. 934-937, Oct. 2011. [16]Dirk Schwantuschke et al., 'Q- and E-band amplifier MMICs for satellite communication,' 2014 IEEE MTT-S International Microwave Symposium (IMS), pp. 1-4, June 2014. [17]Ping-Han Ho, Chau-Ching Chiong and Huei Wang, 'An ultra low-power Q-band LNA with 50% bandwidth in WIN GaAs 0.1-μm pHEMT process,' 2013 Asia-Pacific Microwave Conference Proceedings (APMC), pp. 713-715, Nov. 2013. [18]Yu-Ting Chou, Chau-Ching Chiong and Huei Wang, 'A Q-band LNA with 55.7% bandwidth for radio astronomy applications in 0.15-μm GaAs pHEMT process,' 2016 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), pp. 1-3, Aug. 2016. [19]G. Nikandish, A. Yousefi and M. Kalantari, 'A broadband multistage LNA with bandwidth and linearity enhancement,' in IEEE Microwave and Wireless Components Letters, vol. 26, no. 10, pp. 834-836, Oct. 2016. [20]Shuo-Hsuan Chang, Chau-Ching Chiong, Kun-Yao Kao and Huei Wang, 'A Q-band amplifier with low noise figure and medium output power capability for ALMA band-1 receiver,' 2017 IEEE Asia Pacific Microwave Conference (APMC), pp. 755-758, Nov. 2017. [21]Jianquan Hu and Kaixue Ma, 'A 0.1–52-GHz triple cascode amplifier with resistive feedback,' in IEEE Microwave and Wireless Components Letters, vol. 29, no. 8, pp. 538-540, Aug. 2019. [22]Qian Ma and Mingbo Ma, 'Broadband amplifier gain slope equalization filter,' Progress In Electromagnetics Research Symposium (PIERS), Hangzhou, China, Mar. 2008. [23]V. Sokol, K. Hoffmann, J. Vajtr, 'Noise figure measurement of highly mismatched DUT,' in Radioengineering. vol. 12, 2003. [24]David M. Pozar, Microwave and RF Design of Wireless Systems, 1st, John Wiley & Sons Inc., 2000. [25]Cheng-Feng Chou, 'Research of microwave low-noise amplifiers and millimeter-Wave Power Amplifier Using Wideband Transformer-Based Symmetric-Radial power combining technique,' National Taiwan University Master Thesis, 2016. [26]D. Barras, F. Ellinger, H. Jackel and W. Hirt, 'A low supply voltage SiGe LNA for ultra-wideband frontends,' in IEEE Microwave and Wireless Components Letters, vol. 14, no. 10, pp. 469-471, Oct. 2004. [27]B. Y. Ma et al., 'InAs/AlSb HEMT and its application to ultra-low-power wideband high-gain low-noise amplifiers,' in IEEE Transactions on Microwave Theory and Techniques, vol. 54, no. 12, pp. 4448-4455, Dec. 2006. [28]Y. Lin et al., 'Analysis and design of a CMOS UWB LNA with dual-RLC-branch wideband input matching network,' in IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 2, pp. 287-296, Feb. 2010. [29]K. He, M. Li, C. Li and J. Tarng, 'Parallel-RC feedback low-noise amplifier for UWB applications,' in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 57, no. 8, pp. 582-586, Aug. 2010. [30]Y. Lin, C. Wang, G. Lee and C. Chen, 'High-performance wideband low-noise amplifier using enhanced π-match input network,' in IEEE Microwave and Wireless Components Letters, vol. 24, no. 3, pp. 200-202, March 2014. [31]P. Hor?lek, 'ALMA telescope dishes', July 2016. [Online] Available: https://www.eso.org/public/australia/images/ann16044a/?lang [32]ASIAA website: https://press.asiaa.sinica.edu.tw [33]European Southern Observatory website: http://www.eso.org/public/teles-instr/alma/ [34]Atacama Large Millimeter/submillimeter Array website: http://www.almaobservatory.org/en/home [35]Britannica website: https://www.britannica.com/technology/satellite-communication/How-satellites-work [36]N. -C. Kuo et al., 'DC/RF hysteresis in microwave pHEMT amplifier induced by gate current—diagnosis and elimination,' in IEEE Transactions on Microwave Theory and Techniques, vol. 59, no. 11, pp. 2919-2930, Nov. 2011. [37]S. C. Cripps, RF Power Amplifier for Wireless Communications. Boston, MA: Artech