Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物病理與微生物學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84021
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張雅君(Ya-Chun Chang)
dc.contributor.authorChia-Wei Liuen
dc.contributor.author劉珈緯zh_TW
dc.date.accessioned2023-03-19T21:28:07Z-
dc.date.copyright2022-07-05
dc.date.issued2022
dc.date.submitted2022-05-04
dc.identifier.citation胡文綺。2009。海芋potyvirus之基因體序列分析、快速檢測及應用RNAi防治其感染之研究。國立臺灣大學植物病理與微生物學研究所博士論文。 吳孟芳、王惠亮。1999。不同蕪菁嵌紋病毒系統之鞘蛋白質基因序列之比較. 植病會刊8 : 133-142。 吳純宜。2004。感染彩色海芋之蕪菁嵌紋病毒之分子特性分析及抗體製備。國立臺灣大學植物病理與微生物學研究所碩士論文。 趙佳鴻。2007。瓜類病毒病害防治策略與展望。蔬菜育種成果及植物保護研討會專刊88 :101-109。 蔡志偉、陳惟德。2011。傳播農作物病毒病重要蚜蟲之防治策略。農作物害蟲及其媒介病害整合防治技術研討會專刊152: 183-191。 劉漢麟。2016。Potyvirus屬病毒之廣效性單株抗體、單鏈抗體與其表位以及蕪菁嵌紋病毒感染性選殖株致病因子之研究。國立臺灣大學植物病理與微生物學研究所博士論文。 Abel, P. P., Nelson, R. S., De, B., Hoffmann, N., Rogers, S. G., Fraley, R. T., and Beachy, R. N. 1986. Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science 232:738-743. Ahn, S.-J., Donahue, K., Koh, Y., Martin, R. R., and Choi, M.-Y. 2019. Microbial-based double-stranded RNA production to develop cost-effective RNA interference application for insect pest management. Int. J. Insect Sci. 11:1175-1194. Almasi, R., and Amari, K. 2021. Harnessing environmental-RNAi to win an enduring battle: Plant versus pathogen. J. Phytopathol. 169:649-657. Anandalakshmi, R., Pruss, G. J., Ge, X., Marathe, R., Mallory, A. C., Smith, T. H., and Vance, V. B. 1998. A viral suppressor of gene silencing in plants. Proc. Natl. Acad. Sci. U.S.A. 95:13079-13084. Aregger, M., Borah, B. K., Seguin, J., Rajeswaran, R., Gubaeva, E. G., Zvereva, A. S., Windels, D., Vazquez, F., Blevins, T., Farinelli, L., and Pooggin, M. M. 2012. Primary and secondary siRNAs in geminivirus-induced gene silencing. PLoS Pathog. 8:e1002941. Basso, J., Dallaire, P., Charest, P. J., Devantier, Y., and Lalibert?, J.-F. 1994. Evidence for an internal ribosome entry site within the 5′ non-translated region of turnip mosaic potyvirus RNA. J. Gen. Virol. 75:3157-3165. Bawa, A., and Anilakumar, K. 2013. Genetically modified foods: safety, risks and public concerns—a review. J. Food Sci. Technol. 50:1035-1046. Beauchemin, C., Boutet, N., and Lalibert?, J.-F. 2007. Visualization of the interaction between the precursors of VPg, the viral protein linked to the genome of Turnip mosaic virus, and the translation eukaryotic initiation factor iso 4E in planta. J. Virol. 81:775-782. Bellardi, M., and Bertaccini, A. 2001. First report of Turnip mosaic virus in lily. J. Plant Pathol. 83. Biedenkopf, D., Will, T., Knauer, T., Jelonek, L., Furch, A. C. U., Busche, T., and Koch, A. 2020. Systemic spreading of exogenous applied RNA biopesticides in the crop plant Hordeum vulgare. ExRNA 2:1-10. Borgstr?m, B., and Johansen, I. E. 2001. Mutations in Pea seedborne mosaic virus genome-linked protein VPg alter pathotype-specific virulence in Pisum sativum. Mol. Plant-Microbe Interact. 14:707-714. Brown, J. K. 2015. Durable resistance of crops to disease: a Darwinian perspective. Annu. Rev. Phytopathol. 53:513-539. Bucher, E., Lohuis, D., van Poppel, P. M. J. A., Geerts-Dimitriadou, C., Goldbach, R., and Prins, M. 2006. Multiple virus resistance at a high frequency using a single transgene construct. J. Gen. Virol. 87:3697-3701. Cagliari, D., Dias, N. P., Galdeano, D. M., dos Santos, E. A., Smagghe, G., and Zotti, M. J. 2019. Management of Pest Insects and Plant Diseases by Non-Transformative RNAi. Front. Plant Sci. 10:18. Casacuberta, J. M., Devos, Y., Du Jardin, P., Ramon, M., Vaucheret, H., and Nogu?, F. 2015. Biotechnological uses of RNAi in plants: risk assessment considerations. Trends Biotechnol. 33:145-147. Chai, M., Wu, X., Liu, J., Fang, Y., Luan, Y., Cui, X., Zhou, X., Wang, A., and Cheng, X. 2020. P3N-PIPO interacts with P3 via the shared N-terminal domain To recruit viral replication vesicles for cell-to-cell movement. J. Virol. 94:e01898-01819. Chao, C., Chen, C., and Chang, C. 2000. Identification of a turnip mosaic virus isolate causing systemic yellow spotting on lisianthus. Plant Pathol. Bull. 9:115-122. Chen, C., Chao, C., Chen, C., Yeh, S., Tsai, H., and Chang, C. 2003. Identification of Turnip mosaic virus isolates causing yellow stripe and spot on calla lily. Plant Dis. 87:901-905. Chen, H. M., Chen, L. T., Patel, K., Li, Y. H., Baulcombe, D. C., and Wu, S. H. 2010. 22-Nucleotide RNAs trigger secondary siRNA biogenesis in plants. Proc. Natl. Acad. Sci. U.S.A. 107:15269-15274. Cheng, X., Xiong, R., Li, Y., Li, F., Zhou, X., and Wang, A. 2017. Sumoylation of Turnip mosaic virus RNA polymerase promotes viral infection by counteracting the host NPR1-mediated immune response. Plant Cell 29:508-525. Cui, H., and Wang, A. 2016. Plum pox virus 6K1 protein is required for viral replication and targets the viral replication complex at the early stage of infection. J. Virol. 90:5119-5131. Cunningham, F. J., Goh, N. S., Demirer, G. S., Matos, J. L., and Landry, M. P. 2018. Nanoparticle-mediated delivery towards advancing plant genetic engineering. Trends Biotechnol. 36:882-897. Cuperus, J. T., Carbonell, A., Fahlgren, N., Garcia-Ruiz, H., Burke, R. T., Takeda, A., Sullivan, C. M., Gilbert, S. D., Montgomery, T. A., and Carrington, J. C. 2010. Unique functionality of 22-nt miRNAs in triggering RDR6-dependent siRNA biogenesis from target transcripts in Arabidopsis. Nat. Struct. Mol. Biol. 17:997-1003. Dalakouras, A., Jarausch, W., Buchholz, G., Bassler, A., Braun, M., Manthey, T., Krczal, G., and Wassenegger, M. 2018. Delivery of hairpin RNAs and small RNAs into woody and herbaceous plants by trunk injection and petiole absorption. Front. Plant Sci. 9:1253. Dalakouras, A., Wassenegger, M., McMillan, J. N., Cardoza, V., Maegele, I., Dadami, E., Runne, M., Krczal, G., and Wassenegger, M. 2016. Induction of silencing in plants by high-pressure spraying of in vitro-synthesized small RNAs. Front. Plant Sci. 7:1327. Dalakouras, A., Wassenegger, M., Dadami, E., Ganopoulos, I., Pappas, M. L., and Papadopoulou, K. 2020. Genetically modified organism-free RNA interference: exogenous application of RNA molecules in plants. Plant Physiol. 182:38-50. Dar?s, J.-A., Schaad, M. C., and Carrington, J. C. 1999. Functional analysis of the interaction between VPg-proteinase (NIa) and RNA polymerase (NIb) of tobacco etch potyvirus, using conditional and suppressor mutants. J. Virol. 73:8732-8740. Darsan Singh, J. K., Mat Jalaluddin, N. S., Sanan-Mishra, N., and Harikrishna, J. A. 2019. Genetic modification in Malaysia and India: current regulatory framework and the special case of non-transformative RNAi in agriculture. Plant Cell Rep. 38:1449-1463. Das, P. R., and Sherif, S. M. 2020. Application of Exogenous dsRNAs-induced RNAi in Agriculture: Challenges and Triumphs. Front. Plant Sci. 11:12. De Felippes, F. F., Wang, J. W., and Weigel, D. 2012. MIGS: miRNA-induced gene silencing. Plant J. 70:541-547. Demirer, G. S., Zhang, H., Matos, J. L., Goh, N. S., Cunningham, F. J., Sung, Y., Chang, R., Aditham, A. J., Chio, L., and Cho, M.-J. 2019. High aspect ratio nanomaterials enable delivery of functional genetic material without DNA integration in mature plants. Nat. Nanotechnol. 14:456-464. Deng, P., Wu, Z., and Wang, A. 2015. The multifunctional protein CI of potyviruses plays interlinked and distinct roles in viral genome replication and intercellular movement. Virol. J. 12:1-11. Dietzgen, R., and Mitter, N. 2006. Transgenic gene silencing strategies for virus control. Australas. Plant Pathol. 35:605-618. Ding, B., Itaya, A., and Zhong, X. 2005. Viroid trafficking: a small RNA makes a big move. Curr. Opin. Plant Biol. 8:606-612. Dolja, V. V., Haldeman-Cahill, R., Montgomery, A. E., Vandenbosch, K. A., and Carrington, J. C. 1995. Capsid protein determinants involved in cell-to-cell and long distance movement of tobacco etch potyvirus. Virology 206:1007-1016. Dubrovina, A. S., and Kiselev, K. V. 2019. Exogenous RNAs for Gene Regulation and Plant Resistance. Int. J. Mol. Sci. 20:2282. Dunoyer, P., Melnyk, C., Molnar, A., and Slotkin, R. K. 2013. Plant mobile small RNAs. Cold Spring Harb. Perspect. Biol. 5. Fellers, J., Wan, J., Hong, Y., Collins, G. B., and Hunt, A. G. 1998. In vitro interactions between a potyvirus-encoded, genome-linked protein and RNA-dependent RNA polymerase. J. Gen. Virol. 79:2043-2049. Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., and Mello, C. C. 1998. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806-811. Gan, D., Zhang, J., Jiang, H., Jiang, T., Zhu, S., and Cheng, B. 2010. Bacterially expressed dsRNA protects maize against SCMV infection. Plant Cell Rep. 29:1261-1268. Gardner, M. W., and Kendrick, J. B. 1921. Turnip mosaic. J Agric Res 22: 123-127. Geng, C., Yan, Z.-Y., Cheng, D.-J., Liu, J., Tian, Y.-P., Zhu, C.-X., Wang, H.-Y., and Li, X.-D. 2017. Tobacco vein banding mosaic virus 6K2 protein hijacks NbPsbO1 for virus replication. Sci. Rep. 7:1-16. Gogoi, A., Sarmah, N., Kaldis, A., Perdikis, D., and Voloudakis, A. 2017. Plant insects and mites uptake double-stranded RNA upon its exogenous application on tomato leaves. Planta 246:1233-1241. Goldbach, R., Bucher, E., and Prins, M. 2003. Resistance mechanisms to plant viruses: an overview. Virus Res. 92:207-212. Gong, Y. N., Tang, R. Q., Zhang, Y., Peng, J., Xian, O., Zhang, Z. H., Zhang, S. B., Zhang, D. Y., Liu, H., Luo, X. W., and Liu, Y. 2020. The NIa-protease protein encoded by the Pepper mottle virus is a pathogenicity determinant and releases DNA methylation of Nicotiana benthamiana. Front. Microbiol. 11:102. Gonsalves, D. 2006. Transgenic papaya: development, release, impact and challenges. Adv. Virus Res. 67:317-354. Grangeon, R., Jiang, J., Wan, J., Agbeci, M., Zheng, H., and Lalibert?, J.-F. 2013. 6K2-induced vesicles can move cell to cell during turnip mosaic virus infection. Front. Microbiol. 4:351-351. Guan, R., Chu, D., Han, X., Miao, X., and Li, H. 2021. Advances in the development of microbial double-stranded RNA production systems for application of RNA interference in agricultural pest control. Front. Bioeng. Biotechnol. 9:753790-753790. Hashiro, S., Mitsuhashi, M., Chikami, Y., Kawaguchi, H., Niimi, T., and Yasueda, H. 2019. Construction of Corynebacterium glutamicum cells as containers encapsulating dsRNA overexpressed for agricultural pest control. Appl. Microbiol. Biotechnol. 103:8485-8496. Helliwell, C., and Waterhouse, P. 2003. Constructs and methods for high-throughput gene silencing in plants. Methods 30:289-295. Holeva, M. C., Sklavounos, A., Rajeswaran, R., Pooggin, M. M., and Voloudakis, A. E. 2021. Topical Application of Double-Stranded RNA Targeting 2b and CP Genes of Cucumber mosaic virus Protects Plants against Local and Systemic Viral Infection. Plants 10:963. Hughes, S. L., Hunter, P. J., Sharpe, A. G., Kearsey, M. J., Lydiate, D. J., and Walsh, J. A. 2003. Genetic mapping of the novel Turnip mosaic virus resistance gene TuRB03 in Brassica napus. Theor. Appl. Genet. 107:1169-1173. Hull, R. 2014. Plant Virology 5th Edition. Academic Press, London. p. 854. Ibrahim, A. B., and Arag?o, F. J. 2015. RNAi-mediated resistance to viruses in genetically engineered plants. Methods Mol Biol 1287:81-92. Jacob, S. S., Vanitharani, R., Karthikeyan, A. S., Chinchore, Y., Thillaichidambaram, P., and Veluthambi, K. 2003. Mungbean yellow mosaic virus-Vi agroinfection by codelivery of DNA A and DNA B from one Agrobacterium strain. Plant Dis. 87:247-251. Jan, F.-J., Fagoaga, C., Pang, S.-Z., and Gonsalves, D. 2000. A single chimeric transgene derived from two distinct viruses confers multi-virus resistance in transgenic plants through homology-dependent gene silencing. J. Gen. Virol. 81:2103-2109. Jenner, C. E., Wang, X., Tomimura, K., Ohshima, K., Ponz, F., and Walsh, J. A. 2003. The dual role of the potyvirus P3 protein of Turnip mosaic virus as a symptom and avirulence determinant in brassicas. Mol. Plant-Microbe Interact. 16:777-784. Jin, X., Cao, X., Wang, X., Jiang, J., Wan, J., Lalibert?, J.-F., and Zhang, Y. 2018. Three-dimensional architecture and biogenesis of membrane structures associated with plant virus replication. Front. Plant Sci. 9:57. Jones, R. A. C. 2021. Global plant virus disease pandemics and epidemics. Plants 10:233. Kaldis, A., Berbati, M., Melita, O., Reppa, C., Holeva, M., Otten, P., and Voloudakis, A. 2018. Exogenously applied dsRNA molecules deriving from the Zucchini yellow mosaic virus (ZYMV) genome move systemically and protect cucurbits against ZYMV. Mol. Plant Pathol. 19:883-895. Karthikeyan, A., Deivamani, M., Shobhana, V. G., Sudha, M., and Anandhan, T. 2013. RNA interference: evolutions and applications in plant disease management. Arch. Phytopathol. Plant Protect. 46:1430-1441. Karthikeyan, A., Sudha, M., Pandiyan, M., Senthil, N., Shobana, V., and Nagarajan, P. 2011. Screening of MYMV resistant mungbean (Vigna radiata L. Wilczek) progenies through agroinoculation. Int. J. Plant Pathol. 2:115-125. Kasschau, K. D., Xie, Z., Allen, E., Llave, C., Chapman, E. J., Krizan, K. A., and Carrington, J. C. 2003. P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA function. Dev. Cell 4:205-217. Kaur, M. P. L., Kashyap Gulzar, Singh Sanghera , Gurpreet Singh, Sondeep Singh. 2008. RNA interference: an eco-friendly tool for plant disease management. transgenic plant j. 2 (2):110-126. Kehr, J., and Buhtz, A. 2008. Long distance transport and movement of RNA through the phloem. J. Exp. Bot. 59:85-92. Kekarainen, T., Savilahti, H., and Valkonen, J. P. 2002. Functional genomics on potato virus A: virus genome-wide map of sites essential for virus propagation. Genome Res. 12:584-594. Kim, J.-Y. 2005. Regulation of short-distance transport of RNA and protein. Curr. Opin. Plant Biol. 8:45-52. Kiselev, K. V., Suprun, A. R., Aleynova, O. A., Ogneva, Z. V., and Dubrovina, A. S. 2021. Physiological conditions and dsRNA application approaches for exogenously induced RNA interference in Arabidopsis thaliana. Plants-Basel 10:13. Konakalla, N. C., Kaldis, A., Berbati, M., Masarapu, H., and Voloudakis, A. E. 2016. Exogenous application of double-stranded RNA molecules from TMV p126 and CP genes confers resistance against TMV in tobacco. Planta 244:961-969. Kuo, Y. W., and Falk, B. W. 2020. RNA interference approaches for plant disease control. BioTechniques 69:469-477. Lain, S., Riechmann, J., and Garcia, J. 1990. RNA helicase: a novel activity associated with a protein encoded by a positive strand RNA virus. Nucleic Acids Res. 18:7003-7006. Li, G., Lv, H., Zhang, S., Zhang, S., Li, F., Zhang, H., Qian, W., Fang, Z., and Sun, R. 2019. TuMV management for brassica crops through host resistance: retrospect and prospects. Plant Pathol. 68:1035-1044. Li, H., Kondo, H., K?hne, T., and Shirako, Y. 2016. Barley yellow mosaic virus VPg is the determinant protein for breaking eIF4E-mediated recessive resistance in barley plants. Front. Plant Sci. 7:1449. Liang, D., White, R. G., and Waterhouse, P. M. 2012. Gene silencing in Arabidopsis spreads from the root to the shoot, through a gating barrier, by template-dependent, nonvascular, cell-to-cell movement. Plant Physiol. 159:984-1000. Lindbo, J. A., Silva-Rosales, L., Proebsting, W. M., and Dougherty, W. G. 1993. Induction of a highly specific antiviral state in transgenic plants: implications for regulation of gene expression and virus resistance. Plant Cell 5:1749-1759. Lopez-Moya, J. J., and Pirone, T. P. 1998. Charge changes near the N terminus of the coat protein of two potyviruses affect virus movement. J. Gen. Virol. 79:161-165. Luan, H., Shine, M. B., Cui, X., Chen, X., Ma, N., Kachroo, P., Zhi, H., and Kachroo, A. 2016. The potyviral P3 protein targets eukaryotic elongation factor 1A to promote the unfolded protein response and viral pathogenesis. Plant Physiol. 172:221-234. Lundgren, J. G., and Duan, J. J. 2013. RNAi-based insecticidal crops: potential effects on nontarget species. Bioscience 63:657-665. Ma, Z. Z., Zhou, H., Wei, Y. L., Yan, S., and Shen, J. 2020. A novel plasmid–Escherichia coli system produces large batch dsRNAs for insect gene silencing. Pest Manage. Sci. 76:2505-2512. Mann, S. K., Kashyap, P. L., Sanghera, G. S., Singh, G., and Singh, S. 2008. RNA interference: an eco-friendly tool for plant disease management. Transgenic Plant J 2:110-126. Mart?nez-Turi?o, S., and Garc?a, J. 2020. Potyviral coat protein and genomic RNA: A striking partnership leading virion assembly and more. Adv. Virus Res. 108:2-392. Mart?nez, F., Rodrigo, G., Aragon?s, V., Ruiz, M., Lodewijk, I., Fern?ndez, U., Elena, S. F., and Dar?s, J.-A. 2016. Interaction network of tobacco etch potyvirus NIa protein with the host proteome during infection. BMC Genomics 17:87. Matzke, M. A., Aufsatz, W., Kanno, T., Mette, M. F., and Matzke, A. J. 2002. Homology-dependent gene silencing and host defense in plants. Adv. Genet. 46:235-275. McDonald, B. A. 2014. Using dynamic diversity to achieve durable disease resistance in agricultural ecosystems. Trop Plant Pathol 39:191-196. McLoughlin, A. G., Wytinck, N., Walker, P. L., Girard, I. J., Rashid, K. Y., de Kievit, T., Fernando, W. G. D., Whyard, S., and Belmonte, M. F. 2018. Identification and application of exogenous dsRNA confers plant protection against Sclerotinia sclerotiorum and Botrytis cinerea. Sci. Rep. 8:14. Meister, G., and Tuschl, T. 2004. Mechanisms of gene silencing by double-stranded RNA. Nature 431:343-349. Mitter, Worrall, E. A., Robinson, K. E., Li, P., Jain, R. G., Taochy, C., Fletcher, S. J., Carroll, B. J., Lu, G. Q., and Xu, Z. P. 2017. Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses. Nat. Plants 3:10. Mitter, N., and Dietzgen, R. G. 2012. Use of hairpin RNA constructs for engineering plant virus resistance. Methods mol. biol. 894:191-208. Mitter, N., Worrall, E. A., Robinson, K. E., Xu, Z. P., and Carroll, B. J. 2017b. Induction of virus resistance by exogenous application of double-stranded RNA. Curr. Opin. Virol. 26:49-55. Molnar, A., Melnyk, C. W., Bassett, A., Hardcastle, T. J., Dunn, R., and Baulcombe, D. C. 2010. Small silencing RNAs in plants are mobile and direct epigenetic modification in recipient cells. Science 328:872-875. Moury, B., Morel, C., Johansen, E., Guilbaud, L., Souche, S., Ayme, V., Caranta, C., Palloix, A., and Jacquemond, M. 2004. Mutations in Potato virus Y genome-linked protein determine virulence toward recessive resistances in Capsicum annuum and Lycopersicon hirsutum. Mol. Plant-Microbe Interact. 17:322-329. Nakashima, H., Sako, N., and Hori, K. 1993. Nucleotide sequences of the helper component-proteinase genes of aphid transmissible and non-transmissible isolates of turnip mosaic virus. Arch. Virol. 131:17-27. Namgial, T., Kaldis, A., Chakraborty, S., and Voloudakis, A. 2019. Topical application of double-stranded RNA molecules containing sequences of Tomato leaf curl virus and Cucumber mosaic virus confers protection against the cognate viruses. Physiol. Mol. Plant Pathol. 108:101432. Napoli, C., Lemieux, C., and Jorgensen, R. 1990. Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2:279-289. Necira, K., Makki, M., Sanz-Garcia, E., Canto, T., Djilani-Khouadja, F., and Tenllado, F. 2021. Topical application of Escherichia coli-encapsulated dsRNA induces resistance in Nicotiana benthamiana to potato viruses and involves RDR6 and combined activities of DCL2 and DCL4. Plants-Basel 10:16. Nicolas, O., and Lalibert?, J.-F. 1992. The complete nucleotide sequence of turnip mosaic potyvirus RNA. J. Gen. Virol. 73:2785-2793. Niehl, A., Soininen, M., Poranen, M. M., and Heinlein, M. 2018. Synthetic biology approach for plant protection using dsRNA. Plant Biotechnol. J. 16:1679-1687. Niu, X., Leung, H., and Williams, P. 1983. Sources and nature of resistance to downy mildew and turnip mosaic in Chinese cabbage. J. Am. Soc. Hortic. Sci. 108:775-778. Ongvarrasopone, C., Roshorm, Y., and Panyim, S. 2007. A simple and cost effective method to generate dsRNA for RNAi studies in invertebrates. ScienceAsia 33:35-39. Palauqui, J. C., Elmayan, T., Pollien, J. M., and Vaucheret, H. 1997. Systemic acquired silencing: transgene-specific post-transcriptional silencing is transmitted by grafting from silenced stocks to non-silenced scions. EMBO J. 16:4738-4745. Pant, B. D., Buhtz, A., Kehr, J., and Scheible, W. R. 2008. MicroRNA399 is a long-distance signal for the regulation of plant phosphate homeostasis. Plant J. 53:731-738. Patil, B. L., and Fauquet, C. M. 2015. Light intensity and temperature affect systemic spread of silencing signal in transient agroinfiltration studies. Mol. Plant Pathol. 16:484-494. Pirone, T. P., and Blanc, S. 1996. Helper-dependent vector transmission of plant viruses. Annu. Rev. Phytopathol. 34:227-247. Pooggin, M. M. 2017. RNAi-mediated resistance to viruses: a critical assessment of methodologies. Curr. Opin. Virol. 26:28-35. Posiri, P., Ongvarrasopone, C., and Panyim, S. 2013. A simple one-step method for producing dsRNA from E. coli to inhibit shrimp virus replication. J. Virol. Methods 188:64-69. Puustinen, P., and Makinen, K. 2004. Uridylylation of the potyvirus VPg by viral replicase NIb correlates with the nucleotide binding capacity of VPg. J. Biol. Chem. 279:38103-38110. Rauhut, R., Andreas, J., Conrad, C., and Klug, G. 1996. Identification and analysis of the rnc gene for RNase III in Rhodobacter Capsulatus. Nucleic Acids Res. 24:1246-1251. Rego-Machado, C. M., Nakasu, E. Y. T., Silva, J. M. F., Lucinda, N., Nagata, T., and Inoue-Nagata, A. K. 2020. siRNA biogenesis and advances in topically applied dsRNA for controlling virus infections in tomato plants. Sci. Rep. 10:22277. Riechmann, J. L., Lain, S., and Garc?a, J. A. 1992. Highlights and prospects of potyvirus molecular biology. J. Gen. Virol. 73:1-16. Robaglia, C., and Caranta, C. 2006. Translation initiation factors: a weak link in plant RNA virus infection. Trends Plant Sci. 11:40-45. Roberts, A. F., Devos, Y., Lemgo, G. N., and Zhou, X. 2015. Biosafety research for non-target organism risk assessment of RNAi-based GE plants. Front. Plant Sci. 6:958. Rodamilans, B., Casillas, A., and Garc?a, J. 2021. P1 of Sweet potato feathery mottle virus shows strong adaptation capacity, replacing P1-HCPro in a chimeric Plum pox virus. J. Virol. 95:e00150-00121. Rodamilans, B., Valli, A., Mingot, A., San Le?n, D., Baulcombe, D., L?pez-Moya, J. J., and Garc?a, J. A. 2015. RNA polymerase slippage as a mechanism for the production of frameshift gene products in plant viruses of the Potyviridae family. J. Virol. 89:6965-6967. Rodr?guez-Negrete, E. A., Carrillo-Tripp, J., and Rivera-Bustamante, R. F. 2009. RNA silencing against geminivirus: complementary action of posttranscriptional gene silencing and transcriptional gene silencing in host recovery. J. Virol. 83:1332-1340. Rojas, M. R., Zerbini, F. M., Allison, R. F., Gilbertson, R. L., and Lucas, W. J. 1997. Capsid protein and helper component-proteinase function as potyvirus cell-to-cell movement proteins. Virology 237:283-295. Romano, N., and Macino, G. 1992. Quelling - transient inactivation of gene-expression in Neurospora crassa by transformation with homologous sequences. Mol. Microbiol. 6:3343-3353. Roth, B. M., Pruss, G. J., and Vance, V. B. 2004. Plant viral suppressors of RNA silencing. Virus Res. 102:97-108. Rovere, C. V., del Vas, M., and Hopp, H. E. 2002. RNA-mediated virus resistance. Curr. Opin. Biotechnol. 13:167-172. Sanford, J., and Johnston, S. 1985. The concept of parasite-derived resistance—deriving resistance genes from the parasite's own genome. J. Theor. Biol. 113:395-405. Sarkies, P., and Miska, E. A. 2014. Small RNAs break out: the molecular cell biology of mobile small RNAs. Nat. Rev. Mol. Cell Biol. 15:525-535. Savary, S., Willocquet, L., Pethybridge, S. J., Esker, P., McRoberts, N., and Nelson, A. 2019. The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol. 3:430-439. Schaad, M. C., Haldeman-Cahill, R., Cronin, S., and Carrington, J. C. 1996. Analysis of the VPg-proteinase (NIa) encoded by tobacco etch potyvirus: effects of mutations on subcellular transport, proteolytic processing, and genome amplification. J. Virol. 70:7039-7048. Schultz, E. S. 1921. A transmissible mosaic disease of Chinese cabbage, mustard, and turnip. J Agric Res 22:0173-0177. Schumann, G. L., and D'Arcy, C. J. 2010. Essential plant pathology. APS Press, St. Paul, MN, p. 581-592. Schwartz, S. H., Hendrix, B., Hoffer, P., Sanders, R. A., and Zheng, W. 2020. Carbon dots for efficient small interfering RNA delivery and gene silencing in plants. Plant Physiol. 184:647-657. Sen, G. L., and Blau, H. M. 2006. A brief history of RNAi: the silence of the genes. FASEB J. 20:1293-1299. Senthil-Kumar, M., and Mysore, K. S. 2011. Virus-induced gene silencing can persist for more than 2 years and also be transmitted to progeny seedlings in Nicotiana benthamiana and tomato. Plant Biotechnol. J. 9:797-806. Shattuck, V. I. 1992. The biology, epidemiology, and control of turnip mosaic virus. In: Horticultural Reviews. p. 199-238 Shen, W., Shi, Y., Dai, Z., and Wang, A. 2020. The RNA-Dependent RNA polymerase NIb of potyviruses plays multifunctional, contrasting roles during viral infection. Viruses 12. Shidore, T., Zuverza-Mena, N., and da Silva, W. 2020. Small RNA profiling analysis of two recombinant strains of potato virus Y in infected tobacco plants. Virus Res. 288:198125. Shidore, T., Zuverza-Mena, N., White, J. C., and da Silva, W. 2021. Nanoenabled delivery of RNA molecules for prolonged antiviral protection in crop plants: a review. ACS Appl. Nano Mater. 4:12891-12904. Smith, N. A., Singh, S. P., Wang, M.-B., Stoutjesdijk, P. A., Green, A. G., and Waterhouse, P. M. 2000. Total silencing by intron-spliced hairpin RNAs. Nature 407:319-320. Spetz, C., and Valkonen, J. P. 2004. Potyviral 6K2 protein long-distance movement and symptom-induction functions are independent and host-specific. Mol. Plant-Microbe Interact. 17:502-510. Soumounou, Y., and Lalibert?, J.-F. 1994. Nucleic acid-binding properties of the P1 protein of turnip mosaic potyvirus produced in Escherichia coli. J. Gen. Virol. 75:2567-2573. Suehiro, N., Natsuaki, T., Watanabe, T., and Okuda, S. 2004. An important determinant of the ability of Turnip mosaic virus to infect Brassica spp. and/or Raphanus sativus is in its P3 protein. J. Gen. Virol. 85:2087-2098. Sun, Z.-N., Yin, G.-H., Song, Y.-Z., An, H.-L., Zhu, C.-X., and Wen, F.-J. 2010. Bacterially expressed double-stranded RNAs against hot-spot sequences of tobacco mosaic virus or potato virus Y genome have different ability to protect tobacco from viral infection. Appl. Biochem. Biotechnol. 162:1901-1914. Tabein, S., Jansen, M., Noris, E., Vaira, A. M., Marian, D., Behjatnia, S. A. A., Accotto, G. P., and Miozzi, L. 2020. The induction of an effective dsRNA-mediated resistance against tomato spotted wilt virus by exogenous application of double-stranded RNA largely depends on the selection of the viral RNA target region. Front. Plant Sci. 11:13. Tang, G. L. 2005. siRNA and miRNA: an insight into RISCs. Trends Biochem. Sci. 30:106-114. Tenllado, F., and Diaz-Ruiz, J. R. 2001. Double-stranded RNA-mediated interference with plant virus infection. J. Virol. 75:12288-12297. Tenllado, F., Llave, C., and Diaz-Ruiz, J. R. 2004. RNA interference as a new biotechnological tool for the control of virus diseases in plants. Virus Res. 102:85-96. Tenllado, F., Mart?nez-Garc?a, B., Vargas, M., and Diaz ruiz, J. R. 2003. Crude extracts of bacterially expressed dsRNA can be used to protect plants against virus infections. BMC Biotechnol. 3:3 - 3. Tomlinson, J. 1987. Epidemiology and control of virus diseases of vegetables. Ann. Appl. Biol. 110:661-681. Tomlinson, J., and Walker, V. M. 1973. Further studies on seed transmission in the ecology of some aphid?transmitted viruses. Ann. Appl. Biol. 73:293-298. Urcuqui-Inchima, S., Haenni, A. L., and Bernardi, F. 2001. Potyvirus proteins: a wealth of functions. Virus Res. 74:157-175. Usharani, K. S., Surendranath, B., Haq, Q. M. R., and Malathi, V. G. 2005. Infectivity analysis of a soybean isolate of Mungbean yellow mosaic India virus by agroinoculation. J. Gen. Plant Pathol. 71:230-237. Vadlamudi, T., Patil, B. L., Kaldis, A., Gopal, D., Mishra, R., Berbati, M., and Voloudakis, A. 2020. DsRNA-mediated protection against two isolates of Papaya ringspot virus through topical application of dsRNA in papaya. J. Virol. Methods 275:7. Vidhyasekaran, P., and Muthamilan, M. 1995. Development of formulations of Pseudomonas fluorescens for control of chickpea wilt. Plant Dis. 79:782-786. Vidhyasekaran, p., Rabindran, r., Muthamilan, m., Nayar, k., Rajappan, k., Subramanian, n., and Vasumathi, k. 1997. Development of a powder formulation of Pseudomonas fluorescens for control of rice blast. Plant Pathol. 46:291-297. Vogel, E., Santos, D., Mingels, L., Verdonckt, T.-W., and Broeck, J. V. 2019. RNA interference in insects: protecting beneficials and controlling pests. Front. Physiol.:1912. Voinnet, O., and Baulcombe, D. C. 1997. Systemic signalling in gene silencing. Nature 389:553-553. Voinnet, O., Vain, P., Angell, S., and Baulcombe, D. C. 1998. Systemic spread of sequence-specific transgene RNA degradation in plants is initiated by localized introduction of ectopic promoterless DNA. Cell 95:177-187. Wani, S. H., Sanghera, G. S., and Singh, N. B. 2010. Biotechnology and plant disease control-role of RNA interference. Am. J. Plant Sci. 1:55. Walsh, J. A., and Jenner, C. E. 2002. Turnip mosaic virus and the quest for durable resistance. Mol. Plant Pathol. 3:289-300. Wen, R.-H., and Hajimorad, M. 2010. Mutational analysis of the putative pipo of soybean mosaic virus suggests disruption of PIPO protein impedes movement. Virology 400:1-7. Wesley, S. V., Helliwell, C. A., Smith, N. A., Wang, M., Rouse, D. T., Liu, Q., Gooding, P. S., Singh, S. P., Abbott, D., and Stoutjesdijk, P. A. 2001. Construct design for efficient, effective and high?throughput gene silencing in plants. Plant J. 27:581-590. Willocquet, L., Savary, S., and Yuen, J. 2017. Multiscale phenotyping and decision strategies in breeding for resistance. Trends Plant Sci. 22:420-432. Wittmann, S., Chatel, H., Fortin, M. G., and Lalibert?, J.-F. 1997. Interaction of the viral protein genome linked of turnip mosaic potyvirus with the translational eukaryotic initiation factor (iso)4E of Arabidopsis thaliana using the yeast two-hybrid system. Virology 234:84-92. Worrall, E. A., Bravo-Cazar, A., Nilon, A. T., Fletcher, S. J., Robinson, K. E., Carr, J. P., and Mitter, N. 2019. Exogenous application of RNAi-inducing double-stranded RNA inhibits aphid-mediated transmission of a plant virus. Front. Plant Sci. 10:9. Yang, X., Niu, L., Zhang, W., Yang, J., Xing, G., He, H., Guo, D., Du, Q., Qian, X., and Yao, Y. 2018. RNAi-mediated SMV P3 cistron silencing confers significantly enhanced resistance to multiple Potyvirus strains and isolates in transgenic soybean. Plant Cell Rep. 37:103-114. Ye, C., and Li, H. 2010. 20 years of transgenic research in China for resistance to Papaya ringspot virus. Transgenic Plant J. 4:58-63. Zhang, Yang, L., Zhou, S.-F., Wang, H.-G., Li, W.-C., and Fu, F.-L. 2011. Improvement of resistance to maize dwarf mosaic virus mediated by transgenic RNA interference. J. Biotechnol. 153:181-187. Zhang, H., Demirer, G. S., Zhang, H., Ye, T., Goh, N. S., Aditham, A. J., Cunningham, F. J., Fan, C., and Landry, M. P. 2019. DNA nanostructures coordinate gene silencing in mature plants. Proc. Natl. Acad. Sci. U.S.A. 116:7543-7548. Zhang, W., Kollwig, G., Stecyk, E., Apelt, F., Dirks, R., and Kragler, F. 2014. Graft-transmissible movement of inverted-repeat-induced siRNA signals into flowers. Plant J. 80:106-121. Zhang, X., Sato, S., Ye, X., Dorrance, A. E., Morris, T. J., Clemente, T. E., and Qu, F. 2011. Robust RNAi-based resistance to mixed infection of three viruses in soybean plants expressing separate short hairpins from a single transgene. Phytopathology 101:1264-1269. Zhang, X., Li, H., Zhang, J., Zhang, C., Gong, P., Ziaf, K., Xiao, F., and Ye, Z. 2011. Expression of artificial microRNAs in tomato confers efficient and stable virus resistance in a cell-autonomous manner. Transgenic Res. 20:569-581. Zhao, Y., Yang, X., Zhou, G., and Zhang, T. 2020. Engineering plant virus resistance: from RNA silencing to genome editing strategies. Plant Biotechnol. J. 18:328-336. Zubareva, I., Vinogradova, S., Gribova, T., Monakhos, S., Skryabin, K., and Ignatov, A. 2013. Genetic diversity of turnip mosaic virus and the mechanism of its transmission by Brassica seeds. Dokl. Biochem. Biophys. 450:119-122.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84021-
dc.description.abstract蕪菁嵌紋病毒(turnip mosaic virus, TuMV)是一種嚴重危害作物產量與品質的植物病毒,由於其寄主範圍廣泛且主要透過蚜蟲進行非永續性傳播,使得防治TuMV是件相當艱難的任務。外部施用雙股 RNA (dsRNA)以誘導植物產生對病毒之抗性,已被證實是一種可有效抑制病毒感染且能取代轉基因植物的防治策略。然而,由於RNA分子的不穩定性,致使外部施用dsRNA通常僅能維持短暫的保護效果,如何提升dsRNA的穩定度是延長其誘發之保護作用的重要關鍵。本研究以大腸桿菌HT115 (DE3)表現細菌源dsRNA,將其萃取後外部施用於圓葉菸草(Nicotiana benthamiana),之後再接種TuMV病毒,測試dsRNA對TuMV感染的保護效果。以I-ELISA分析接種葉和系統葉結果顯示,每片葉施用200 μg含TuMV hpNIa dsRNA之細菌全RNA,即可產生顯著抑制TuMV感染的效果。進一步測試作為靜默標的之TuMV序列,發現相較於TuMV 之HC或CP基因,以NIa基因所製備之細菌源dsRNA,經外部施用所誘發的保護效果最佳且最為穩定。此外,TuMV hpNIa dsRNA只能抑制TuMV感染,證實其保護作用具專一性。而經局部施用TuMV hpNIa dsRNA的植株,約有2/3能於未施用之上位葉產生保護效果,顯示外部施用後RNAi作用分子在植物中具有系統性移動的現象。另一方面,本研究發現單次施用以TRIzol萃取之含TuMV hpNIa dsRNA之細菌全RNA,保護效果大約能維持7天左右;且提高施用量或施用兩種不同dsRNA的混合物,皆無法延長保護效期。當改以製備方式較為簡便且成本較低的細菌包覆型態的TuMV hpNIa dsRNA進行測試,結果顯示其能誘發和萃取之dsRNA相似的保護效果,且單次施用也僅能有約7天之保護效期。當細菌包覆的dsRNA之外部施用量提高至3倍,結果發現並無法有效延長其保護效果。最後,嘗試將細菌包覆之TuMV hpNIa dsRNA 改為滑石粉劑型,然後以葉部噴灑方式施用;結果顯示滑石粉對保護效果無影響,而以低壓系統進行葉部噴灑,雖能抑制TuMV感染,但其效果不如機械接種穩定,保護效期也僅能維持約7天左右。綜合本研究結果,建議以簡單且低廉的方式製備細菌包覆的dsRNA,未來可配合高壓系統進行噴灑,藉此建立一套有效且實用的TuMV防治方法,若能有效解決延長保護效期的問題,將能使外部施用dsRNA技術對防治植物病毒病害有所助益。zh_TW
dc.description.abstractTurnip mosaic virus (TuMV) is an important plant virus that seriously damages crop yield and quality. Due to its wide host range and non-persistent transmission mainly through aphids, the task to control TuMV is quite difficult. Exogenous application of double-stranded RNA (dsRNA) to induce virus resistance in plants has been shown to be an effective control strategy that can replace transgenic plants to inhibit viral infection. However, owing to the instability of RNA molecules, exogenous application of dsRNA usually can only maintain a short-term protective effect. How to improve the stability of dsRNA is an important crux to prolong the protection induced by this method. In this study, bacteria-derived dsRNAs were expressed in Escherichia coli HT115 (DE3) and then extracted dsRNAs were externally applied to Nicotiana benthamiana, which were later inoculated with TuMV to test the protective effect of dsRNA against the TuMV infection. After the inoculated and systemic leaves were analyzed by I-ELISA, the results showed that each leaf applied with 200 μg of TuMV hpNIa dsRNA-containing bacterial total RNA could significantly inhibit TuMV infection. The silencing targets of TuMV sequences were further examined, and compared to the HC-Pro or CP gene, the bacterial-derived dsRNA prepared from NIa gene was identified to induce the optimal and most stable protective effect by external application. In addition, TuMV hpNIa dsRNA could only inhibit TuMV infection, demonstrating that the above-mentioned protection is sequence-specific. However, around 2/3 of the plants that were topically applied with TuMV hpNIa dsRNA could generate protection on the upper untreated leaves, indicating that the RNAi molecules moved systemically in plants after exogenous application. On the other hand, a single external application of TuMV hpNIa dsRNA-containing bacterial total RNA extracted by TRIzol to plant was found to maintain the protective effect for approximately 7 days. Moreover, increasing the dosage or applying the mixture of two different dsRNAs could not extend the protection period. When the bacteria-encapsulated TuMV hpNIa dsRNA was prepared from a relatively simple and low-cost method, it was compared with the extracted dsRNA for the protection efficacy. The results showed that bacteria-encapsulated dsRNA could induce similar protective effect as the extracted dsRNA, and the protection only lasted for about 7 days from a single application. When tripled the dosage of bacterial-encapsulated dsRNA for external application, it turned out that the protective effect could not be successfully prolonged. Finally, an attempt was conducted to alter the bacteria-encapsulated TuMV hpNIa dsRNA into a talc powder-based formulation, and then apply it by foliar spraying. Although the results showed that talc powder made no difference on the protective effect, foliar spraying with low-pressure system could inhibit TuMV infection. However, the protective effect of foliar spraying was not as stable as mechanical inoculation, and its duration of protection could only last for 7 days. To summarize the results of this study, it is suggested to prepare bacteria-encapsulated dsRNA in a simple and cost-effective way, which can further combine with the high-pressured system to spray plant in the future, thereby establishing an effective and practical method to control TuMV. If the problem of extending protection period can be effectively solved, this may make the technique of exogenous application of dsRNA helpful to control plant viral diseases.en
dc.description.provenanceMade available in DSpace on 2023-03-19T21:28:07Z (GMT). No. of bitstreams: 1
U0001-2804202214162600.pdf: 10551406 bytes, checksum: bcc8b085cbb45c6d179af88a0f562737 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents口試委員審定書 致謝 中文摘要 i 英文摘要 iii 圖目錄 viii 壹、前言 1 一、植物病毒病害對全球農業之經濟重要性 1 二、蕪菁嵌紋病毒之簡介 1 三、TuMV 基因體組成及其蛋白質之功能 3 四、傳統防治植物病毒之策略 7 五、RNA 干擾之簡介與植物抗病毒反應 9 六、外部施用雙股RNA 技術(Exo-RNAi)防治植物病毒之研究 13 七、外部施用dsRNA 技術尚待改進的缺點 15 八、研究動機 17 貳、材料與方法 19 一、植物材料與栽種方法 19 二、TuMV 病毒接種源之製備 19 三、植物全RNA 萃取及RT-PCR 擴增反應 20 (一) 植物全RNA 萃取 20 (二) 反轉錄聚合??鎖反應 (RT-PCR) 20 (三) 瓊酯膠體電泳分析 21 四、TuMV dsRNA 表現載體之設計及構築 21 五、In vitro transcription 製備dsRNA 22 六、細菌源dsRNA 之製備 22 (一) 勝任細胞之製備 22 (二) 以細菌系統誘導表現dsRNA 23 (三) 細菌全RNA 之萃取 23 (四) RNase A 及RNaseⅢ之處理 24 (五) 細菌包覆(bacteria-encapsulated) dsRNA 之製備 25 (六) 滑石粉劑型之細菌包覆dsRNA 之製備及施用 25 七、以序列接種試驗評估外部施用TuMV dsRNA 之效果 26 八、間接酵素?結抗體免疫吸附法(Indirect-ELISA) 27 參、結果 29 一、TuMV dsRNA 表現載體之建構 29 二、以大腸桿菌表現並製備TuMV dsRNA 29 三、建立以外部施用細菌源dsRNA 誘發植物干擾TuMV 感染之系統 31 四、探討外部施用TuMV dsRNA 所誘發之保護效果 33 (一) 專一性測定(specificity assay) 33 (二) 局部施用dsRNA 對未處理之系統葉之保護效果 33 (三) 持久性測定(durability assay) 34 (四) 以不同方式製備之TuMV dsRNA 35 五、提高細菌包覆之TuMV dsRNA 的施用量對其保護效期之影響 36 六、改變細菌包覆dsRNA 之劑型對其保護效期之影響38 肆、討論 40 一、雙股RNA 製備方法之最佳化及降低成本策略 40 二、雙股RNA 施用量對誘發植物抗性的影響 41 三、基因靜默目標序列之選擇 42 四、基因靜默目標序列之專一性考量 43 五、RNAi 系統性移動及對未施用dsRNA 葉片之保護效果 44 六、影響dsRNA 保護效期之因素 46 七、不同施用方法對保護效果之影響 48 八、結論 49 伍、參考文獻 50 陸、附表 65 柒、附圖 66 捌、附錄 92
dc.language.isozh-TW
dc.subject滑石粉劑型zh_TW
dc.subject外部施用zh_TW
dc.subject雙股RNAzh_TW
dc.subjectRNA干擾zh_TW
dc.subject蕪菁嵌紋病毒zh_TW
dc.subject植物病毒病害防治zh_TW
dc.subject保護效期zh_TW
dc.subject細菌包覆zh_TW
dc.subjectexogenous applicationen
dc.subjecttalc powder-based formulationen
dc.subjectbacteria-encapsulateden
dc.subjectduration of protectionen
dc.subjectplant viral disease controlen
dc.subjectturnip mosaic virusen
dc.subjectRNA interferenceen
dc.subjectdouble-stranded RNAen
dc.title外部施用雙股RNA防治蕪菁嵌紋病毒之研究zh_TW
dc.titleResearch on exogenous application of double-stranded RNA against the infection of turnip mosaic virusen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡志偉(Chi-Wei Tsai),張立(Li Chang)
dc.subject.keyword外部施用,雙股RNA,RNA干擾,蕪菁嵌紋病毒,植物病毒病害防治,保護效期,細菌包覆,滑石粉劑型,zh_TW
dc.subject.keywordexogenous application,double-stranded RNA,RNA interference,turnip mosaic virus,plant viral disease control,duration of protection,bacteria-encapsulated,talc powder-based formulation,en
dc.relation.page94
dc.identifier.doi10.6342/NTU202200732
dc.rights.note未授權
dc.date.accepted2022-05-04
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept植物病理與微生物學研究所zh_TW
顯示於系所單位:植物病理與微生物學系

文件中的檔案:
檔案 大小格式 
U0001-2804202214162600.pdf
  未授權公開取用
10.3 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved