Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83930
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor廖婉君(Wanjiun Liao)
dc.contributor.authorHsuan-Fu Linen
dc.contributor.author林暄富zh_TW
dc.date.accessioned2023-03-19T21:23:58Z-
dc.date.copyright2022-07-07
dc.date.issued2022
dc.date.submitted2022-07-01
dc.identifier.citation[1] I. Afolabi, A. Ksentini, M. Bagaa, T. Taleb, M. Corici, and A. Nakao. Towards 5g network slicing over multiple-domains. IEICE Transactions on Communications, 100(11):1992–2006, 2017. [2] I. Afolabi, J. Prados-Garzon, M. Bagaa, T. Taleb, and P. Ameigeiras. Dynamic resource provisioning of a scalable e2e network slicing orchestration system. IEEE Transactions on Mobile Computing, 19(11):2594–2608, 2019. [3] I. Afolabi, T. Taleb, P. A. Frangoudis, M. Bagaa, and A. Ksentini. Network slicingbased customization of 5g mobile services. IEEE Network, 33(5):134–141, 2019. [4] M. Agiwal, A. Roy, and N. Saxena. Next generation 5g wireless networks: A comprehensive survey. IEEE Communications Surveys & Tutorials, 18(3):1617–1655, 2016. [5] W. Borjigin, K. Ota, and M. Dong. In broker we trust: A double-auction approach for resource allocation in nfv markets. IEEE Transactions on Network and Service Management, 15(4):1322–1333, 2018. [6] P. Caballero, A. Banchs, G. De Veciana, and X. Costa-P?rez. Network slicing games: Enabling customization in multi-tenant mobile networks. IEEE/ACM Transactions on Networking, 27(2):662–675, 2019. [7] P. Caballero, A. Banchs, G. De Veciana, X. Costa-P?rez, and A. Azcorra. Network slicing for guaranteed rate services: Admission control and resource allocation games. IEEE Transactions on Wireless Communications, 17(10):6419–6432, 2018. [8] M. Chen, D. G?nd?z, K. Huang, W. Saad, M. Bennis, A. V. Feljan, and H.V. Poor. Distributed learning in wireless networks: Recent progress and future challenges. IEEE Journal on Selected Areas in Communications, 2021. [9] H.-T. Chien, Y.-D. Lin, C.-L. Lai, and C.-T. Wang. End-to-end slicing as a service with computing and communication resource allocation for multi-tenant 5g systems. IEEE Wireless Communications, 26(5):104–112, 2019. [10] N. F. S. De Sousa, D. A. L. Perez, R. V. Rosa, M. A. Santos, and C. E. Rothenberg. Network service orchestration: A survey. Computer Communications, 142:69–94, 2019. [11] M. Dieye, W. Jaafar, H. Elbiaze, and R. H. Glitho. Market driven multidomain network service orchestration in 5g networks. IEEE Journal on Selected Areas in Communications, 38(7):1417–1431, 2020. [12] A. Feriani and E. Hossain. Single and multi-agent deep reinforcement learning for aienabled wireless networks: A tutorial. IEEE Communications Surveys & Tutorials, 2021. [13] J. Foerster, N. Nardelli, G. Farquhar, T. Afouras, P. H. Torr, P. Kohli, and S. Whiteson. Stabilising experience replay for deep multi-agent reinforcement learning. In International conference on machine learning, pages 1146–1155. PMLR, 2017. [14] W. Guan, H. Zhang, and V. C. Leung. Customized slicing for 6g: Enforcing artificial intelligence on resource management. IEEE Network, 35(5):264–271, 2021. [15] K. Katsalis, N. Nikaein, and A. Edmonds. Multi-domain orchestration for nfv: Challenges and research directions. In 2016 15th International Conference on Ubiquitous Computing and Communications and 2016 International Symposium on Cyberspace and Security (IUCC-CSS), pages 189–195. IEEE, 2016. [16] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra. Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015. [17] Q. Liu, T. Han, and E. Moges. Edgeslice: Slicing wireless edge computing network with decentralized deep reinforcement learning. In 2020 IEEE 40th International Conference on Distributed Computing Systems (ICDCS), pages 234–244. IEEE, 2020. [18] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013. [19] J. Ordonez-Lucena, P. Ameigeiras, D. Lopez, J. J. Ramos-Munoz, J. Lorca, and J. Folgueira. Network slicing for 5g with sdn/nfv: Concepts, architectures, and challenges. IEEE Communications Magazine, 55(5):80–87, 2017. [20] M. Plappert, R. Houthooft, P. Dhariwal, S. Sidor, R. Y. Chen, X. Chen, T. Asfour, P. Abbeel, and M. Andrychowicz. Parameter space noise for exploration. arXiv preprint arXiv:1706.01905, 2017. [21] C. Rotsos, D. King, A. Farshad, J. Bird, L. Fawcett, N. Georgalas, M. Gunkel, K. Shiomoto, A. Wang, A. Mauthe, et al. Network service orchestration standardization: A technology survey. Computer Standards & Interfaces, 54:203–215, 2017. [22] X. Shen, J. Gao, W. Wu, K. Lyu, M. Li, W. Zhuang, X. Li, and J. Rao. Ai-assisted network-slicing based next-generation wireless networks. IEEE Open Journal of Vehicular Technology, 1:45–66, 2020. [23] B. Sonkoly, J. Czentye, R. Szabo, D. Jocha, J. Elek, S. Sahhaf, W. Tavernier, and F. Risso. Multi-domain service orchestration over networks and clouds: A unified approach. ACM SIGCOMM Computer Communication Review, 45(4):377–378, 2015. [24] Y. Sun, M. Peng, Y. Zhou, Y. Huang, and S. Mao. Application of machine learning in wireless networks: Key techniques and open issues. IEEE Communications Surveys & Tutorials, 21(4):3072–3108, 2019. [25] T. Taleb, I. Afolabi, K. Samdanis, and F. Z. Yousaf. On multi-domain network slicing orchestration architecture and federated resource control. IEEE Network, 33(5):242–252, 2019. [26] M. Tan. Multi-agent reinforcement learning: Independent vs. cooperative agents. In Proceedings of the tenth international conference on machine learning, pages 330–337, 1993. [27] Y. Wang, Y. Gu, and X. Tao. Edge network slicing with statistical qos provisioning. IEEE Wireless Communications Letters, 8(5):1464–1467, 2019. [28] J. Xiong, Q. Wang, Z. Yang, P. Sun, L. Han, Y. Zheng, H. Fu, T. Zhang, J. Liu, and H. Liu. Parametrized deep q-networks learning: Reinforcement learning with discrete-continuous hybrid action space. arXiv preprint arXiv:1810.06394, 2018. [29] H. Zhang, N. Liu, X. Chu, K. Long, A.-H. Aghvami, and V. C. Leung. Network slicing based 5g and future mobile networks: mobility, resource management, and challenges. IEEE communications magazine, 55(8):138–145, 2017. [30] H. Zhao, S. Deng, Z. Liu, Z. Xiang, J. Yin, S. Dustdar, and A. Zomaya. Dpos: Decentralized, privacy-preserving, and low-complexity online slicing for multi-tenant networks. IEEE Transactions on Mobile Computing, 2021.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83930-
dc.description.abstract本文研究了延遲敏感和頻寬密集型5G服務的端到端多域編排。提供高質量的端到端服務需要來自多個域的無線電、計算和帶寬資源。然而,由於片面的資訊與不完整的資源控制,域之間的資源編排和交互成為基礎設施提供商的挑戰。此外,租戶需要滿足用戶的服務質量,且同時減少資源成本的消耗。在這項研究中,我們考慮了一種分散的場景,即維持基礎設施提供商的運營自治,並設計提供商之間的合作機制,藉由動態調整資源價格來增加收入。在端到端的資源編排框架下,我們開發智能和去中心化的解決方案。具體而言,對於租戶,我們提出了一種深度強化學習算法來優化資源編排問題。對於基礎設施提供商,我們提出了一種在線多智能體強化學習算法來優化其長期收入。實驗結果表明,我們的方法對於租戶在消耗成本和服務質量方面都有很好的表現。我們還表明,資源較少的基礎設施提供商可以通過合作機制獲得的收入比完整端到端資源的非合作提供商更多。zh_TW
