請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83925完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 方?泰(Chi-Tai Fang) | |
| dc.contributor.author | Yu-Hsuan Wu | en |
| dc.contributor.author | 吳于瑄 | zh_TW |
| dc.date.accessioned | 2023-03-19T21:23:45Z | - |
| dc.date.copyright | 2022-07-12 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-07-01 | |
| dc.identifier.citation | 張金堅, 許辰陽, 賴昭智, et al. 新冠肺炎 (COVID-19) 的免疫學探討. 臺灣醫界. 2020:13-26. World Health Organization. WHO Coronavirus (COVID-19) Dashboard. https://covid19.who.int/ 顏嘉嫺. COVID-19 疫苗系列專欄: 什麼是 SARS-CoV-2 病毒變異株? 疫情報導. 2021;37(9):132-135. doi:10.6524/EB.202105_37(9).0002 Forchette L, Sebastian W, Liu T. A comprehensive review of COVID-19 virology, vaccines, variants, and therapeutics. Current medical science. 2021:1-15. doi:10.1007/s11596-021-2395-1. Fong MW, Gao H, Wong JY, et al. Nonpharmaceutical measures for pandemic influenza in nonhealthcare settings—social distancing measures. Emerging infectious diseases. 2020;26(5):976. doi:10.3201/eid2605.190995 Markel H, Lipman HB, Navarro JA, et al. Nonpharmaceutical Interventions Implemented by US Cities During the 1918-1919 Influenza Pandemic. JAMA. 2007;298(6):644-654. doi:10.1001/jama.298.6.644 Lau H, Khosrawipour V, Kocbach P, et al. The positive impact of lockdown in Wuhan on containing the COVID-19 outbreak in China. Journal of travel medicine. 2020;doi:10.1093/jtm/taaa037. Ren X. Pandemic and lockdown: a territorial approach to COVID-19 in China, Italy and the United States. Eurasian Geography and Economics. 2020;61(4-5):423-434. doi:10.1080/15387216.2020.1762103 Besley T, Stern N. The economics of lockdown. Fiscal Studies. 2020;41(3):493-513. doi:10.1111/1475-5890.12246. The World Bank. Global economic prospects, June 2020. The World Bank; 2020. Baldwin R. Keeping the lights on: Economic medicine for a medical shock. VoxEU org. 2020;13 Carlsson-Szlezak P, Reeves M, Swartz P. What coronavirus could mean for the global economy. Harvard Business Review. 2020;3(10) Maital S, Barzani E. The global economic impact of COVID-19: A summary of research. Samuel Neaman Institute for National Policy Research. 2020;2020:1-12. Reed S, Gonzalez JM, Johnson FR. Willingness to accept trade-offs among COVID-19 cases, social-distancing restrictions, and economic impact: a nationwide US study. Value in health. 2020;23(11):1438-1443. doi:https://doi.org/10.1016/j.jval.2020.07.003 Bartik AW, Bertrand M, Cullen Z, Glaeser EL, Luca M, Stanton C. The impact of COVID-19 on small business outcomes and expectations. Proceedings of the national academy of sciences. 2020;117(30):17656-17666. doi:https://doi.org/10.1073/pnas.2006991117 Rojas FL, Jiang X, Montenovo L, Simon KI, Weinberg BA, Wing C. Is the cure worse than the problem itself? Immediate labor market effects of COVID-19 case rates and school closures in the US. National Bureau of Economic Research. 2020;doi:10.3386/w27127 Coibion O, Gorodnichenko Y, Weber M. The cost of the covid-19 crisis: Lockdowns, macroeconomic expectations, and consumer spending. National Bureau of Economic Research. 2020;doi:10.3386/w27141 Gupta S, Montenovo L, Nguyen TD, et al. Effects of social distancing policy on labor market outcomes. National Bureau of Economic Research. 2020;doi:10.3386/w27280 Bonadio B, Huo Z, Levchenko AA, Pandalai-Nayar N. Global supply chains in the pandemic. National Bureau of Economic Research. 2020;doi:10.3386/w27224 Guan D, Wang D, Hallegatte S, et al. Global supply-chain effects of COVID-19 control measures. Nature human behaviour. 2020;4(6):577-587. doi:https://doi.org/10.1038/s41562-020-0896-8 Fernandes N. Economic effects of coronavirus outbreak (COVID-19) on the world economy. IESE Business School Working Paper. 2020;No. WP-1240-Edoi:http://dx.doi.org/10.2139/ssrn.3557504 Demirg??-Kunt A, Lokshin M, Torre I. The sooner, the better: The early economic impact of non-pharmaceutical interventions during the COVID-19 pandemic. World Bank Policy Research Working Paper. 2020;(9257) UK government. Office for National Statistics. https://www.ons.gov.uk/ IHS Markit. Data, Analysis, and Insights. https://ihsmarkit.com/index.html Investing.com. Stock Market Quotes & Financial News. https://www.investing.com/ Global Change Data Lab. Our World In Data. https://ourworldindata.org/ 楊奕農. 時間序列分析: 經濟與財務上之應用. 第三版 ed. 雙葉書廊; 2009. Statistical Analysis System. SAS/ETS? 14.3 User’s Guide. SAS Institute Inc Cary, NC, USA; 2017. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83925 | - |
| dc.description.abstract | 背景與目標:新型冠狀病毒(COVID-19)於2019年底爆發後,迅速擴散到世界各地,造成全球大流行,疫情仍在持續延燒,截至2022年5月,全球已超過五億多人確診,六百多萬人不幸死亡。為了控制疫情,各國紛紛採取封城及各項管制措施,以遏止疫情擴散,例如關閉學校、工作場域及非必要商店等。儘管封城措施能有效防止COVID-19疫情擴散,卻可能導致經濟活動放緩,對總體經濟產生不利影響。本研究旨在利用量化分析,探討英國封城措施是否對該國經濟帶來不利的影響。 方法:本研究使用時間序列模型與動態迴歸模型,針對五個不同的總體經濟面向:勞動力市場、製造面、消費面、國際貿易與股票市場進行量化分析,並納入防疫嚴格指標(封城效應)、COVID-19確診人數、死亡人數及基準利率作為輸入變量,進行英國封城措施對於經濟影響之實證研究。另外,本研究亦將不封城的日本、臺灣作為描述性對照,與封城的英國進行比較,探討不同防疫策略對於總體經濟指標的影響。 結果:研究結果顯示,COVID-19的封城措施將為勞動力市場、製造面與消費面市場帶來不利的影響。失業率的時間序列模型為ARIMA(4, 1, 2),納入輸入變量後,防疫嚴格指標的參數估計為0.0015(p=0.0218)。製造業採購經理人指數(PMI)的時間序列模型為ARIMA(2, 1, 1),納入輸入變量後,防疫嚴格指標的參數估計為-0.15(p<.0001)。服務業採購經理人指數(NMI)的時間序列模型為ARIMA(3, 0, 1),納入輸入變量後,防疫嚴格指標的參數估計為-0.23(p=0.0087)。零售銷售指數(RSI)的時間序列模型為ARIMA(0, 1, 3),納入輸入變量後,防疫嚴格指標的參數估計為-0.3(p<.0001)。國際貿易、英國股市與封城效應未存在顯著相關,但基準利率與英國股市存在顯著負相關。本研究亦發現,相較於不封城的臺灣與日本,英國的經濟活動放緩更為嚴重。 結論:COVID-19封城措施將導致經濟活動放緩,對於勞動力市場及供應鏈,甚至是實質GDP皆帶來不利的衝擊,總體經濟影響廣泛且充滿不確定性,因此,若要在防疫與經濟之間取得平衡,本研究並不建議以嚴格的封城措施作為防疫手段。 | zh_TW |
| dc.description.abstract | Background and objective: COVID-19 has spread rapidly across the world and caused a pandemic. As of May 2022, the number of confirmed cases surpassed 500 million and over 6 million deaths. Many countries enforced lockdown measures or restrictions to contain the spread of coronavirus. Shutting down public places, such as schools and non-essential shops has been the leading lockdown measure. However, lockdown measures have often been framed as a trade-off between protecting people’s health and protecting the economy. To discuss this issue, we aimed to analyze whether lockdown measures lead to an adverse impact on the economy in the United Kingdom. Methods: We used the time series model and dynamic regression to analyze five different economic aspects: labor market, manufacturing, consumption, international trade, and stock market. Using stringency index (lockdown effect), COVID-19 confirmed cases, deaths, and bank rate as input variables to prove that lockdown measures may impact the economy in the United Kingdom. We also took non-lockdown countries, such as Taiwan and Japan as a descriptive comparison to discuss the economic impact of two different measures. Results: Based on our results, the major adverse macroeconomic impact of COVID-19 lockdown is on the labor market, manufacturing, and consumption. The unemployment rate time series is ARIMA(4, 1, 2) model, and after adding the input variables, the coefficient of the stringency index is 0.0015 (p=0.0218). The manufacturing purchasing managers' index (PMI) time series is ARIMA(2, 1, 1) model, and after adding the input variables, the coefficient of the stringency index is -0.15 (p<.0001). The non-manufacturing purchasing managers' index (NMI) time series is ARIMA(3, 0, 1) model, and after adding the input variables, the coefficient of the stringency index is -0.23 (p=0.0087). The retail sales index (RSI) time series is ARIMA(0, 1, 3) model, and after adding the input variables, the coefficient of the stringency index is -0.3 (p<.0001). International trade and the UK stock market are not significantly associated with the stringency index, but the bank rate significantly decreased the UK stock price. We also found that the slowdown in economic activity of the UK is more severe than non-lockdown countries. Conclusion: This study found that the COVID-19 lockdown caused a slowdown in economic activities. The negative macroeconomics impact will be wide-ranging in different aspects on labor markets, supply chains, and GDP levels. To strike a balance between public health and the economy, we don’t recommend taking lockdown measures to contain the spread of this pandemic. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T21:23:45Z (GMT). No. of bitstreams: 1 U0001-2406202201454800.pdf: 4200844 bytes, checksum: b5c680e0fcb0cecf2b0ae1d44634a173 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 口試委員會審定書 I 謝辭 II 摘要 III Abstract V 圖目錄 IX 表目錄 XI 第一章 背景 1 第二章 研究方法 5 第一節 研究假說 5 第二節 研究設計 7 第三節 資料收集 8 第四節 統計方法 10 第三章 研究結果 13 第一節 描述性分析 13 第二節 相關性分析 14 第三節 時間序列分析 14 第四節 補充分析:各國不同防疫策略之經濟比較 24 第四章 討論 26 第一節 本研究主要發現 26 第二節 英國股票市場與國際貿易之探討 26 第三節 研究限制 27 第四節 研究優勢 27 第五節 未來展望 27 Acknowledgement 28 參考文獻 29 | |
| dc.language.iso | zh-TW | |
| dc.subject | 總體經濟 | zh_TW |
| dc.subject | 新型冠狀病毒 | zh_TW |
| dc.subject | 封城 | zh_TW |
| dc.subject | 防疫嚴格指標 | zh_TW |
| dc.subject | 時間序列分析 | zh_TW |
| dc.subject | 動態迴歸 | zh_TW |
| dc.subject | Dynamic Regression | en |
| dc.subject | Stringency Index | en |
| dc.subject | COVID-19 | en |
| dc.subject | Time Series Analysis | en |
| dc.subject | Lockdown | en |
| dc.subject | Macroeconomics | en |
| dc.title | 2019冠狀病毒疾病封城措施對總體經濟之影響:時間序列分析 | zh_TW |
| dc.title | Macroeconomic Impact of COVID-19 Lockdown: A Time Series Analysis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林菀俞(Wan-Yu Lin),許耀文(Yao-Wen Hsu) | |
| dc.subject.keyword | 新型冠狀病毒,總體經濟,封城,防疫嚴格指標,時間序列分析,動態迴歸, | zh_TW |
| dc.subject.keyword | COVID-19,Macroeconomics,Lockdown,Stringency Index,Time Series Analysis,Dynamic Regression, | en |
| dc.relation.page | 61 | |
| dc.identifier.doi | 10.6342/NTU202201084 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2022-07-05 | |
| dc.contributor.author-college | 共同教育中心 | zh_TW |
| dc.contributor.author-dept | 統計碩士學位學程 | zh_TW |
| 顯示於系所單位: | 統計碩士學位學程 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2406202201454800.pdf 未授權公開取用 | 4.1 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
