請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83912完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 廖英志(Ying-Chih Liao) | |
| dc.contributor.author | Ting-Yu Cheng | en |
| dc.contributor.author | 鄭庭宇 | zh_TW |
| dc.date.accessioned | 2023-03-19T21:23:14Z | - |
| dc.date.copyright | 2022-07-22 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-07-11 | |
| dc.identifier.citation | [1] N. Dubey, “The impact of 3D printing technology in pharmacy,” Aug. 16, 2019. https://www.slideshare.net/NainaDubey2/3-d-printing-164252548 (accessed Jan. 28, 2022). [2] Axsys Dental Solutions, “3D Printing Terms Dental Technicians Should Know,” Apr. 01, 2018. https://blog.axsysdental.com/terms-dental-technicians-should-know/ (accessed Jan. 29, 2022). [3] Dienamics, “A 2020 Overview Of 3D Printing In Australia | Dienamics,” Oct. 29, 2020. https://dienamics.com.au/blog/a-2020-overview-of-3d-printing-in-australia/ (accessed Jan. 29, 2022). [4] formlabs, “SLA vs. DLP: Guide to Resin 3D Printers.” https://formlabs.com/blog/resin-3d-printer-comparison-sla-vs-dlp/ (accessed Jan. 30, 2022). [5] J. Murphy, “Selective Laser Melting (SLM) – 3D Printing Simply Explained | All3DP,” Mar. 28, 2019. https://all3dp.com/2/selective-laser-melting-slm-3d-printing-simply-explained/ (accessed Jan. 30, 2022). [6] D. Herring, “Additive Manufacturing – The Next Industrial Revolution | 2018-11-12 | Industrial Heating,” Nov. 12, 2018. https://www.industrialheating.com/articles/94571-additive-manufacturing-the-next-industrial-revolution (accessed Feb. 01, 2022). [7] A. Morris, “Adam Nathaniel Furman creates 3D-printed totems for ITV ident,” Mar. 29, 2019. https://www.dezeen.com/2019/03/29/adam-nathaniel-furman-itv/ (accessed Feb. 01, 2022). [8] M. Sireesha, J. Lee, A. S. Kranthi Kiran, V. J. Babu, B. B. T. Kee, and S. Ramakrishna, “A review on additive manufacturing and its way into the oil and gas industry,” RSC Advances, vol. 8, no. 40, pp. 22460–22468, Jun. 2018, doi: 10.1039/C8RA03194K. [9] A. Razavykia, E. Brusa, C. Delprete, and R. Yavari, “An Overview of Additive Manufacturing Technologies—A Review to Technical Synthesis in Numerical Study of Selective Laser Melting,” Materials 2020, Vol. 13, Page 3895, vol. 13, no. 17, p. 3895, Sep. 2020, doi: 10.3390/MA13173895. [10] J. L. D?vila, P. I. Neto, P. Y. Noritomi, R. T. Coelho, and J. V. L. da Silva, “Hybrid manufacturing: a review of the synergy between directed energy deposition and subtractive processes,” The International Journal of Advanced Manufacturing Technology 2020 110:11, vol. 110, no. 11, pp. 3377–3390, Sep. 2020, doi: 10.1007/S00170-020-06062-7. [11] S. Lagutkin, L. Achelis, S. Sheikhaliev, V. Uhlenwinkel, and V. Srivastava, “Atomization process for metal powder,” Materials Science and Engineering: A, vol. 383, no. 1, pp. 1–6, Oct. 2004, doi: 10.1016/J.MSEA.2004.02.059. [12] Y. Seki, S. Okamoto, H. Takigawa, and N. Kawai, “Effect of atomization variables on powder characteristics in the high-pressured water atomization process,” Metal Powder Report, vol. 45, no. 1, pp. 38–40, Jan. 1990, doi: 10.1016/S0026-0657(10)80014-1. [13] L. V. M. Antony and R. G. Reddy, “Processes for production of high-purity metal powders,” JOM 2003 55:3, vol. 55, no. 3, pp. 14–18, 2003, doi: 10.1007/S11837-003-0153-4. [14] J. ?M Contreras, A. Jim?nez-Morales, and J. M. Torralba, “Improvement of rheological properties of Inconel 718 MIM feedstock using tailored particle size distributions,” http://dx.doi.org/10.1179/174329008X313342, vol. 51, no. 2, pp. 103–106, 2013, doi: 10.1179/174329008X313342. [15] B. N. Nobrega, W. Ristow, and R. Machado, “MIM processing and plasma sintering of nickel base superalloys for aerospace and automotive applications,” http://dx.doi.org/10.1179/174329008X286659, vol. 51, no. 2, pp. 107–110, 2013, doi: 10.1179/174329008X286659. [16] A. Mostafaei et al., “Binder jet 3D printing—Process parameters, materials, properties, modeling, and challenges,” Progress in Materials Science, vol. 119, p. 100707, Jun. 2021, doi: 10.1016/J.PMATSCI.2020.100707. [17] J. H. Tan, W. L. E. Wong, and K. W. Dalgarno, “An overview of powder granulometry on feedstock and part performance in the selective laser melting process,” Additive Manufacturing, vol. 18, pp. 228–255, Dec. 2017, doi: 10.1016/J.ADDMA.2017.10.011. [18] R. P. Koseski, P. Suri, N. B. Earhardt, R. M. German, and Y. S. Kwon, “Microstructural evolution of injection molded gas- and water-atomized 316L stainless steel powder during sintering,” Materials Science and Engineering: A, vol. 390, no. 1–2, pp. 171–177, Jan. 2005, doi: 10.1016/J.MSEA.2004.08.002. [19] H. ?. G?lsoy, S. ?zbek, and T. Baykara, “Microstructural and mechanical properties of injection moulded gas and water atomised 17-4 PH stainless steel powder,” http://dx.doi.org/10.1179/174329007X153288, vol. 50, no. 2, pp. 120–126, Jun. 2013, doi: 10.1179/174329007X153288. [20] L. Zhang et al., “A comparative investigation on MIM418 superalloy fabricated using gas- and water-atomized powders,” Powder Technology, vol. 286, pp. 798–806, Dec. 2015, doi: 10.1016/J.POWTEC.2015.09.023. [21] R. Li, Y. Shi, Z. Wang, L. Wang, J. Liu, and W. Jiang, “Densification behavior of gas and water atomized 316L stainless steel powder during selective laser melting,” Applied Surface Science, vol. 256, no. 13, pp. 4350–4356, Apr. 2010, doi: 10.1016/J.APSUSC.2010.02.030. [22] M. Rombouts, G. Maes, M. Mertens, and W. Hendrix, “Laser metal deposition of Inconel 625: Microstructure and mechanical properties,” Journal of Laser Applications, vol. 24, no. 5, p. 052007, Oct. 2012, doi: 10.2351/1.4757717. [23] A. Mostafaei, E. L. Stevens, E. T. Hughes, S. D. Biery, C. Hilla, and M. Chmielus, “Powder bed binder jet printed alloy 625: Densification, microstructure and mechanical properties,” Materials & Design, vol. 108, pp. 126–135, Oct. 2016, doi: 10.1016/J.MATDES.2016.06.067. [24] Y. F. Ternovoi, A. G. Tsipunov, S. B. Kuratchenko, O. M. Kuimova, and K. v. Kondakova, “Pore formation in atomized powders,” Soviet Powder Metallurgy and Metal Ceramics 1985 24:1, vol. 24, no. 1, pp. 10–13, Jan. 1985, doi: 10.1007/BF00792199. [25] A. Mostafaei, C. Hilla, E. L. Stevens, P. Nandwana, A. M. Elliott, and M. Chmielus, “Comparison of characterization methods for differently atomized nickel-based alloy 625 powders,” Powder Technology, vol. 333, pp. 180–192, Jun. 2018, doi: 10.1016/J.POWTEC.2018.04.014. [26] V. Mikli, H. K?erdi, P. Kulu, and M. Besterci, “Characterization of Powder Particle Morphology,” Proceedings of the Estonian Academy of Sciences. Engineering, vol. 7, no. 1, p. 34, Mar. 2001, doi: 10.3176/ENG.2001.1.03. [27] K. Heim, F. Bernier, R. Pelletier, and L. P. Lefebvre, “High resolution pore size analysis in metallic powders by X-ray tomography,” Case Studies in Nondestructive Testing and Evaluation, vol. 6, pp. 45–52, Nov. 2016, doi: 10.1016/J.CSNDT.2016.09.002. [28] L. Kong, M. Ostadhassan, X. Hou, M. Mann, and C. Li, “Microstructure characteristics and fractal analysis of 3D-printed sandstone using micro-CT and SEM-EDS,” Journal of Petroleum Science and Engineering, vol. 175, pp. 1039–1048, Apr. 2019, doi: 10.1016/J.PETROL.2019.01.050. [29] A. B. Ilogebe, B. Uzochukwu, and A. M. Elliot, “Porosity Determination and Characterization of Binder Jet Printed Structural Amorphous Metal (SAM) Alloy Parts Using X-Ray CT,” Materials Science, vol. 2, no. 1, pp. 1–6, Dec. 2019, doi: 10.33425/2639-9466.1021. [30] H. Zhang et al., “Three dimensional printed macroporous polylactic acid/hydroxyapatite composite scaffolds for promoting bone formation in a critical-size rat calvarial defect model,” Science and Technology of Advanced Materials, vol. 17, no. 1, pp. 136–148, 2016, doi: 10.1080/14686996.2016.1145532. [31] M. Castilho, B. Gouveia, I. Pires, J. Rodrigues, and M. Pereira, “The role of shell/core saturation level on the accuracy and mechanical characteristics of porous calcium phosphate models produced by 3Dprinting,” Rapid Prototyping Journal, vol. 21, no. 1, pp. 43–55, Jan. 2015, doi: 10.1108/RPJ-02-2013-0015/FULL/PDF. [32] J. H. Tan, W. L. E. Wong, and K. W. Dalgarno, “An overview of powder granulometry on feedstock and part performance in the selective laser melting process,” Additive Manufacturing, vol. 18, pp. 228–255, Dec. 2017, doi: 10.1016/J.ADDMA.2017.10.011. [33] E. B?rjesson, J. Karlsson, F. Innings, C. Tr?g?rdh, B. Bergenst?hl, and M. Paulsson, “Entrapment of air during imbibition of agglomerated powder beds,” Journal of Food Engineering, vol. 201, pp. 26–35, May 2017, doi: 10.1016/J.JFOODENG.2017.01.004. [34] R. P. Zou, M. L. Gan, and A. B. Yu, “Prediction of the porosity of multi-component mixtures of cohesive and non-cohesive particles,” Chemical Engineering Science, vol. 66, no. 20, pp. 4711–4721, Oct. 2011, doi: 10.1016/J.CES.2011.06.037. [35] Z. Zhou, F. Buchanan, C. Mitchell, and N. Dunne, “Printability of calcium phosphate: Calcium sulfate powders for the application of tissue engineered bone scaffolds using the 3D printing technique,” Materials Science and Engineering: C, vol. 38, no. 1, pp. 1–10, May 2014, doi: 10.1016/J.MSEC.2014.01.027. [36] K. P. Hapgood, J. D. Litster, S. R. Biggs, and T. Howes, “Drop Penetration into Porous Powder Beds,” Journal of Colloid and Interface Science, vol. 253, no. 2, pp. 353–366, Sep. 2002, doi: 10.1006/JCIS.2002.8527. [37] K. Lu, M. Hiser, and W. Wu, “Effect of particle size on three dimensional printed mesh structures,” Powder Technology, vol. 192, no. 2, pp. 178–183, Jun. 2009, doi: 10.1016/J.POWTEC.2008.12.011. [38] R. M. German, Particle packing characteristics. Princeton N.J., 1989. [39] A. Averardi, C. Cola, S. E. Zeltmann, and N. Gupta, “Effect of particle size distribution on the packing of powder beds: A critical discussion relevant to additive manufacturing,” Materials Today Communications, vol. 24, p. 100964, Sep. 2020, doi: 10.1016/J.MTCOMM.2020.100964. [40] A. Mostafaei, P. Rodriguez De Vecchis, I. Nettleship, and M. Chmielus, “Effect of powder size distribution on densification and microstructural evolution of binder-jet 3D-printed alloy 625,” Materials & Design, vol. 162, pp. 375–383, Jan. 2019, doi: 10.1016/J.MATDES.2018.11.051. [41] H. Y. Sohn and C. Moreland, “The effect of particle size distribution on packing density,” The Canadian Journal of Chemical Engineering, vol. 46, no. 3, pp. 162–167, Jun. 1968, doi: 10.1002/CJCE.5450460305. [42] S. Ziegelmeier et al., “An experimental study into the effects of bulk and flow behaviour of laser sintering polymer powders on resulting part properties,” Journal of Materials Processing Technology, vol. 215, no. 1, pp. 239–250, Jan. 2015, doi: 10.1016/J.JMATPROTEC.2014.07.029. [43] Y. Bai, G. Wagner, and C. B. Williams, “Effect of particle size distribution on powder packing and sintering in binder jetting additive manufacturing of metals,” Journal of Manufacturing Science and Engineering, Transactions of the ASME, vol. 139, no. 8, Aug. 2017, doi: 10.1115/1.4036640/376387. [44] Y. Bai, G. Wagner, and C. B. Williams, “Effect of Bimodal Powder Mixture on Powder Packing Density and Sintered Density in Binder Jetting of Metals,” 2015, Accessed: Feb. 07, 2022. [Online]. Available: https://repositories.lib.utexas.edu/handle/2152/89376 [45] H. H. Zhu, J. Y. H. Fuh, and L. Lu, “The influence of powder apparent density on the density in direct laser-sintered metallic parts,” International Journal of Machine Tools and Manufacture, vol. 47, no. 2, pp. 294–298, Feb. 2007, doi: 10.1016/J.IJMACHTOOLS.2006.03.019. [46] M. N. Rahaman, “Ceramic processing and sintering, second edition,” Ceramic Processing and Sintering, Second Edition, pp. 1–875, Jan. 2017, doi: 10.1201/9781315274126/CERAMIC-PROCESSING-SINTERING-RAHAMAN. [47] S. Spath, P. Drescher, and H. Seitz, “Impact of Particle Size of Ceramic Granule Blends on Mechanical Strength and Porosity of 3D Printed Scaffolds,” Materials 2015, Vol. 8, Pages 4720-4732, vol. 8, no. 8, pp. 4720–4732, Jul. 2015, doi: 10.3390/MA8084720. [48] J. Benson, J. M. Benson, and E. Snyders, “THE NEED FOR POWDER CHARACTERISATION IN THE ADDITIVE MANUFACTURING INDUSTRY AND THE ESTABLISHMENT OF A NATIONAL FACILITY,” The South African Journal of Industrial Engineering, vol. 26, no. 2, pp. 104–114, Aug. 2015, doi: 10.7166/26-2-951. [49] T. Mao, D. C. S. Kuhn, and H. Tran, “Spread and rebound of liquid droplets upon impact on flat surfaces,” AIChE Journal, vol. 43, no. 9, pp. 2169–2179, Sep. 1997, doi: 10.1002/AIC.690430903. [50] J. H. Tan, W. L. E. Wong, and K. W. Dalgarno, “An overview of powder granulometry on feedstock and part performance in the selective laser melting process,” Additive Manufacturing, vol. 18, pp. 228–255, Dec. 2017, doi: 10.1016/J.ADDMA.2017.10.011. [51] R. K. McGEARY, “Mechanical Packing of Spherical Particles,” Journal of the American Ceramic Society, vol. 44, no. 10, pp. 513–522, Oct. 1961, doi: 10.1111/J.1151-2916.1961.TB13716.X. [52] R. M. German, “Prediction of sintered density for bimodal powder mixtures,” Metallurgical Transactions A 1992 23:5, vol. 23, no. 5, pp. 1455–1465, May 1992, doi: 10.1007/BF02647329. [53] L. C. Hwa, S. Rajoo, A. M. Noor, N. Ahmad, and M. B. Uday, “Recent advances in 3D printing of porous ceramics: A review,” Current Opinion in Solid State and Materials Science, vol. 21, no. 6, pp. 323–347, Dec. 2017, doi: 10.1016/J.COSSMS.2017.08.002. [54] M. Doyle, K. Agarwal, W. Sealy, and K. Schull, “Effect of Layer Thickness and Orientation on Mechanical Behavior of Binder Jet Stainless Steel 420 + Bronze Parts,” Procedia Manufacturing, vol. 1, pp. 251–262, Jan. 2015, doi: 10.1016/J.PROMFG.2015.09.016. [55] M. Vaezi and C. K. Chua, “Effects of layer thickness and binder saturation level parameters on 3D printing process,” The International Journal of Advanced Manufacturing Technology 2010 53:1, vol. 53, no. 1, pp. 275–284, Jul. 2010, doi: 10.1007/S00170-010-2821-1. [56] A. Farzadi, M. Solati-Hashjin, M. Asadi-Eydivand, and N. A. A. Osman, “Effect of Layer Thickness and Printing Orientation on Mechanical Properties and Dimensional Accuracy of 3D Printed Porous Samples for Bone Tissue Engineering,” PLOS ONE, vol. 9, no. 9, p. e108252, Sep. 2014, doi: 10.1371/JOURNAL.PONE.0108252. [57] R. K. Enneti and K. C. Prough, “Effect of binder saturation and powder layer thickness on the green strength of the binder jet 3D printing (BJ3DP) WC-12%Co powders,” International Journal of Refractory Metals and Hard Materials, vol. 84, p. 104991, Nov. 2019, doi: 10.1016/J.IJRMHM.2019.104991. [58] A. Basalah, S. Esmaeili, and E. Toyserkani, “On the influence of sintering protocols and layer thickness on the physical and mechanical properties of additive manufactured titanium porous bio-structures,” Journal of Materials Processing Technology, vol. 238, pp. 341–351, Dec. 2016, doi: 10.1016/J.JMATPROTEC.2016.07.037. [59] S.-J. J. Lee, “Powder layer generation for three dimensional printing,” Massachusetts Institute of Technology, 1992. Accessed: Feb. 07, 2022. [Online]. Available: https://dspace.mit.edu/handle/1721.1/12452 [60] S. Cao, Y. Qiu, X. F. Wei, and H. H. Zhang, “Experimental and theoretical investigation on ultra-thin powder layering in three dimensional printing (3DP) by a novel double-smoothing mechanism,” Journal of Materials Processing Technology, vol. 220, pp. 231–242, Jun. 2015, doi: 10.1016/J.JMATPROTEC.2015.01.016. [61] Standards, I.I., and ISO 4324:1977, “Surface active agents - Powders and granules - Measurement of the angle of repose.,” ISO International Standards, 1977. https://www.iso.org/standard/10196.html (accessed Feb. 07, 2022). [62] J. Arag?n, E. Benjumea, D. A. Avila, and S. D. Horta, “Design and manufacture of a mechanical system for teaching the diffraction phenomenon,” Journal of Physics: Conference Series, vol. 1219, no. 1, p. 012007, May 2019, doi: 10.1088/1742-6596/1219/1/012007. [63] R. Freeman, “Measuring the flow properties of consolidated, conditioned and aerated powders — A comparative study using a powder rheometer and a rotational shear cell,” Powder Technology, vol. 174, no. 1–2, pp. 25–33, May 2007, doi: 10.1016/J.POWTEC.2006.10.016. [64] S. Ziegelmeier et al., “An experimental study into the effects of bulk and flow behaviour of laser sintering polymer powders on resulting part properties,” Journal of Materials Processing Technology, vol. 215, no. 1, pp. 239–250, Jan. 2015, doi: 10.1016/J.JMATPROTEC.2014.07.029. [65] S. Spath and H. Seitz, “Influence of grain size and grain-size distribution on workability of granules with 3D printing,” The International Journal of Advanced Manufacturing Technology 2013 70:1, vol. 70, no. 1, pp. 135–144, Aug. 2013, doi: 10.1007/S00170-013-5210-8. [66] W. Du, G. Miao, L. Liu, Z. Pei, and C. Ma, “Binder Jetting Additive Manufacturing of Ceramics: Comparison of Flowability and Sinterability Between Raw and Granulated Powders,” ASME 2019 14th International Manufacturing Science and Engineering Conference, MSEC 2019, vol. 1, Nov. 2019, doi: 10.1115/MSEC2019-2983. [67] M. Moghadasi, W. Du, M. Li, Z. Pei, and C. Ma, “Ceramic binder jetting additive manufacturing: Effects of particle size on feedstock powder and final part properties,” Ceramics International, vol. 46, no. 10, pp. 16966–16972, Jul. 2020, doi: 10.1016/J.CERAMINT.2020.03.280. [68] J. A. Slotwinski, E. J. Garboczi, P. E. Stutzman, C. F. Ferraris, S. S. Watson, and M. A. Peltz, “Characterization of Metal Powders Used for Additive Manufacturing,” J Res Natl Inst Stand Technol, vol. 119, pp. 460–493, 2014, doi: 10.6028/JRES.119.018. [69] L. C. Y. Chan and N. W. Page, “Particle fractal and load effects on internal friction in powders,” Powder Technology, vol. 90, no. 3, pp. 259–266, Mar. 1997, doi: 10.1016/S0032-5910(96)03228-7. [70] B. L. DeCost et al., “Computer Vision and Machine Learning for Autonomous Characterization of AM Powder Feedstocks,” JOM, vol. 69, no. 3, pp. 456–465, Mar. 2017, doi: 10.1007/S11837-016-2226-1. [71] B. L. DeCost and E. A. Holm, “Characterizing powder materials using keypoint-based computer vision methods,” Computational Materials Science, vol. 126, pp. 438–445, Jan. 2017, doi: 10.1016/J.COMMATSCI.2016.08.038. [72] L. N. Smith and P. S. Midha, “Computer simulation of morphology and packing behaviour of irregular particles, for predicting apparent powder densities,” Computational Materials Science, vol. 7, no. 4, pp. 377–383, Mar. 1997, doi: 10.1016/S0927-0256(97)00003-7. [73] H. Chen, Q. Wei, S. Wen, Z. Li, and Y. Shi, “Flow behavior of powder particles in layering process of selective laser melting: Numerical modeling and experimental verification based on discrete element method,” International Journal of Machine Tools and Manufacture, vol. 123, pp. 146–159, Dec. 2017, doi: 10.1016/J.IJMACHTOOLS.2017.08.004. [74] C. Schade, T. Murphy, and Hoeganaes, “DEVELOPMENT OF ATOMIZED POWDERS FOR ADDITIVE MANUFACTURING,” Powder Metallurgy Word Congress, 2014. [75] S. Dawoodbhai and C. T. Rhodes, “The Effect of Moisture on Powder Flow and on Compaction and Physical Stability of Tablets,” http://dx.doi.org/10.3109/03639048909052504, vol. 15, no. 10, pp. 1577–1600, 2008, doi: 10.3109/03639048909052504. [76] C. Hirschberg, C. C. Sun, J. Risbo, and J. Rantanen, “Effects of Water on Powder Flowability of Diverse Powders Assessed by Complimentary Techniques,” Journal of Pharmaceutical Sciences, vol. 108, no. 8, pp. 2613–2620, Aug. 2019, doi: 10.1016/J.XPHS.2019.03.012. [77] A. M. N. Faqih, A. Mehrotra, S. v. Hammond, and F. J. Muzzio, “Effect of moisture and magnesium stearate concentration on flow properties of cohesive granular materials,” International Journal of Pharmaceutics, vol. 336, no. 2, pp. 338–345, May 2007, doi: 10.1016/J.IJPHARM.2006.12.024. [78] P. Klisiewicz, J. A. Roberts, and N. A. Pohlman, “Segregation of titanium powder with polydisperse size distribution: Spectral and correlation analyses,” Powder Technology, vol. 272, pp. 204–210, Mar. 2015, doi: 10.1016/J.POWTEC.2014.11.029. [79] S. Haeri, Y. Wang, O. Ghita, and J. Sun, “Discrete element simulation and experimental study of powder spreading process in additive manufacturing,” Powder Technology, vol. 306, pp. 45–54, Jan. 2017, doi: 10.1016/J.POWTEC.2016.11.002. [80] P. Tang and V. M. Puri, “Methods for Minimizing Segregation: A Review,” http://dx.doi.org/10.1080/02726350490501420, vol. 22, no. 4, pp. 321–337, Oct. 2010, doi: 10.1080/02726350490501420. [81] J. Mosby, S. R. de Silva, and G. G. Enstad, “Segregation of Particulate Materials – Mechanisms and Testers,” KONA Powder and Particle Journal, vol. 14, no. May, pp. 31–43, 1996, doi: 10.14356/KONA.1996008. [82] J. C. Williams, “The segregation of particulate materials. A review,” Powder Technology, vol. 15, no. 2, pp. 245–251, Nov. 1976, doi: 10.1016/0032-5910(76)80053-8. [83] B. Utela, D. Storti, R. Anderson, and M. Ganter, “A review of process development steps for new material systems in three dimensional printing (3DP),” Journal of Manufacturing Processes, vol. 10, no. 2, pp. 96–104, Jul. 2008, doi: 10.1016/J.JMAPRO.2009.03.002. [84] K. Myers, A. Paterson, T. Iizuka, and A. Klein, “The Effect of Print Speed on Surface Roughness and Density Uniformity of Parts Produced Using Binder Jet 3D Printing,” Jan. 2021, doi: 10.20944/PREPRINTS202101.0459.V1. [85] J. Bredt, T. Anderson, and Russel DB, “Three dimensional printing material system and method,” US6610429B2, 2003 Accessed: Mar. 02, 2022. [Online]. Available: https://patents.google.com/patent/US6610429B2/en [86] J. Bredt, S. Clark, and G. Gilchrist, “Three dimensional printing material system and method,” US7087109B2, 2006 Accessed: Mar. 02, 2022. [Online]. Available: https://patents.google.com/patent/US7087109B2/en [87] E. Sachs et al., “Jetting layers of powder and the formation of fine powder beds thereby ,” US6596224B1, 2003 Accessed: Mar. 03, 2022. [Online]. Available: https://patents.google.com/patent/US6596224B1/en [88] B. Khoshnevis, “Selective inhibition of bonding of power particles for layered fabrication of 3-D objects,” US6589471B1, 2003 Accessed: Mar. 03, 2022. [Online]. Available: https://patents.google.com/patent/US6589471B1/en [89] D. McCarthy, “Creating Complex Hollow Metal Geometries Using Additive Manufacturing and Metal Plating,” 2012. Accessed: Mar. 03, 2022. [Online]. Available: https://vtechworks.lib.vt.edu/handle/10919/43530 [90] S. M. Allen and E. M. Sachs, “Three-dimensional printing of metal parts for tooling and other applications,” Metals and Materials 2000 6:6, vol. 6, no. 6, pp. 589–594, 2000, doi: 10.1007/BF03028104. [91] B. D. Kernan, E. M. Sachs, M. A. Oliveira, and M. J. Cima, “Three-dimensional printing of tungsten carbide–10 wt% cobalt using a cobalt oxide precursor,” International Journal of Refractory Metals and Hard Materials, vol. 25, no. 1, pp. 82–94, Jan. 2007, doi: 10.1016/J.IJRMHM.2006.02.002. [92] E. Sachs, M. Cima, P. Williams, D. Brancazio, and J. Cornie, “Three Dimensional Printing: Rapid Tooling and Prototypes Directly from a CAD Model,” Journal of Engineering for Industry, vol. 114, no. 4, pp. 481–488, Nov. 1992, doi: 10.1115/1.2900701. [93] Y. Bai and C. B. Williams, “Binder jetting additive manufacturing with a particle-free metal ink as a binder precursor,” Materials & Design, vol. 147, pp. 146–156, Jun. 2018, doi: 10.1016/J.MATDES.2018.03.027. [94] E. Sachs et al., “Progress on Tooling by 3D Printing; Conformal Cooling, Dimensional Control, Surface Finish and Hardness,” 1997. Accessed: Mar. 03, 2022. [Online]. Available: https://repositories.lib.utexas.edu/handle/2152/70331 [95] J. Yoo, M. J. Cima, S. Khanuja, and S. LastNameE.M., “Structural Ceramic Components by 3D Printing,” 1993. Accessed: Mar. 03, 2022. [Online]. Available: https://repositories.lib.utexas.edu/handle/2152/65035 [96] R. M. Lewis, “Powder binder interactions in 3D inkjet printing,” 2014. Accessed: Mar. 03, 2022. [Online]. Available: https://publications.lib.chalmers.se/records/fulltext/253824/253824.pdf [97] Q. Wei, Y. Wang, W. Chai, Y. Zhang, and X. Chen, “Molecular dynamics simulation and experimental study of the bonding properties of polymer binders in 3D powder printed hydroxyapatite bioceramic bone scaffolds,” Ceramics International, vol. 43, no. 16, pp. 13702–13709, Nov. 2017, doi: 10.1016/J.CERAMINT.2017.07.082. [98] J. G. Bai, K. D. Creehan, and H. A. Kuhn, “Inkjet printable nanosilver suspensions for enhanced sintering quality in rapid manufacturing,” Nanotechnology, vol. 18, no. 18, p. 185701, Apr. 2007, doi: 10.1088/0957-4484/18/18/185701. [99] N. Reis, C. Ainsley, and B. Derby, “Ink-jet delivery of particle suspensions by piezoelectric droplet ejectors,” Journal of Applied Physics, vol. 97, no. 9, p. 094903, Apr. 2005, doi: 10.1063/1.1888026. [100] Q. Liu et al., “To control or to be controlled? Dual roles of CDK2 in DNA damage and DNA damage response,” DNA Repair, vol. 85, p. 102702, Jan. 2020, doi: 10.1016/J.DNAREP.2019.102702. [101] B. Derby and N. Reis, “Inkjet Printing of Highly Loaded Particulate Suspensions,” MRS Bulletin 2003 28:11, vol. 28, no. 11, pp. 815–818, Jan. 2011, doi: 10.1557/MRS2003.230. [102] F. Dini, S. A. Ghaffari, J. Jafar, R. Hamidreza, and S. Marjan, “A review of binder jet process parameters; powder, binder, printing and sintering condition,” https://doi.org/10.1016/j.mprp.2019.05.001, vol. 75, no. 2, pp. 95–100, Nov. 2021, doi: 10.1016/J.MPRP.2019.05.001. [103] B. Derby, “Inkjet Printing of Functional and Structural Materials: Fluid Property Requirements, Feature Stability, and Resolution,” http://dx.doi.org/10.1146/annurev-matsci-070909-104502, vol. 40, pp. 395–414, Jul. 2010, doi: 10.1146/ANNUREV-MATSCI-070909-104502. [104] P. C. Duineveld et al., “Ink-jet printing of polymer light-emitting devices,” Organic Light-Emitting Materials and Devices V, vol. 4464, p. 59, Feb. 2002, doi: 10.1117/12.457460. [105] R. Noguera, M. Lejeune, and T. Chartier, “3D fine scale ceramic components formed by ink-jet prototyping process,” J Eur Ceram Soc, vol. 25, no. 12, pp. 2055–2059, Jan. 2005, doi: 10.1016/J.JEURCERAMSOC.2005.03.223. [106] S. F. Pond, Inkjet technology and product development strategies. 2000. Accessed: Mar. 03, 2022. [Online]. Available: https://scholar.google.com/scholar_lookup?title=Inkjet%20technology%20and%20product%20development%20strategies&author=S.F.%20Pond&publication_year=2000 [107] K. S. Kwon and W. Kim, “A waveform design method for high-speed inkjet printing based on self-sensing measurement,” Sensors and Actuators A: Physical, vol. 140, no. 1, pp. 75–83, Oct. 2007, doi: 10.1016/J.SNA.2007.06.010. [108] E. Sachs, J. Haggerty, M. Cima, and P. Williams, “Three-dimensional printing techniques,” US5204055A, 2003 Accessed: Mar. 03, 2022. [Online]. Available: https://patents.google.com/patent/US5204055A/en [109] I. M. Hutchings, G. D. Martin, and S. D. Hoath, “High speed imaging and analysis of jet and drop formation,” Journal of Imaging Science and Technology, vol. 51, no. 5, pp. 438–444, Sep. 2007, doi: 10.2352/J.IMAGINGSCI.TECHNOL.(2007)51:5(438). [110] N. D. Parab et al., “Real time observation of binder jetting printing process using high-speed X-ray imaging,” Scientific Reports 2019 9:1, vol. 9, no. 1, pp. 1–10, Feb. 2019, doi: 10.1038/s41598-019-38862-7. [111] M. Salehi, M. Gupta, S. Maleksaeedi, and N. Sharon, Inkjet based 3D additive manufacturing of metals. Materials Research Forum LLC., 2018. Accessed: Mar. 03, 2022. [Online]. Available: https://books.google.com/books?hl=zh-TW&lr=&id=ppRLDwAAQBAJ&oi=fnd&pg=PP6&ots=qCrpiavuI4&sig=PNxDZgHPM0krymqndLDI-WjCBnI [112] H. Miyanaji, M. Orth, J. M. Akbar, and L. Yang, “Process development for green part printing using binder jetting additive manufacturing,” Frontiers of Mechanical Engineering 2018 13:4, vol. 13, no. 4, pp. 504–512, May 2018, doi: 10.1007/S11465-018-0508-8. [113] M. Lanzetta and E. Sachs, “Improved surface finish in 3D printing using bimodal powder distribution,” Rapid Prototyping Journal, vol. 9, no. 3, pp. 157–166, 2003, doi: 10.1108/13552540310477463/FULL/PDF. [114] O. A. Basaran, “Small-scale free surface flows with breakup: Drop formation and emerging applications,” AIChE Journal, vol. 48, no. 9, pp. 1842–1848, Sep. 2002, doi: 10.1002/AIC.690480902. [115] T. Colton, J. Liechty, A. Mclean, and N. Crane, “Influence of drop velocity and droplet spacing on the equilibrium saturation level in binder jetting,” 2021, doi: 10.20944/preprints202101.0496.v1. [116] P. R. Baker, “Three dimensional printing with fine metal powders,” 1997. Accessed: Mar. 03, 2022. [Online]. Available: https://dspace.mit.edu/handle/1721.1/46287 [117] S. Maleksaeedi, G. K. Meenashisundaram, S. Lu, M. Salehi, and W. Jun, “Hybrid Binder to Mitigate Feed Powder Segregation in the Inkjet 3D Printing of Titanium Metal Parts,” Metals 2018, Vol. 8, Page 322, vol. 8, no. 5, p. 322, May 2018, doi: 10.3390/MET8050322. [118] H. Zhao, C. Ye, Z. Fan, and C. Wang, “3D printing of CaO-based ceramic core using nanozirconia suspension as a binder,” J Eur Ceram Soc, vol. 37, no. 15, pp. 5119–5125, Dec. 2017, doi: 10.1016/J.JEURCERAMSOC.2017.06.050. [119] Y. Bai and C. B. Williams, “Binder jetting additive manufacturing with a particle-free metal ink as a binder precursor,” Materials & Design, vol. 147, pp. 146–156, Jun. 2018, doi: 10.1016/J.MATDES.2018.03.027. [120] Y. Bai and C. B. Williams, “The effect of inkjetted nanoparticles on metal part properties in binder jetting additive manufacturing,” Nanotechnology, vol. 29, no. 39, p. 395706, Jul. 2018, doi: 10.1088/1361-6528/AAD0BB. [121] Y. Bai and C. B. Williams, “Binderless Jetting: Additive Manufacturing of Metal Parts via Jetting Nanoparticles,” 2017. Accessed: Mar. 03, 2022. [Online]. Available: https://repositories.lib.utexas.edu/handle/2152/89818 [122] Y. Bai, C. Wall, H. Pham, A. Esker, and C. B. Williams, “Characterizing Binder-Powder Interaction in Binder Jetting Additive Manufacturing Via Sessile Drop Goniometry,” Journal of Manufacturing Science and Engineering, Transactions of the ASME, vol. 141, no. 1, Jan. 2019, doi: 10.1115/1.4041624/367169. [123] S. Agland and S. M. Iveson, “The impact of liquid drops on powder bed surfaces,” CHEMECA, vol. 99, pp. 25–29, 1999, Accessed: Mar. 03, 2022. [Online]. Available: https://search.informit.org/doi/abs/10.3316/informit.946712245425974 [124] S. E. Bechtel, D. B. Bogy, and F. E. Talke, “Impact of a Liquid Drop Against a Flat Surface,” IBM Journal of Research and Development, vol. 25, no. 6, pp. 963–971, Apr. 2010, doi: 10.1147/RD.256.0963. [125] M. Pasandideh-Fard, Y. M. Qiao, S. Chandra, and J. Mostaghimi, “Capillary effects during droplet impact on a solid surface,” Physics of Fluids, vol. 8, no. 3, p. 650, Sep. 1998, doi: 10.1063/1.868850. [126] T. Fan, “Droplet-powder impact interaction in three dimensional printing,” 1996. Accessed: Mar. 03, 2022. [Online]. Available: https://dspace.mit.edu/bitstream/handle/1721.1/10948/35748850-MIT.pdf?sequence=2 [127] X. Lv, F. Ye, L. Cheng, S. Fan, and Y. Liu, “Binder jetting of ceramics: Powders, binders, printing parameters, equipment, and post-treatment,” Ceramics International, vol. 45, no. 10, pp. 12609–12624, Jul. 2019, doi: 10.1016/J.CERAMINT.2019.04.012. [128] M. Salehi, S. Maleksaeedi, S. M. L. Nai, G. K. Meenashisundaram, M. H. Goh, and M. Gupta, “A paradigm shift towards compositionally zero-sum binderless 3D printing of magnesium alloys via capillary-mediated bridging,” Acta Materialia, vol. 165, pp. 294–306, Feb. 2019, doi: 10.1016/J.ACTAMAT.2018.11.061. [129] M. L. M. Oostveen, G. M. H. Meesters, and J. R. van Ommen, “Quantification of powder wetting by drop penetration time,” Powder Technology, vol. 274, pp. 62–66, Apr. 2015, doi: 10.1016/J.POWTEC.2014.09.021. [130] H. N. Emady, D. Kayrak-Talay, and J. D. Litster, “Modeling the granule formation mechanism from single drop impact on a powder bed,” Journal of Colloid and Interface Science, vol. 393, no. 1, pp. 369–376, Mar. 2013, doi: 10.1016/J.JCIS.2012.10.038. [131] H. N. Emady, D. Kayrak-Talay, W. C. Schwerin, and J. D. Litster, “Granule formation mechanisms and morphology from single drop impact on powder beds,” Powder Technology, vol. 212, no. 1, pp. 69–79, Sep. 2011, doi: 10.1016/J.POWTEC.2011.04.030. [132] H. Miyanaji, N. Momenzadeh, and L. Yang, “Effect of powder characteristics on parts fabricated via binder jetting process,” Rapid Prototyping Journal, vol. 25, no. 2, pp. 332–342, Feb. 2019, doi: 10.1108/RPJ-03-2018-0069/FULL/PDF. [133] H. Miyanaji, N. Momenzadeh, and L. Yang, “Effect of printing speed on quality of printed parts in Binder Jetting Process,” Additive Manufacturing, vol. 20, pp. 1–10, Mar. 2018, doi: 10.1016/J.ADDMA.2017.12.008. [134] A. Butscher, M. Bohner, N. Doebelin, L. Galea, O. Loeffel, and R. M?ller, “Moisture based three-dimensional printing of calcium phosphate structures for scaffold engineering,” Acta Biomaterialia, vol. 9, no. 2, pp. 5369–5378, Feb. 2013, doi: 10.1016/J.ACTBIO.2012.10.009. [135] B. R. Utela, D. Storti, R. L. Anderson, and M. Ganter, “Development process for custom three-dimensional printing (3DP) material systems,” Journal of Manufacturing Science and Engineering, Transactions of the ASME, | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83912 | - |
| dc.description.abstract | 近年來,3D列印技術受到相當多關注,由於3D列印技術無須事先生產模具,可簡化製造程序、降低製作成本、減少材料浪費,常被應用在客製化製造、快速建模、航太引擎生產、藝術品創作中。黏著劑噴塗型3D列印,Binder-jetting 3D printing (又稱粉末式3D列印,Powder-bed 3D printing)的特色在於列印時可使用自材支撐,不須另物設計支撐結構,因此可以列印較為複雜的結構。另外,此技術也是少數可以列印全彩物件的技術,透過將彩色墨水添加於黏著劑中,列印過程中便可以透過CMYK的組合來噴塗彩色的成品。黏著劑噴塗型3D列印之成品由於孔隙較大,因此其機械強度較低,通常需要經過耗時的後處理程序,將成品浸潤到樹脂內並利用光或熱進行固化才能得到足夠的強度。因此本文將發展新的列印程序來縮短以及簡化此技術的製作時間,同時得到高強度的成品。 本研究中,開發了兩種嶄新的列印系統,以縮短或免去傳統粉末式3D列印中耗時的後處理程序。在第2章中,本研究中使用澱粉之糊化特性,配合微波的均勻快速加熱,發展出嶄新且迅速的後處理程序。在第3章、第4章開發反應性印刷噴墨的粉末式3D列印技術。在第3章中,透過計算流體力學提出使多成分液體在粉末床中混合效果大幅上升的策略,而在第4章當中,利用粉末式3D印表機的多噴頭,同時噴塗多種反應性墨水於石膏粉末床中,使成型過程中同時進行交聯黏合,不需要後處理便能得到高強度物件。此外,噴塗的墨水也能使粉體進行進一步的功能化反應。 最後,在第5章當中總結了本研究的成果,並對黏著劑噴塗成型3D列印的創新黏合程序進行評估。未來可應用於快速成型、牙模與醫療材料的商業化製造。 | zh_TW |
| dc.description.abstract | In recent years, 3D printing technology has received considerable attention. 3D printing technology can skip the molding process and has the advantages of simpler manufacturing procedure, lower cost, and reducing material waste. It is often used in customized manufacturing, rapid modeling, aerospace engine production, and art creation. Binder jetting 3D printing (also known as powder-bed 3D printing) is one of the few technologies that can print full color objects. The binder-jetting 3D printing products have low mechanical strength due to their large porosity, and usually require the time-consuming post-treatment to soak the green product into the resin and cure it with light or heat. Therefore, this study develops novel methods to reduce the manufacturing time, to simplify the processes, and to obtain high strength objects. In this study, two novel printing systems were developed to shorten or eliminate the time-consuming post-processing process in traditional powder-based 3D printing. In Chapter 2, a new and rapid post-processing process is developed using the gelatinization characteristic of starch with uniform and rapid microwave heating. In Chapters 3 and 4, a reactive binder jetting 3D printing technology is developed. In Chapter 3, a strategy to increase the mixing effect of multi-component liquids in the powder bed is proposed by calculating fluid mechanics, and in Chapter 4, the multiple nozzles of the binder-jetting 3D printer are used to simultaneously spray multiple reactive inks into the gypsum powder bed, allowing cross-linking and bonding during the molding process, resulting in high-strength objects without post-processing. In addition, the sprayed inks also enable further functionalization of the powder. Finally, in chapter 5, we conclude and summarize the achievements of this research. The innovative binding process of powder-bed 3D printing is evaluated and can be applied to business development of rapid prototyping, dental and medical applications in the future. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T21:23:14Z (GMT). No. of bitstreams: 1 U0001-0807202216081800.pdf: 9243174 bytes, checksum: 1324d9fd5995ee60f7f7167ef2aad34d (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 口試委員審定書 i 誌謝 ii 中文摘要 iv Abstract v 目錄 vii 圖目錄 x 表目錄 xvi 第1章 緒論 1 1.1 前言 1 1.2 3D列印技術 2 1.2.1 材料擠製成型(Material Extrusion) 2 1.2.2 光固化技術(Vat PhotoPolymerization) 3 1.2.3 粉體熔融成型技術(Powder Bed Fusion) 4 1.2.4 黏著劑噴塗成型(Binder Jetting) 5 1.2.5 材料噴塗成型(Material Jetting) 6 1.2.6 疊層製造成型(Laminated Object Manufacturing,LOM) 7 1.2.7 指向性能量沉積技術(Directed Energy Deposition,DED) 8 1.3 影響黏著劑噴塗成型列印品質之因素 9 1.3.1 粉末性質 9 1.3.2 黏著劑 21 1.3.3 列印參數設置 32 1.3.4 後處理程序 41 1.4 論文組織架構 44 第2章 澱粉粉末式3D列印之快速後處理程序 46 2.1 介紹 46 2.2 材料與實驗方法 48 2.3 結果與討論 49 2.3.1 粉末配方 49 2.3.2 微波加熱澱粉糊化 51 2.3.3 戊二醛交聯澱粉改質 57 2.3.4 噴塗戊二醛黏著劑 61 2.3.5 列印樣品演示 64 2.4 結論 66 第3章 利用親疏水性差異之顆粒交替排列增進雙成分液滴於粉末床中之混合 68 3.1 介紹 68 3.2 數值方法 70 3.2.1 參數與模型設置 70 3.2.2 統御方程式與邊界條件 72 3.2.3 數值驗證 74 3.3 結果與討論 77 3.3.1 液滴撞擊顆粒的混合機制與階段 77 3.3.2 墨水性質對於液滴混和的影響 82 3.3.3 顆粒的堆疊模式與親疏水性 86 3.3.4 液滴的偏移撞擊 90 3.4 結論 94 第4章 粉末式3D列印之反應性黏著劑增進強度與功能化之應用 95 4.1 介紹 95 4.2 材料與實驗方法 98 4.3 結果與討論 98 4.3.1 海藻酸鈉黏著劑噴塗性測試 98 4.3.2 海藻酸鈉交聯之物理性質與反應當量 100 4.3.3 正離子價數對模造試樣之性質影響 106 4.3.4 機台噴印樣品與耐水度測試 109 4.3.5 石膏粉末材料試樣的功能化 111 4.4 結論 113 第5章 總結 115 第6章 建議與未來展望 117 參考文獻 119 附錄 157 | |
| dc.language.iso | zh-TW | |
| dc.subject | 黏著劑噴塗型3D列印 | zh_TW |
| dc.subject | 澱粉糊化 | zh_TW |
| dc.subject | 粉體堆疊 | zh_TW |
| dc.subject | 液體混合 | zh_TW |
| dc.subject | 反應性液滴 | zh_TW |
| dc.subject | Binder jetting 3D printing | en |
| dc.subject | reactive inks | en |
| dc.subject | liquid mixing | en |
| dc.subject | powder stacking | en |
| dc.subject | starch gelatinization | en |
| dc.title | 粉末式3D列印之創新黏合程序 | zh_TW |
| dc.title | Innovative Binding Processes of Powder-bed 3D Printing | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 陳立仁(Li-Jen Chen),郭修伯(Hsiu-Po Kuo),鍾添東(Tien-Tung Chung),葛明德(Ming-Der Ger),陳建樺(Chien-Hua Chen) | |
| dc.subject.keyword | 黏著劑噴塗型3D列印,澱粉糊化,粉體堆疊,液體混合,反應性液滴, | zh_TW |
| dc.subject.keyword | Binder jetting 3D printing,starch gelatinization,powder stacking,liquid mixing,reactive inks, | en |
| dc.relation.page | 160 | |
| dc.identifier.doi | 10.6342/NTU202201353 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2022-07-11 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0807202216081800.pdf 未授權公開取用 | 9.03 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