House, 2000. [38]G. Meneghesso et al., 'Diagnosis of trapping phenomena in GaN MESFETs,' International Electron Devices Meeting 2000. Technical Digest. IEDM, pp. 389-392, Dec. 2000. [39]A. Balandin and K. L. Wang, 'Noise spectroscopy of traps in GaN devices,' 2000 IEEE International Symposium on Compound Semiconductors. Proceedings of the IEEE Twenty-Seventh International Symposium on Compound Semiconductors, pp. 501-506, Oct. 2000. [40]Qorvo, '27-31?GHz 5?W GaN Power Amplifier,' TGA2594 datasheet, May 2021. [41]T. Yasui, R. Ishikawa and K. Honjo, '18GHz-/28GHz-band gain-boosted feedback power amplifiers using affordable GaN HEMT MMIC process,' 2018 Asia-Pacific Microwave Conference (APMC), pp. 1214-1216, Nov. 2018. [42]K. Nakatani, Y. Yamaguchi, Y. Komatsuzaki and S. Shinjo, 'Millimeter-wave GaN power amplifier MMICs for 5G application,' 2019 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1-4, May 2019. [43]P. Neininger, L. John, P. Br?ckner, C. Friesicke, R. Quay and T. Zwick, 'Design, analysis and evaluation of a broadband high-power amplifier for Ka-band frequencies,' 2019 IEEE MTT-S International Microwave Symposium (IMS), pp. 564-567, June 2019. [44]W. Huang and H. Wang, 'An inductive-neutralized 26-dBm K-/ Ka-band power amplifier with 34% PAE in 90-nm CMOS,' in IEEE Transactions on Microwave Theory and Techniques, vol. 67, no. 11, pp. 4427-4440, Nov. 2019. [45]C. Potier et al., '10W Ka band MMIC power amplifiers based on InAlGaN/GaN HEMT technology,' 2019 49th European Microwave Conference (EuMC), pp. 824-827, Oct. 2019. [46]S. Samis, C. Friesicke, T. Maier, R. Quay and A. F. Jacob, 'Broadband high-efficiency power amplifiers in 150 nm AlGaN/GaN technology at Ka-band,' 2020 IEEE Asia-Pacific Microwave Conference (APMC), pp. 260-262, Dec. 2020. [47]P. Neininger et al., 'Limitations and implementation strategies of interstage matching in a 6-W, 28–38-GHz GaN power amplifier MMIC,' in IEEE Transactions on Microwave Theory and Techniques, vol. 69, no. 5, pp. 2541-2553, May 2021. [48]P. Chen et al., 'Harmonic suppression of a three-stage 25-31-GHz GaN MMIC power amplifier using elliptic low-pass filtering matching network,' in IEEE Microwave and Wireless Components Letters. [49]F. Sarvar, N. J. Poole, and P. A. Witting, 'PCB glass-fibre laminates: thermal conductivity measurements and their effect on simulation,' Journal of Electronic Materials, vol. 19, no. 12, pp.1345-1350, December 1990. [50]Y. -M. Chen, Y. Wang, C. -C. Chiong and H. Wang, 'A 21.5-50 GHz low noise amplifier in 0.15-μm GaAs pHEMT process for radio astronomical receiver system,' 2021 IEEE Asia-Pacific Microwave Conference (APMC), pp. 7-9, 28 Nov.-1 Dec. 2021. [51]Y. Zhang and P. Reynaert, 'A high-efficiency linear power amplifier for 28GHz mobile communications in 40nm CMOS,' 2017 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), pp. 33-36, 04-06 June 2017. [52]Po-Hsiang Chuang, 'Research of Amplifiers and Common-mode Stability of Power Amplifiers at Millimeter-wave Frequencies,' National Taiwan University Master Thesis, 2018. [53]Hoi-Wong Lei, 'Design of Millimeter Wave Amplifiers and Analysis and Measurement of Thermal Effect,' National Taiwan University Master Thesis, 2020. [54]Bo-Ze Lu, ' Research of Amplifier for Astronomical Receiver and Power Amplifier for 5G Mobile Communications,' National Taiwan University Master Thesis, 2020. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84022 | - |
| dc.description.abstract | 在射頻天文應用中,需要對來自宇宙中的微弱信號進行高靈敏度的探測。因此,這些射頻望遠鏡的操作頻率通常是非常寬的。另外,天文應用對訊雜比的要求非常嚴格。作為接收器中的第一個主動電路,低雜訊放大器在接收機系統中扮演非常重要的角色。阿塔卡瑪大型毫米及次毫米波陣列(ALMA)計畫主要有十個子頻帶,其頻率範圍從35 GHz到950 GHz,其中一個子頻帶涵蓋35 GHz到50 GHz。此外,隨著射頻應用的工作頻率增加,毫米波的研究已經引起越來越多的關注。然而,毫米波具有較高的自由空間損耗和較高的大氣衰減,這使得有用的傳播比低頻的傳播短得多。為了滿足5G基站和衛星通信的要求,具有高功率密度和高效率功率放大器的重要性正在增加。 本論文包含兩個部分。第一部分是應用於天文接收機的Q頻段低雜訊放大器,使用0.15微米砷化鎵假型高速電子遷移率電晶體(pHEMT)製程設計。第二部分是應用於5G基地台或衛星通訊的Ka頻段功率放大器,使用0.15微米氮化鎵高速電子遷移率電晶體(HEMT)製程設計。 論文中首先提出了一個應用於射頻天文接收器系統的Q頻段低雜訊放大器之研究。此低雜訊放大器採用了四級共源極的架構。首先,第一級中使用源極退化技術用於實現雜訊和增益性能之間的平衡。其次,在後面三級設計了R-C回授技術以實現寬帶性能。為了提高最大增益、穩定因子和匹配阻抗點,將討論反饋電容和電阻的組合。然後,通過採用π型匹配網絡完成寬頻的阻抗匹配。最後,討論了由代工廠提供CPW配置的電晶體模型所引起的測量結果和模擬結果之間的誤差。該低雜訊放大器在21.5 GHz至50 GHz範圍內展示了 22.5 dB 峰值小信號增益,在所需頻寬內,功率消耗為 36 mW。從 21.5 GHz到50 GHz的雜訊指數為3 dB到4.6 dB。量測的輸入1-dB功率壓縮點(IP1dB)範圍為從-23.8 dBm到-17.3 dBm,而輸出1-dB功率壓縮點(OP1dB)範圍從-6.5 dBm到1.4 dBm。 另外介紹一個高輸出功率的Ka頻段功率放大器,其架構為由兩路三級的共源放大器組成。考慮到散熱對最大輸出功率和耐用性的影響,對電路佈局做了一些改進。測量結果顯示了5.5 GHz的3-dB頻寬,即從26.5 GHz到32 GHz。峰值增益出現在30.3 GHz,而增益為20.3 dB。此電路在28 GHz 時實現了32.3 dBm的輸出飽和功率(Psat)及27.7%的峰值功率附加效率(PAEpeak),還得到31.4 dBm的輸出1-dB功率壓縮點,其輸出功率下的功率附加效率(PAE1dB)也達到23.3%。 | zh_TW |
| dc.description.abstract | RF astronomy applications require highly sensitive detection of weak signals from the universe. Therefore, the operating frequency of these RF telescopes is usually very wide. In addition, the signal-to-noise ratio requirements for astronomy applications are very strict. As the first active circuit in the receiver, the low noise amplifier plays a very important role in the receiver system. The Atacama Large Millimeter/submillimeter Array (ALMA) project has ten main sub-bands with frequency ranges from 35 GHz to 950 GHz, with one of the sub-bands covering 35 GHz to 50 GHz. However, millimeter wave has higher free space loss and higher atmospheric attenuation, which makes the useful propagation much shorter than that of lower frequencies. To meet the requirements of 5G base stations and satellite communications, the importance of PAs with high power density and high efficiency is increasing. This thesis consists of two parts. The first part is a Q-band low noise amplifier (LNA) fabricated in 0.15-?m GaAs pHEMT process for astronomical receivers. The other describes a Ka-band power amplifier (PA) fabricated in 0.15-?m GaN HEMT process for 5G base stations or satellite communications. The first part presents the research of Q-band LNA for RF astronomical receiver systems. This LNA adopts four common-source stages. First, source degeneration technique is used in the first stage to achieve a balance between noise and gain performance. Secondly, the R-C feedback technique is designed at the latter three stages to achieve wideband performance. In order to improve maximum gain, stability factor, and the matched impedance points, the combination of feedback capacitance and resistance is discussed. Then, broadband impedance matching is accomplished by using a π-type matching network. Finally, the errors between the measured and simulated results caused by the transistor model of the CPW configuration provided by the foundry is discussed. This LNA demonstrates a 22.5-dB peak small-signal gain from 21.5 to 50 GHz within the desired bandwidth with 36 mW power consumption. The noise figure is 3 to 4.6 dB from 21.5 to 50 GHz. The measured IP1dB ranges from -23.8 to -17.3 dBm while the OP1dB ranges from -6.5 to 1.4 dBm. The other part illustrates a high output power Ka-band PA, which is composed of two-way three-stage common source amplifiers. The layout of the circuit has been modified to consider the effect of heat dissipation on maximum output power and durability. The measured results of the proposed PA show a 3-dB bandwidth of 5.5 GHz, i.e., from 26.5 GHz to 32 GHz. The peak gain occurs at 30.3 GHz with 20.3 dB of gain. This PA achieves a saturated output power (Psat) of 32.3 dBm with 27.7% peak PAE, and 31.4-dBm OP1dB with 23.3% PAE1dB at 28 GHz. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T21:28:10Z (GMT). No. of bitstreams: 1 U0001-1808202217031200.pdf: 8669538 bytes, checksum: d1303b7f16c2f8f8491dbc29d2167af4 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 口試委員會審定書 # 誌謝 i 中文摘要 iii ABSTRACT v CONTENTS vii LIST OF FIGURES x LIST OF TABLES xvi Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.1.1 Atacama Large Millimeter/submillimeter Array 1 1.1.2 Fifth Generation Communications and Satellite Communications 2 1.2 Literature Survey 4 1.2.1 Q-band GaAs LNA for Radio Astronomical Receiver 4 1.2.2 Ka-band High Power Broadband Power Amplifier 6 1.3 Contributions 8 1.3.1 Q-band GaAs LNA for Future Radio Astronomical Receiver 8 1.3.2 Ka-band GaN HEMT PA for 5G Base Station and Satcom System 9 1.4 Thesis Organization 9 Chapter 2 A 21.5-50 GHz Low Noise Amplifier in 0.15-μm GaAs pHEMT Process for Radio Astronomical Receiver System 10 2.1 Introduction 10 2.1.1 Atacama Large Millimeter/submillimeter Array Project Overview 10 2.1.2 Circuit Design Goals 12 2.2 Circuit Design 14 2.2.1 Selection of Device Sizes and Bias Condition 14 2.2.2 Source Degeneration 20 2.2.3 R-C Feedback 24 2.2.4 Bandwidth Enhancement Techniques in Matching and Bypass circuit 29 2.2.5 Full Circuit Schematic and Post-Layout Simulation Results 32 2.3 Experimental Results 39 2.3.1 Bias Condition Operating Point 39 2.3.2 S-parameters and Noise Figure Measurement 40 2.3.3 Large Signal Sweep Measurement 42 2.4 Discussion 43 2.4.1 Modeling Issue of Device with Source Degeneration 43 2.4.2 Comparison of Debugging Results and Measurement Results 47 2.5 Summary 49 Chapter 3 Design of High Power Ka-band Power Amplifier in 0.15-μm Depletion Mode GaN/SiC HEMT Technology 52 3.1 Introduction 52 3.2 Circuit Design 54 3.2.1 MMIC Process Characteristics 54 3.2.2 Circuit Architecture 55 3.2.3 Gate Leakage Current 57 3.2.4 Bias and Device Selection of Power Stage 58 3.2.5 High Pass Filter for Unstable Transistors 63 3.2.6 Load-pull Simulation for Power Stage 66 3.2.7 Circuit Schematic and Post-Layout Simulations 69 3.3 Experimental Results 77 3.3.1 DC Operating Point 77 3.3.2 S-parameters and CW Large Signal Performances 79 3.4 Summary 83 Chapter 4 Conclusions 85 REFERENCES 87 | |
| dc.language.iso | en | |
| dc.subject | 微波單晶積體電路 | zh_TW |
| dc.subject | 阿塔卡瑪大型毫米及次毫米波陣列 | zh_TW |
| dc.subject | 天文接收機 | zh_TW |
| dc.subject | 高速電子遷移率電晶體 | zh_TW |
| dc.subject | 低雜訊放大器 | zh_TW |
| dc.subject | 功率放大器 | zh_TW |
| dc.subject | 寬頻 | zh_TW |
| dc.subject | Astronomy Receiver | en |
| dc.subject | Power Amplifier (PA) | en |
| dc.subject | Low Noise Amplifier (LNA) | en |
| dc.subject | High Electron Mobility Transistor (HEMT) | en |
| dc.subject | Atacama Large Millimeter/submillimeter Array (ALMA) | en |
| dc.subject | Monolithic Microwave Integrated Circuit (MMIC) | en |
| dc.subject | Broadband | en |
| dc.title | 天文接收機之低雜訊放大器與毫米波功率放大器之研製 | zh_TW |
| dc.title | Research of Low Noise Amplifier for Radio Astronomical Receiver and Millimeter-Wave Power Amplifier | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃天偉(Tian-Wei Huang),林坤佑(Kun-You Lin),章朝盛(Chau-Ching Chiong),蔡作敏(Zuo-Min Tsai) | |
| dc.subject.keyword | 阿塔卡瑪大型毫米及次毫米波陣列,天文接收機,高速電子遷移率電晶體,低雜訊放大器,功率放大器,寬頻,微波單晶積體電路, | zh_TW |
| dc.subject.keyword | Atacama Large Millimeter/submillimeter Array (ALMA),Astronomy Receiver,High Electron Mobility Transistor (HEMT),Low Noise Amplifier (LNA),Power Amplifier (PA),Broadband,Monolithic Microwave Integrated Circuit (MMIC), | en |
| dc.relation.page | 93 | |
| dc.identifier.doi | 10.6342/NTU202202554 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2022-09-27 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1808202217031200.pdf 未授權公開取用 | 8.47 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
