Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83933
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor邱奕鵬zh_TW
dc.contributor.advisorYih-Peng Chiouen
dc.contributor.author萬祐安zh_TW
dc.contributor.authorYou-An Wanen
dc.date.accessioned2023-03-19T21:24:06Z-
dc.date.available2023-11-10-
dc.date.copyright2023-09-15-
dc.date.issued2022-
dc.date.submitted2002-01-01-
dc.identifier.citation[1] E. G. Loewen and E. Popov, Diffraction gratings and applications, 1st edition ed. CRC Press, 1997.
[2] R. W. Wood, “XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 4, no. 21, pp. 396-402, 1902.
[3] A. Hessel and A. Oliner, “A New Theory of Wood’s Anomalies on Optical Gratings,” Applied Optics, vol. 4, no. 10, pp. 1275-1297, 1965.
[4] M. Neviere, R. Petit, and M. Cadilhac, “About the theory of optical grating coupler-waveguide systems,” Optics Communications, vol. 8, no. 2, pp. 113-117, 1973.
[5] M. Neviere, P. Vincent, R. Petit, and M. Cadilhac, “Systematic study of resonances of holographic thin film couplers,” Optics Communications, vol. 9, no. 1, pp. 48-53, 1973.
[6] M. Gale, “Diffraction, beauty and commerce,” Physics World, vol. 2, no. 10, p. 24, 1989.
[7] S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Applied Optics, vol. 32, no. 14, pp. 2606-2613, 1993.
[8] S. Wang, R. Magnusson, J. S. Bagby, and M. Moharam, “Guided-mode resonances in planar dielectric-layer diffraction gratings,” Journal of the Optical Society of America A, vol. 7, no. 8, pp. 1470-1474, 1990.
[9] D. K. Jacob, S. C. Dunn, and M. G. Moharam, “Design considerations for narrow-band dielectric resonant grating reflection filters of finite length,” Journal of the Optical Society of America A, vol. 17, no. 7, pp. 1241-1249, 2000.
[10] D. K. Jacob, S. C. Dunn, and M. G. Moharam, “Normally incident resonant grating reflection filters for efficient narrow-band spectral filtering of finite beams,” Journal of the Optical Society of America A, vol. 18, no. 9, pp. 2109-2120, 2001.
[11] A. Greenwell, S. Boonruang, and M. Moharam, “Control of resonance separation over a wide spectral range in multiwavelength resonant grating filters,” Applied Optics, vol. 46, no. 25, pp. 6355-6361, 2007.
[12] D. Halliday, R. Resnick, and J. Walker, Fundamentals of Physics. John Wiley & Sons, 2013.
[13] 廖翊涵(民 106)。四分之一波長共振腔之寬頻吸音薄板研究。國立臺灣大學應用力學研究所,台北市。
[14] D. T. Blackstock, “Fundamentals of Physical Acoustics,” The Journal of the Acoustical Society of America, vol. 109, no. 4, pp. 1274-1276, 2001.
[15] Y. A. Ilinskii, B. Lipkens, and E. A. Zabolotskaya, “Energy losses in an acoustical resonator,” The Journal of the Acoustical Society of America, vol. 109, no. 5, pp. 1859-1870, 2001.
[16] H. L. Helmholtz, On the Sensations of Tone as a Physiological Basis for the Theory of Music. Cambridge University Press, 2009.
[17] U. Ingard, “On the Theory and Design of Acoustic Resonators,” The Journal of the Acoustical Society of America, vol. 25, no. 6, pp. 1037-1061, 1953.
[18] M. Alster, “Improved calculation of resonant frequencies of Helmholtz resonators,” Journal of Sound and Vibration, vol. 24, no. 1, pp. 63-85, 1972.
[19] A. Norris and G. Wickham, “Elastic Helmholtz resonators,” The Journal of the Acoustical Society of America, vol. 93, no. 2, pp. 617-630, 1993.
[20] A. Selamet, P. M. Radavich, N. Dickey, and J. Novak, “Circular concentric Helmholtz resonators,” The Journal of the Acoustical Society of America, vol. 101, no. 1, pp. 41-51, 1997.
[21] A. Selamet and I. Lee, “Helmholtz resonator with extended neck,” The Journal of the Acoustical Society of America, vol. 113, no. 4 Pt 1, pp. 1975-1985, 2003.
[22] S. K. Tang, “On Helmholtz resonators with tapered necks,” Journal of Sound and Vibration, vol. 279, no. 3-5, pp. 1085-1096, 2005.
[23] X. Wu et al., “Low-frequency tunable acoustic absorber based on split tube resonators,” Applied Physics Letters, vol. 109, no. 4, p. 043501, 2016.
[24] C. Q. Howard and R. A. Craig, “Noise reduction using a quarter wave tube with different orifice geometries,” Applied Acoustics, vol. 76, pp. 180-186, 2014.
[25] Z. G. Wang, S. H. Lee, C. K. Kim, C. M. Park, K. Nahm, and S. A. Nikitov, “Acoustic wave propagation in one-dimensional phononic crystals containing Helmholtz resonators,” Journal of Applied Physics, vol. 103, no. 6, p. 064907, 2008.
[26] S. Kim, Y.-H. Kim, and J.-H. Jang, “A theoretical model to predict the low-frequency sound absorption of a Helmholtz resonator array,” The Journal of the Acoustical Society of America, vol. 119, no. 4, pp. 1933-1936, 2006.
[27] M. Xu, A. Selamet, and H. Kim, “Dual Helmholtz resonator,” Applied Acoustics, vol. 71, no. 9, pp. 822-829, 2010.
[28] A. Sanada and N. Tanaka, “Extension of the frequency range of resonant sound absorbers using two-degree-of-freedom Helmholtz-based resonators with a flexible panel,” Applied Acoustics, vol. 74, no. 4, pp. 509-516, 2013.
[29] R. Ghaffarivardavagh, J. Nikolajczyk, S. Anderson, and X. Zhang, “Ultra-open acoustic metamaterial silencer based on Fano-like interference,” Physical Review B, vol. 99, no. 2, 2019.
[30] A. Selamet, M. B. Xu, I. J. Lee, and N. T. Huff, “Helmholtz resonator lined with absorbing material,” The Journal of the Acoustical Society of America, vol. 117, no. 2, pp. 725-733, 2005.
[31] J.-P. Groby, C. Lagarrigue, B. Brouard, O. Dazel, V. Tournat, and B. Nennig, “Enhancing the absorption properties of acoustic porous plates by periodically embedding Helmholtz resonators,” The Journal of the Acoustical Society of America, vol. 137, no. 1, pp. 273-280, 2015.
[32] H. Y. Long, Y. Cheng, J. C. Tao, and X. J. Liu, “Perfect absorption of low-frequency sound waves by critically coupled subwavelength resonant system,” Applied Physics Letters, vol. 110, no. 2, p. 023502, 2017.
[33] D. Y. Maa, “Theory and design of microperforated panel sound-absorbing constructions,” Scientia Sinica, vol. 18, no. 1, pp. 55-71, 1975.
[34] D. Y. Maa, “Potential of microperforated panel absorber,” The Journal of the Acoustical Society of America, vol. 104, no. 5, pp. 2861-2866, 1998.
[35] C. H. Sohn and J. H. Park, “A comparative study on acoustic damping induced by half-wave, quarter-wave, and Helmholtz resonators,” Aerospace Science and Technology, vol. 15, no. 8, pp. 606-614, 2011.
[36] D. H. Staelin, Electromagnetics and Applications. Massachusetts Institute of Technology, 2011, pp. 399-414.
[37] T. Ohira, “What in the World Is Q? [[Distinguished Microwave Lecture},” IEEE Microwave Magazine, vol. 17, no. 6, pp. 42-49, 2016.
[38] T. Hirano, “Relationship between Q factor and complex resonant frequency: investigations using RLC series circuit,” IEICE Electronics Express, p. 2, 2017.
[39] D. L. Logan, A first course in the finite element method. Cengage Learning, 2016.
[40] R. A. Serway and C. Vuille, College physics. Cengage Learning, 2014.
[41] L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders, Fundamentals of acoustics. John wiley & sons, 2000.
[42] L. Beranek, Acoustics. McGraw-Hill, 1954, pp. 91-115.
[43] Z. Tao and A. Seybert, “A review of current techniques for measuring muffler transmission loss,” SAE transactions, pp. 2096-2100, 2003.
[44] D. H. Bies, C. H. Hansen, and R. H. Campbell, Engineering noise control. Acoustical Society of America, 1996, p. 35.
[45] J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic crystals : molding the flow of light, 2nd ed. Princeton: Princeton University Press, 2008, pp. 14-15.
[46] D. N. Maksimov, A. F. Sadreev, A. A. Lyapina, and A. S. Pilipchuk, “Coupled mode theory for acoustic resonators,” Wave Motion, vol. 56, pp. 52-66, 2015.
[47] 葉翰文(民 106)。諧振反射器於電磁波及聲波共振腔的應用。國立臺灣大學光電工程學研究所,台北市。
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83933-
dc.description.abstract本研究重點在於利用共振腔的特性去設計反射器,達到抑制特定聲音波段噪音之效果。我們設計出聲波光柵反射器、三種不同維度的大型腔體共振腔,與聲學領域中在做隔音的處理方式相比,我們並不需要完整固體的反射面或吸收面做為隔音或吸音的試件,就算是反射表面充滿了孔洞,且孔洞面積甚至大於一半,利用側向耦合(side coupling)的模式,在共振頻段會有極大反射和吸音的現象,也能達到隔音效果。
此外本論文打算以空腔體共振腔做為反射器,將聲波能量束縛在空氣之中,由於聲波是純量,不同於電磁波領域的是橫向電場E(z)、H(z),聲波可以建構出的三種維度共振腔:一維的長管型大型共振腔、二維的圓柱型大共振腔、三維則是使用富勒烯(巴克球)類週期結構,構成球型共振腔。
無限週期性聲波光柵反射器可視為無限大吸音陣列,為了實現吸音陣列的抑制噪音之實驗,本論文先從反射器的反射率、穿透率和穿透損失進行分析,並且考慮到現實環境中可能出現的誤差,使用數值軟體進行模擬,取得最佳的四分之一波長吸音陣列之參數。本研究對於不同尺寸的陣列進行實驗,並對數據做分析,最終設計出長160 cm、寬135 cm的大型吸音陣列,在共振頻率785 Hz,其穿透損失為10 dB,頻寬為 65 Hz。
zh_TW
dc.description.abstractThe focus of this study is to use the characteristics of the resonator to design the reflector to achieve the effect of suppressing noise in a specific bandwidth. We design an acoustic grating reflector, with three different dimensions of a large cavity resonator, compared with the acoustic field in the sound insulation processing, we don’t need a complete reflective or absorption surface to cover sound insulation or sound-absorbing sample. Even if the surface of reflection is full of holes, and the hole area is even greater than half of total area, we can still use the principle of side coupling to achieve reflection and effect of sound absorption.
In addition, we intend to use cavity resonator as a reflector to confine the energy in the air. Because the sound pressure is scalar, unlike the electromagnetic field is transverse electric fields E ⃗(z) and H ⃗(z), it can construct three kinds of cavity resonator. The first one is one dimensional long tube resonator; then the second type is two-dimensional cylindrical resonator, and the third is fullerene (buckyball) periodic-like structure, achieving the thee-dimensional spherical resonator.
An infinite periodic acoustic grating reflector can be regarded as an endless acoustic absorption array. In order to construct the experiments of absorption array, we will start from the characteristics of reflectance, transmittance and transmission loss. Also, we simulated the probably inaccuracy of experimental structure in reality to explain the errors in experiment by using numerical simulation software. And finally, we obtain the best parameters of quarter-wavelength sound absorption array. Based on the experimental analysis of different sizes of array, and finally, a large sound-absorbing array of 160 cm long and 135 cm wide was designed, with a resonant frequency of 785 Hz and a transmission loss of 10 dB with a bandwidth of 65 Hz.
en
dc.description.provenanceMade available in DSpace on 2023-03-19T21:24:06Z (GMT). No. of bitstreams: 1
U0001-2109202219291700.pdf: 3829453 bytes, checksum: 9d911ea5757ce9bb9daa2efaab95178a (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents誌謝 i
中文摘要 ii
ABSTRACT iii
目錄 v
圖目錄 vii
表目錄 x
第一章 導論 1
1.1 研究動機 1
1.2 文獻回顧 2
1.2.1 繞射理論與光柵研究 2
1.2.2 光柵反射器 3
1.2.3 共振現象和共振腔 5
1.2.4 聲波空腔諧振器[13] 5
第二章 基本原理 7
2.1 光柵反射器設計原理 7
2.2 聲波設計原理 8
2.3 腔體共振腔設計原理 9
2.3.1 一維、二維腔體共振腔 9
2.3.2 三維腔體共振腔 10
2.4 品質因子 11
第三章 以空氣介質設計光柵反射器與共振腔 13
3.1 有限元素方法模擬 13
3.2 聲波共振腔參數設計 14
3.3 聲波光柵反射器模擬 20
3.3.1 一維週期聲波光柵模擬 21
3.3.2 聲波光柵之聲學剛性邊界模擬 26
3.3.3 二維週期聲波光柵模擬 28
3.4 以小型共振腔排列設計大型共振腔 34
3.4.1 一維週期共振腔 34
3.4.2 二維週期共振腔 35
3.4.3 三維週期共振腔 39
第四章 四分之一波長吸音陣列之設計與實驗量測 45
4.1 四分之一波長吸音陣列的設計 45
4.2 簡易四分之一波長吸音陣列之實驗量測 48
4.2.1 實驗裝置之建立 48
4.2.2 四分之一波長吸音陣列穿透損失之量測 51
4.3 聲學實驗室四分之一波長吸音陣列實驗量測 56
4.3.1 實驗裝置架設 57
4.3.2 四分之一波長吸音陣列穿透損失之量測 59
第五章 結論 63
參考文獻 64
-
dc.language.isozh_TW-
dc.subject四分之一波長共振腔zh_TW
dc.subject光柵反射器zh_TW
dc.subject品質因子zh_TW
dc.subject穿透損失zh_TW
dc.subjectTransmission lossen
dc.subjectGrating reflectoren
dc.subjectQuarter-wave resonatoren
dc.subjectQuality factoren
dc.title利用四分之一波長共振腔的聲學超材料來抑制噪音之研究zh_TW
dc.titleNoise Suppression with Acoustic Metamaterials Based on Quarter-Wave Resonatorsen
dc.typeThesis-
dc.date.schoolyear110-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee賴志賢;王子建zh_TW
dc.contributor.oralexamcommitteeChih-Hsien Lai;Tzyy-Jiann Wangen
dc.subject.keyword光柵反射器,四分之一波長共振腔,品質因子,穿透損失,zh_TW
dc.subject.keywordGrating reflector,Quarter-wave resonator,Quality factor,Transmission loss,en
dc.relation.page68-
dc.identifier.doi10.6342/NTU202203760-
dc.rights.note未授權-
dc.date.accepted2022-09-27-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept光電工程學研究所-
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-110-2.pdf
  未授權公開取用
3.74 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved