請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83950| 標題: | 利用三元組網絡處理不完整資料集之應用 Triplet Network for Incomplete Data Classification |
| 作者: | Cayon Liow Keei Yann 廖其忻 |
| 指導教授: | 林守德(Shou-De Lin) |
| 關鍵字: | 深度學習,機器學習,三元組網絡,不完整資料集,偽三元組網絡, Deep Learning,Machine Learning,Triplet Network,Pseudo Triplet Network,Incomplete data, |
| 出版年 : | 2022 |
| 學位: | 碩士 |
| 摘要: | 一種根據特徵子集合缺失的資料集應用場景被重新定義及命名為子集合缺失資料集。這種重新制定及定義有助於之後的場景應用以及簡化許多領域都會遇到的因資料集部分缺失的模型問題。此研究利用偽三元組神經元網絡之調用正反配對例子的特性來應對子集合缺失資料集的問題。此研究也涉及了一套資料前處理流程用於處理資料集以便用於模型之輸入。此研究對於多種資料集設定了多種不同比例的子集合缺失用於鑒定所設計模型的分類效能 The data scenario in which the absence of its value depends on the feature subset of the value is defined and formulated as Subset-incomplete data scenario. The formulation of the data scenario contributed to the future application of multiple field problems. Pseudo-triplet networks with positive and negative pairing and their corresponding data flow are proposed to tackle the subset-incomplete data scenario. Data preprocessing pipeline is designed to process subset-incomplete data into model-accepted data with positive and negative pairing. Experiments with various data feature settings for evaluation are observed to support the efficacy of the pseudo-triplet network. |
| URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83950 |
| DOI: | 10.6342/NTU202201139 |
| 全文授權: | 未授權 |
| 顯示於系所單位: | 資訊工程學系 |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2706202213315600.pdf 未授權公開取用 | 1.07 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