dc.description.abstractThis study investigates end-to-end multi-domain orchestration for delay-sensitive and bandwidth-intensive 5G services. Providing high-quality end-to-end services require radio spectrum, link bandwidth, and computing resources from multiple domains. However, resource orchestration and interaction between domains are a challenge for infrastructure providers (InPs), who only have partial information and have incomplete control over resources. Moreover, tenants need to satisfy the quality of service (QoS) of their subscribers and simultaneously minimize resource costs. In this study, we consider a decentralized scenario that InP's operational autonomy is maintained and design a cooperation mechanism between InPs to increase their revenue by dynamically adjusting resource prices. We develop intelligent and decentralized solutions in the end-to-end multi-domain orchestration framework. Specifically, we propose a deep reinforcement learning algorithm for tenants to optimize the resource orchestration problem. For InPs, we propose an online multi-agent deep reinforcement learning algorithm to optimize their long-term revenue. The experimental results demonstrate that our method performs well in terms of both consumption costs and QoS for tenants. We also show that InPs with fewer resources can generate more revenue through our cooperative mechanism than non-cooperative InPs with complete end-to-end resources.en
dc.description.provenanceMade available in DSpace on 2023-03-19T21:23:58Z (GMT). No. of bitstreams: 1
U0001-2206202221525900.pdf: 1945214 bytes, checksum: da5c57e5a49942bba7ba7c3e677ade21 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents摘要 i Abstract ii Contents iv List of Figures vi List of Tables vii Chapter 1 Introduction 1 Chapter 2 Related Work 5 Chapter 3 System Model 7 Chapter 4 Problem Formulation 14 4.1 Multi-Domain Resource Orchestration 14 4.2 Cooperative Provisioning 16 Chapter 5 Proposed Method 18 5.1 MDO-DDPG 18 5.2 Multi-Agent Cooperative DQN 22 Chapter 6 Simulation Result 26 6.1 Simulation Setup 26 6.2 Performance of Resource Orchestration 27 6.3 Performance of Cooperative Provisioning 30 6.4 Average Utility of Tenants 33 Chapter 7 Conclusion 35 References 36
dc.language.isoen
dc.subject多智能體強化學習zh_TW
dc.subject資源分配zh_TW
dc.subject多域編排zh_TW
dc.subject合作供應zh_TW
dc.subjectresource allocationen
dc.subjectmulti-domain orchestrationen
dc.subjectcooperative provisioningen
dc.subjectmulti-agent reinforcement learningen
dc.title使用深度強化學習的5G網路服務多域資源編排和協作供應zh_TW
dc.titleMulti-Domain Resource Orchestration and Cooperative Provisioning for 5G Network Services using Deep Reinforcement Learningen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee謝宏昀(Hung-Yun Hsieh),周承復(Cheng-Fu Chou),楊得年(De-Nian Yang)
dc.subject.keyword資源分配,多域編排,合作供應,多智能體強化學習,zh_TW
dc.subject.keywordresource allocation,multi-domain orchestration,cooperative provisioning,multi-agent reinforcement learning,en
dc.relation.page40
dc.identifier.doi10.6342/NTU202201069
dc.rights.note未授權
dc.date.accepted2022-07-04
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
U0001-2206202221525900.pdf
  未授權公開取用
1.9 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved