Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 動物科學技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83908
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林原佑(Yuan-Yu Lin)
dc.contributor.authorWen-Yuan Yangen
dc.contributor.author楊雯媛zh_TW
dc.date.accessioned2023-03-19T21:23:03Z-
dc.date.copyright2022-07-18
dc.date.issued2022
dc.date.submitted2022-07-11
dc.identifier.citation黃亭維。2021。建立篩選改善非酒精性脂肪肝之機能性成分的雞隻模式。碩士。國立臺灣大學, 臺北。 廖珮馨。2021。飼糧中添加靈芝子實體及北蟲草對雞隻脂肪肝之影響。碩士。國立臺灣大學, 臺北。 Alemi, F., Poole, D.P., Chiu, J., Schoonjans, K., Cattaruzza, F., Grider, J.R., Bunnett, N.W., and Corvera, C.U. (2013). The receptor TGR5 mediates the pro- kinetic actions of intestinal bile acids and is required for normal defecation in mice. Gastroenterology 144, 145–154. Ali, A. H., Tabibian, J. H. and Lindor, K. D. (2017). Update on pharmacotherapies for cholestatic liver disease. Hepatology Communications, 1(1), 7-17. Aranha, M. M., C. Pinto, H. Costa, A. Silva, I. B. M. Camilo, M. E. Moura, M. C. Rodrigues, and C. M. Cec?lia. 2008. Bile acid levels are increased in the liver of patients with steatohepatitis. Eur. J. Gastroenterol. Hepatol. 20: 519-525. doi:10.1097/MEG.0b013e3282f4710a Argenzio R.A. (2004). Secretions of stomach and accessory glands. In: Reece W.O., editor. Dukes Physiology of Domestic Animals. 12th ed. Cornell University Press; Ithaca, NY, USA: London, UK: pp. 405–418. Argenzio, R. A. (2004). General functions of gastrointestinal tract and yours control. Dukes’ Physiology of Domestic Animals. Ayala, I., Castillo, A.M., Adanez, G., Fernandez-Rufete, A., Perez, B.G. and Castells, M.T. (2009). Hyperlipidemic chicken as a model of non-alcoholic steatohepatitis. Exp Biol Med (Maywood) 234, 10-16. Ayo, J.O., Obidi, J.A. and Rekwot, P.I. (2011). Effects of heat stress on the well-being, fertility, and hatchability of chickens in the northern Guinea savannah zone of Nigeria: a review. ISRN Vet Sci 2011, 838606. Bansal, M., Fu, Y., Alrubaye, B., Abraha, M., Almansour, A., Gupta, A. and Sun, X. (2020). A secondary bile acid from microbiota metabolism attenuates ileitis and bile acid reduction in subclinical necrotic enteritis in chickens. Journal of Animal Science and Biotechnology, 11(1), 1-10. doi:10.1186/s40104-020-00441-6 Baumeier, C., Schluter, L., Saussenthaler, S., Laeger, T., Rodiger, M., Alaze, S.A., Fritsche, L., Haring, H.U., Stefan, N., Fritsche, A., et al. (2017). Elevated hepatic DPP4 activity promotes insulin resistance and non-alcoholic fatty liver disease. Mol Metab 6, 1254- 1263. Beach, A., Richard, V. R., Leonov, A., Burstein, M. T., Bourque, S. D., Koupaki, O. and Titorenko, V. I. (2013). Mitochondrial membrane lipidome defines yeast longevity. Aging, 5(7), 551. Bedossa, P. (2017). Pathology of non-alcoholic fatty liver disease. Liver Int 37 Suppl 1, 85- 89. Bell, G.D., Whitney B, Dowling RH (1972) Gallstone dissolution in man using chenodeoxycholic acid. Lancet 2(7789):1213–1216 Beuers, U., Denk, G. U., Soroka, C. J., Wimmer, R., Rust, C., Paumgartner, G. and Boyer, J. L. (2003). Taurolithocholic acid exerts cholestatic effects via phosphatidylinositol 3-kinase-dependent mechanisms in perfused rat livers and rat hepatocyte couplets. Journal of Biological Chemistry, 278(20), 17810-17818. doi:10.1074/jbc.M209898200 Beuers, U., Probst, I., Soroka, C., Boyer, J. L., Kullak?Ublick, G. A. and Paumgartner, G. (1999). Modulation of protein kinase C by taurolithocholic acid in isolated rat hepatocytes. Hepatology, 29(2), 477-482. doi:10.1002/hep.510290227 Bird, S. (1946). The influence of ingested estrogens on feed intake, metabolic rate and lipemia in male fowl. Endocrinology, 39(2), 149-154. Brunt, E.M., Kleiner, D.E., Wilson, L.A., Belt, P., Neuschwander-Tetri, B.A., and Network, N.C.R. (2011). Nonalcoholic fatty liver disease (NAFLD) activity score and the histopathologic diagnosis in NAFLD: distinct clinicopathologic meanings. Hepatology 53, 810-820. Butler, E.J. (1976). Fatty liver diseases in the domestic fowl--a review. Avian Pathol 5, 1-14. Buzzetti, E., Pinzani, M., and Tsochatzis, E.A. (2016). The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism 65, 1038-1048. Cai, S. Y., Xiong, L., Wray, C. G., Ballatori, N. and Boyer, J. L. The farnesoid X receptor FXRα/NR1H4 acquired ligand specificity for bile salts late in vertebrate evolution. Am. J. Physiol. Regul. Integr. Comp. Physiol. 293, R1400–R1409 (2007). Carey, M. C. and Small, D. M. (1978). The physical chemistry of cholesterol solubility in bile. Relationship to gallstone formation and dissolution in man. The Journal of clinical investigation, 61(4), 998-1026. Chen, C.Y., Chen, Y.J., Ding, S.T. and Lin, Y.Y. (2018). Expression profile of adiponectin and adiponectin receptors in high-fat diet feeding chickens. J Anim Physiol Anim Nutr (Berl) 102, 1585-1592. Cherian G., Holsonbake T.B., Goeger M.P. and Bildfell R. Dietary CLA alters yolk and tissue FA composition and hepatic histopathology of laying hens. Lipids. 2002;37:751–757. doi: 10.1007/s11745-002-0957-4. Chilliard, Y. (1993). Dietary fat and adipose tissue metabolism in ruminants, pigs, and rodents: a review. J Dairy Sci 76, 3897-3931. Chin T.Y., Quebbemann A.J. Quantitation of renal uric acid synthesis in the chicken. Am. J. Physiol. 1987;234:F446–F451. doi: 10.1152/ajprenal.1978.234.5.F446. Choi, Y.I., Ahn, H.J., Lee, B.K., Oh, S.T., An, B.K., and Kang, C.W. (2012). Nutritional and Hormonal Induction of Fatty Liver Syndrome and Effects of Dietary Lipotropic Factors in Egg-type Male Chicks. Asian-Australas J Anim Sci 25, 1145-1152. Choi, Y.I., Ahn, H.J., Lee, B.K., Oh, S.T., An, B.K., and Kang, C.W. (2012). Nutritional and Hormonal Induction of Fatty Liver Syndrome and Effects of Dietary Lipotropic Factors in Egg-type Male Chicks. Asian-Australas J Anim Sci 25, 1145-1152. Cipriani, S., Mencarelli, A., Palladino, G. and Fiorucci, S. (2010). FXR activation reverses insulin resistance and lipid abnormalities and protects against liver steatosis in Zucker (fa/fa) obese rats [S]. Journal of lipid research, 51(4), 771-784. Conarello, S.L., Li, Z., Ronan, J., Roy, R.S., Zhu, L., Jiang, G., Liu, F., Woods, J., Zycband, E., Moller, D.E., et al. (2003). Mice lacking dipeptidyl peptidase IV are protected against obesity and insulin resistance. Proc Natl Acad Sci U S A 100, 6825-6830. Corbin, K. D., & Zeisel, S. H. (2012). Choline metabolism provides novel insights into non-alcoholic fatty liver disease and its progression. Current opinion in gastroenterology, 28(2), 159. doi:10.1097/MOG.0b013e32834e7b4b Cornelius, C.E. (1980). 6 - Liver Function. In Clinical Biochemistry of Domestic Animals (Third Edition), J.J. Kaneko, ed. (Academic Press), pp. 201-257. Datar, S. P. and Bhonde, R. R. (2011). Modeling chick to assess diabetes pathogenesis and treatment. The review of diabetic studies: RDS, 8(2), 245. De Fabiani, E. et al. Coordinated control of cholesterol catabolism to bile acids and of gluconeogenesis via a novel mechanism of transcription regulation linked to the fasted-to-fed cycle. J. Biol. Chem. 278, 39124–39132 (2003). Di Gregorio, M. C., Cautela, J., & Galantini, L. (2021). Physiology and physical chemistry of bile acids. International journal of molecular sciences, 22(4), 1780. Downes, M. et al. A chemical, genetic, and structural analysis of the nuclear bile acid receptor FXR. Mol. Cell 11, 1079–1092 (2003). Du, Y., Liu, L., He, Y., Dou, T., Jia, J., & Ge, C. J. B. P. S. (2020). Endocrine and genetic factors affecting egg laying performance in chickens: a review. British Poultry Science, 61(5), 538-549. Evans, M. J., Mahaney, P. E., Zhang, S., Gantan, E., Borges-Marcucci, L., Lai, K. and Harnish, D. C. (2007). A synthetic farnesoid X receptor agonist protects against diet-induced dyslipidemia. Fan, M., Wang, X., Xu, G., Yan, Q. and Huang, W. (2015). Bile acid signaling and liver regeneration. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 1849(2), 196-200. doi:10.1016/j.bbagrm.2014.05.021 Fang, Y., Han, S. I., Mitchell, C., Gupta, S., Studer, E., Grant, S. and Dent, P. (2004). Bile acids induce mitochondrial ROS, which promote activation of receptor tyrosine kinases and signaling pathways in rat hepatocytes. Hepatology, 40(4), 961-971. Ferslew, B. C., G. Xie, C. K. Johnston, M. Su, P. W. Stewart, W. Jia, K.L.R. Brouwer and A. S. Barritt. 2015. Altered bile acid metabolome in patients with nonalcoholic steatohepatitis. Dig. Dis. Sci. 60 (11):3318–3328. doi: 10.1007/s10620-015-3776-8. Fu, Z. D., Csanaky, I. L. and Klaassen, C. D. (2012). Gender-divergent profile of bile acid homeostasis during aging of mice. PloS one, 7(3), e32551. Gadaleta, R. M., van Mil, S. W., Oldenburg, B., Siersema, P. D., Klomp, L. W. and van Erpecum, K. J. (2010). Bile acids and their nuclear receptor FXR: relevance for hepatobiliary and gastrointestinal disease. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1801(7), 683-692. Han, S. I., Studer, E., Gupta, S., Fang, Y., Qiao, L., Li, W. and Dent, P. (2004). Bile acids enhance the activity of the insulin receptor and glycogen synthase in primary rodent hepatocytes. Hepatology, 39(2), 456-463. Harms, M. H., van Buuren, H. R., Corpechot, C., Thorburn, D., Janssen, H. L., Lindor, K. D. and van der Meer, A. J. (2019). Ursodeoxycholic acid therapy and liver transplant-free survival in patients with primary biliary cholangitis. Journal of Hepatology, 71(2), 357-365. Hermier, D., Forgez, P., Williams, J. and Chapman, M.J. (1989). Alterations in plasma lipoproteins and apolipoproteins associated with estrogen-induced hyperlipidemia in the laying hen. Eur J Biochem 184, 109-118. Hofmann, A. F. (2004). Detoxification of lithocholic acid, a toxic bile acid: relevance to drug hepatotoxicity. Drug metabolism reviews, 36(3-4), 703-722. Hooper, L. V., Midtvedt, T. and Gordon, J. I. (2002). How host-microbial interactions shape the nutrient environment of the mammalian intestine. Annual review of nutrition, 22(1), 283-307. doi: 10.1146/annurev.nutr.22.011602.092259 Huang, F., Zheng, X., Ma, X., Jiang, R., Zhou, W., Zhou, S., and Jia, W. (2019). Theabrownin from Pu-erh tea attenuates hypercholesterolemia via modulation of gut microbiota and bile acid metabolism. Nature communications, 10(1), 1-17. Inagaki, T., Moschetta, A., Lee, Y. K., Peng, L., Zhao, G., Downes, M. and Kliewer, S. A. (2006). Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor. Proceedings of the National Academy of Sciences, 103(10), 3920-3925. Jaccoby, S., Arnon, E., Snapir, N. and Robinzon, B. (1995). Effects of estradiol and tamoxifen on feeding, fattiness, and some endocrine criteria in hypothalamic obese hens. Pharmacology Biochemistry and Behavior, 50(1), 55-63. Janssen, T. H., S. Katiraei, W. Dijk, L. Boutens, N. V. D. Bolt, Z. Wang, J. M. Brown, S. L. Hazen, S. Mandard, R. S. Sverdlov, F. Kuipers, K. W. Dijk, J. Vervoort, R. Stienstra, G. J. E. J. Hooiveld and S. Kersten. 2017. Modulation of the gut microbiota impacts non-alcoholic fatty liver disease: a potential role for bile acids. J. Lipid Res. 58:1300-1416. doi: 10.1194/jlr.M0757 Jewers, K. (1990). Mycotoxins and their effect on poultry production. Options M?diterran?ennes, 7, 195-202. Jiang, W., Wu, N., Wang, X., Chi, Y., Zhang, Y., Qiu, X., Y. Hu, J. Li and Liu, Y. (2015). Dysbiosis gut microbiota associated with inflammation and impaired mucosal immune function in intestine of humans with non-alcoholic fatty liver disease. Scientific reports, 5(1), 1-7. Jiao, N., S. S. Baker, A. Chapa-Rodriguez, W. Liu, C. A. Nugent, M. Tsompana, and R. Zhu. 2018. Suppressed hepatic bile acid signaling despite elevated production of primary and secondary bile acids in NAFLD. Gut 67: 1881-1891. doi: 10.1136/gutjnl-2017-314307 Julian, R.J. (2005). Production and growth related disorders and other metabolic diseases of poultry--a review. Vet J 169, 350-369. Keitel, V. and Ha ?ussinger, D. (2012). Perspective: TGR5 (Gpbar-1) in liver physiology and disease. Clin. Res. Hepatol. Gastroenterol. 36, 412–419. Keitel, V., Donner, M., Winandy, S., Kubitz, R. and Ha ?ussinger, D. (2008). Expression and function of the bile acid receptor TGR5 in Kupffer cells. Biochem. Biophys. Res. Commun. 372, 78–84. Klasing, K. C. (1998). Comparative avian nutrition. Cab International. Kremoser C, Hambruch E, Deuschle U, Kinzel O, Burnet M, Yoneyama H (2011) Novel FXR agonists with potent lipid lowering, insulin sensitising, anti-inflammatory and anti-fibrotisation effects in mouse models of metabolic syndrome and NASH. J Hepatol 54:S44 Krogdahl, ?. (1985). Digestion and absorption of lipids in poultry. The Journal of nutrition, 115(5), 675-685. Kwon, I., Jun, D.W. and Moon, J.H. (2019). Effects of Moderate Alcohol Drinking in Patients with Nonalcoholic Fatty Liver Disease. Gut Liver 13, 308-314. LeBlanc, M. J., Gavino, V., P?rea, A., Yousef, I. M., L?vy, E. and Tuchweber, B. (1998). The role of dietary choline in the beneficial effects of lecithin on the secretion of biliary lipids in rats. Biochimica et Biophysica Acta (BBA)-Lipids and Lipid Metabolism, 1393(2-3), 223-234. Leiss, O. and von Bergmann, K. Different effects of chenodeoxycholic acid and ursodeoxycholic acid on serum lipoprotein concentrations in patients with radiolucent gallstones. Scand. J. Gastroenterol. 17, 587–592 (1982). Li, J. and Dawson, P. A. (2019). Animal models to study bile acid metabolism. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1865(5), 895-911. Li, T. and Apte, U. (2015). Bile acid metabolism and signaling in cholestasis, inflammation, and cancer. Advances in pharmacology, 74, 263-302. doi:10.1016/bs.apha.2015.04.003 Liles, J. T., Karnik, S., Hambruch, E., Kremoser, C., Birkel, M., Watkins, W. J. and French, D. (2016). FXR agonism by GS-9674 decreases steatosis and fibrosis in a murine model of NASH. Journal of Hepatology, 2(64), S169. Lin, C. W., Huang, T. W., Peng, Y. J., Lin, Y. Y., Mersmann, H. J. and Ding, S. T. (2021). A novel chicken model of fatty liver disease induced by high cholesterol and low choline diets. Poultry Science, 100(3), 100869. Liu, Y., Binz, J., Numerick, M. J., Dennis, S., Luo, G., Desai, B. and Jones, S. A. (2003). Hepatoprotection by the farnesoid X receptor agonist GW4064 in rat models of intra-and extrahepatic cholestasis. The Journal of clinical investigation, 112(11), 1678-1687. Pellicciari, R., Costantino, G. and Fiorucci, S. Farnesoid X receptor: from structure to potential clinical applications. J. Med. Chem. 48, 5383–5403 (2005). Lumeij, J.T. and Westerhof, I. (1987). Blood chemistry for the diagnosis of hepatobiliary disease in birds. A review. Vet Q 9, 255-261. Ma, K., Saha, P. K., Chan, L. and Moore, D. D. Farnesoid X receptor is essential for normal glucose homeostasis. J. Clin. Invest. 116, 1102–1109 (2006). Ma, J., Hong, Y., Zheng, N., Xie, G., Lyu, Y., Gu, Y. and Li, H. (2020). Gut microbiota remodeling reverses aging-associated inflammation and dysregulation of systemic bile acid homeostasis in mice sex-specifically. Gut Microbes, 11(5), 1450-1474. Makashima M., Lu T. T., Xie W., Whitfield G. K., Domoto H., Evans R. M., Haussler M. R., Mangelsdorf D. J. Vitamin D receptor as an intestinal bile acid sensor. Science 2002; 296: 1313–1316 doi:10.1126/science.107047 Maloney, P. R., Parks, D. J., Haffner, C. D., Fivush, A. M., Chandra, G., Plunket, K. D. and Willson, T. M. (2000). Identification of a chemical tool for the orphan nuclear receptor FXR. Journal of medicinal chemistry, 43(16), 2971-2974. Maruyama, T., Tanaka, K., Suzuki, J., Miyoshi, H., Harada, N., Nakamura, T., Miyamoto, Y., Kanatani, A. and Tamai, Y. (2006). Targeted disruption of G protein-coupled bile acid receptor 1 (Gpbar1/M-Bar) in mice. J. Endocrinol. 191, 197–205. Meijering, A. (1979). Fatty Liver Syndrome in Laying Hens—An Attempt to Review. World’s Poultry Science Journal, 35(02), 79–94. doi:10.1079/wps19790007 Moschetta, A., Xu, F., Hagey, L. R., van Berge-Henegouwen, G. P., Van Erpecum, K. J., Brouwers, J. F. and Hofmann, A. F. (2005). A phylogenetic survey of biliary lipids in vertebrates1. Journal of Lipid Research, 46(10), 2221-2232. Nafikov, R.A. and Beitz, D.C. (2007). Carbohydrate and lipid metabolism in farm animals. J Nutr 137, 702-705. Nargis, T. and Chakrabarti, P. (2018). Significance of circulatory DPP4 activity in metabolic diseases. IUBMB Life 70, 112-119. Nishigori, H., Tomura, H., Tonooka, N., Kanamori, M., Yamada, S., Sho, K. and Takeda, J. (2001). Mutations in the small heterodimer partner gene are associated with mild obesity in Japanese subjects. Proceedings of the National Academy of Sciences, 98(2), 575-580. Niu, L., Geyer, P. E., Wewer Albrechtsen, N. J., Gluud, L. L., Santos, A., Doll, S. and Mann, M. (2019). Plasma proteome profiling discovers novel proteins associated with non?alcoholic fatty liver disease. Molecular systems biology, 15(3), e8793. Okun, R., Goldstein, L. I., Van Gelder, G. A., Goldenthal, E. I., Wazeter, F. X., Giel, R. G., and Kalser, S. C. (1982). National Cooperative Gallstone Study: nonprimate toxicology of chenodeoxycholic acid. Journal of Toxicology and Environmental Health, Part A Current Issues, 9(5-6), 727-741. Parker, B. J., Wearsch, P. A., Veloo, A. and Rodriguez-Palacios, A. (2020). The genus Alistipes: gut bacteria with emerging implications to inflammation, cancer, and mental health. Frontiers in immunology, 11, 906. Pathak, P., Helsley, R. N., Brown, A. L., Buffa, J. A., Choucair, I., Nemet, I. and Brown, J. M. (2020). Small molecule inhibition of gut microbial choline trimethylamine lyase activity alters host cholesterol and bile acid metabolism. American Journal of Physiology-Heart and Circulatory Physiology, 318(6), H1474-H1486. doi:10.1152/ajpheart.00584.2019 Pearson, A.W. and Butler, E.J. (1978). The oestrogenised chick as an experimental model for fatty liver-haemorrhagic syndrome in the fowl. Res Vet Sci 24, 82-86. Polin, D. and Wolford, J.H. (1977). Role of estrogen as a cause of fatty liver hemorrhagic syndrome. J Nutr 107, 873-886. Pols, T.W., Nomura, M., Harach, T., Lo Sasso, G., Oosterveer, M.H., Thomas, C., Rizzo, G., Gioiello, A., Adorini, L., Pellicciari, R., et al. (2011a). TGR5 activation inhibits atherosclerosis by reducing macrophage inflammation and lipid loading. Cell Metab. 14, 747–757. Pols, T.W., Noriega, L.G., Nomura, M., Auwerx, J., and Schoonjans, K. (2011b). The bile acid membrane receptor TGR5: a valuable metabolic target. Dig. Dis. 29, 37–44. Portincasa, P., Di Ciaula, A., Bonfrate, L. and Wang, D. Q. (2012). Therapy of gallstone disease: What it was, what it is, what it will be. World journal of gastrointestinal pharmacology and therapeutics, 3(2), 7. Proenca, C., Freitas, M., Ribeiro, D., Tome, S.M., Araujo, A.N., Silva, A.M.S., Fernandes, P.A. and Fernandes, E. (2019). The dipeptidyl peptidase-4 inhibitory effect of flavonoids is hindered in protein rich environments. Food Funct 10, 5718-5731. Rao, A. K., A. J. E. Mells, W. Zhang, K. D. Setchell, A. M Amanso, G. M. Wynn, T. Xu, B. K. Keller, H.Yin, S.Banton, D. P. Jones,P. A. Dawson, and S. J. Karpen. (2016). Inhibition of ileal bile acid uptake protects against nonalcoholic fatty liver disease in high-fat diet–fed mice. Sci. Transl. Med. 8:357. doi: 10.1126/scitranslmed.aaf4823 Rhee, K. J., Sethupathi, P., Driks, A., Lanning, D. K. and Knight, K. L. (2004). Role of commensal bacteria in development of gut-associated lymphoid tissues and preimmune antibody repertoire. The Journal of Immunology, 172(2), 1118-1124. doi:10.4049/jimmunol.172.2.1118 Rinella, M. and Charlton, M. (2016). The globalization of nonalcoholic fatty liver disease: prevalence and impact on world health. Hepatology, 64(1), 19-22. Ringer, R. K. and Sheppard, C. C. (1963). Report of fatty-liver syndrome in a Michigan caged layer operation. Quarterly Bulletin. Michigan State University Agricultural Experiment Station, 45, 426-427. Rozenboim, I., Mahato, J., Cohen, N. A. and Tirosh, O. (2016). Low protein and high-energy diet: a possible natural cause of fatty liver hemorrhagic syndrome in caged White Leghorn laying hens. Poultry Science, 95(3), 612-621. Saeed, J. Y., J. Heegsma, A. K. Groen, S. W. C. Mil, C. C. Paulusma, L. Zhou, B. Wang and K. N. Faber. 2017. Farnesoid X receptor and bile acids regulate vitamin A storage. Sci. Rep. 9:1-11. doi:10.1038/s41598-019-55988-w Sato, H., Genet, C., Strehle, A., Thomas, C., Lobstein, A., Wagner, A., Mios- kowski, C., Auwerx, J. and Saladin, R. (2007). Anti-hyperglycemic activity of a TGR5 agonist isolated from Olea europaea. Biochem. Biophys. Res. Commun. 362, 793–798. Scheele, C.W. (1997). Pathological changes in metabolism of poultry related to increasing production levels. Vet Q 19, 127-130. Schoenfield, L. J. and Lachin, J. M. Chenodiol (chenodeoxycholic acid) for dissolution of gallstones: the National Cooperative Gallstone Study.A controlled trial of efficacy and safety. Ann. Intern. Med. 95, 257–282 (1981). Schwarz, M., Lund, E.G., Setchell, K.D., Kayden, H.J., Zerwekh, J.E., Bj?khem, I., Herz, J. and Russell, D.W. (1996). Disruption of cholesterol 7alpha-hydroxylase gene in mice. II. Bile acid deficiency is overcome by induction of oxysterol 7alpha-hydroxylase. J. Biol. Chem. 271, 18024– 18031. Shini, A., Shini, S. and Bryden, W.L. (2019). Fatty liver haemorrhagic syndrome occurrence in laying hens: impact of production system. Avian Pathol 48, 25-34. Shini, S. and Bryden, W. L. (2009). Occurrence and control of fatty liver haemorrhagic syndrome (FLHS) in caged hens. A report for the Australian Egg Corporation Limited AECL Publication No uq-105a AECL Project No UQ-105, 1448-1316. Shini, S., Shini, A. and Bryden, W.L. (2020). Unravelling fatty liver haemorrhagic syndrome:Oestrogen and inflammation. Avian Pathol 49, 87-98. Sklan, D., Geva, A., Budowski, P. and Hurwitz, S. (1984). Intestinal absorption and plasma transport of lipids in chicks and rats. Comparative biochemistry and physiology. A, Comparative physiology, 78(3), 507-510. Song, Q., Guo, J., Zhang, Y. and Chen, W. (2021). The beneficial effects of taurine in alleviating fatty liver disease. Journal of Functional Foods, 77, 104351. Speake B.K., Murray A.M. and Noble R.C. Transport and transformations of yolk lipids during development of the avian embryo. Prog. Lipid Res. 1998;37:1–32. doi: 10.1016/S0163-7827(97)00012-X. Staudinger, J. L., Goodwin, B., Jones, S. A., Hawkins-Brown, D., MacKenzie, K. I., LaTour, M. W. Timothy, H. K. Beverly and Kliewer, S. A. (2001). The nuclear receptor PXR is a lithocholic acid sensor that protects against liver toxicity. Proceedings of the National Academy of Sciences, 98(6), 3369-3374. doi: 10.1073/pnas.051551698 Stedman, C., Robertson, G., Coulter, S. and Liddle, C. (2004). Feed-forward regulation of bile acid detoxification by CYP3A4: studies in humanized transgenic mice. Journal of Biological Chemistry, 279(12), 11336-11343. Tanaka, N., Matsubara, T., Krausz, K. W., Patterson, A. D. and Gonzalez, F. J. (2012). Disruption of phospholipid and bile acid homeostasis in mice with nonalcoholic steatohepatitis. Hepatology, 56(1), 118-129. doi:10.1002/hep.25630 Tang, W., Yao, X., Xia, F., Yang, M., Chen, Z., Zhou, B. and Liu, Q. (2018). Modulation of the gut microbiota in rats by hugan qingzhi tablets during the treatment of high-fat-diet-induced nonalcoholic fatty liver disease. Oxidative Medicine and Cellular Longevity, 2018. doi:10.1155/2018/7261619 Thomson, A.E., Gentry, P.A. and Squires, E.J. (2003). Comparison of the coagulation profile of fatty liver haemorrhagic syndrome-susceptible laying hens and normal laying hens. Br Poult Sci 44, 626-633. Torok, V. A., Hughes, R. J., Mikkelsen, L. L., Perez-Maldonado, R., Balding, K., MacAlpine, R. and Ophel-Keller, K. (2011). Identification and characterization of potential performance-related gut microbiotas in broiler chickens across various feeding trials. Applied and environmental microbiology, 77(17), 5868-5878. doi:10.1128/AEM.00165-11 Trauner, M. and Boyer, J. L. Bile salt transporters : molecular characterization, function, and regulation. Physiol. Rev. 83, 633–671 (2003). Trott, K. A., Giannitti, F., Rimoldi, G., Hill, A., Woods, L., Barr, B. and Mete, A. (2014). Fatty liver hemorrhagic syndrome in the backyard chicken: a retrospective histopathologic case series. Veterinary pathology, 51(4), 787-795. Tsai, M.T., Chen, Y.J., Chen, C.Y., Tsai, M.H., Han, C.L., Chen, Y.J., Mersmann, H.J., and Ding, S.T. (2017). Identification of Potential Plasma Biomarkers for Nonalcoholic Fatty Liver Disease by Integrating Transcriptomics and Proteomics in Laying Hens. J Nutr 147, 293-303. Turk, D.E. (1982). The anatomy of the avian digestive tract as related to feed utilization. Poult Sci 61, 1225-1244. Ulrich-Merzenich, G., Zeitler, H., Vetter, H. and Bhonde, R. R. (2007). Protective effects of taurine on endothelial cells impaired by high glucose and oxidized low density lipoproteins. European journal of nutrition, 46(8), 431-438. Urdaneta, V. and Casades?s, J. (2017). Interactions between bacteria and bile salts in the gastrointestinal and hepatobiliary tracts. Frontiers in medicine, 4, 163. Wang, L., Zhang, Q., Yan, Z., Tan, Y., Zhu, R., Yu, D. and Wu, A. (2018). Occurrence and quantitative risk assessment of twelve mycotoxins in eggs and chicken tissues in China. Toxins, 10(11), 477. Wexler, H. M. (2007). Bacteroides: the good, the bad, and the nitty-gritty. Clinical microbiology reviews, 20(4), 593-621. doi:10.1128/CMR.00008-07 Wolford J.H. and Polin D. Lipid accumulation and hemorrhage in livers of laying chickens. A study on fatty liver-hemorrhagic syndrome (FLHS) Poult. Sci. 1972;51:1707–1713. doi: 10.3382/ps.0511707. Wu, Q., Wang, J. H., Fennessy, F., Redmond, H. P. and Bouchier-Hayes, D. (1999). Taurine prevents high-glucose-induced human vascular endothelial cell apoptosis. American Journal of Physiology-Cell Physiology, 277(6), C1229-C1238. Xiong, F., Zheng, Z., Xiao, L., Su, C., Chen, J., Gu, X., Tang J., Zhao Y., Luo H. and Zha, L. (2021). Soyasaponin A2 Alleviates Steatohepatitis Possibly through Regulating Bile Acids and Gut Microbiota in the Methionine and Choline?Deficient (MCD) Diet?induced Nonalcoholic Steatohepatitis (NASH) Mice. Molecular Nutrition & Food Research, 65(14), 2100067.doi:10.1002/mnfr.202100067 Yamagata, K., Daitoku, H., Shimamoto, Y., Matsuzaki, H., Hirota, K., Ishida, J. and Fukamizu, A. (2004). Bile acids regulate gluconeogenic gene expression via small heterodimer partner-mediated repression of hepatocyte nuclear factor 4 and Foxo1. Journal of Biological Chemistry, 279(22), 23158-23165. Zhang, J.W., Chen, D.W., Yu, B., and Wang, Y.M. (2011). Effect of dietary energy source on deposition and fatty acid synthesis in the liver of the laying hen. Br Poult Sci 52, 704- 710. Zhang, Y. and Edwards, P. A. (2008). FXR signaling in metabolic disease. FEBS Lett. 582, 10–18 Zhang, Y., Liu, Z., Liu, R., Wang, J., Zheng, M., Li, Q., Cui, H., Zhao, G. and Wen, J. (2018). Alteration of Hepatic Gene Expression along with the Inherited Phenotype of Acquired Fatty Liver in Chicken. Genes (Basel) 9. Zhuang, Y., Xing, C., Cao, H., Zhang, C., Luo, J., Guo, X. and Hu, G. (2019). Insulin resistance and metabonomics analysis of fatty liver haemorrhagic syndrome in laying hens induced by a high-energy low-protein diet. Scientific reports, 9(1), 1-14.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83908-
dc.description.abstract在蛋雞產業中,雞隻產蛋期間常於肝臟堆積脂肪造成非酒精性脂肪肝 (non-alcoholic fatty liver disease, NAFLD)的發生,而使雞隻產蛋率下降,嚴重者則使產蛋雞隻猝死。膽酸 (bile acid)由肝臟中的膽固醇合成,初級膽酸為初始合成的膽酸形式,主要產物為cholic acid、chenodeoxycholic acid,初級膽酸可藉由腸道微生物轉換成其他次級膽酸型式,例如:lithocholic、deoxycholic acid等。膽酸除涉及脂質及葡萄糖代謝的功能外,也具調節自身合成的功能來抑制過多膽酸的產生,因此,以初級膽酸或次級膽酸代謝的角度作為 NAFLD改善途徑的方法探討逐漸受到重視。 本研究利用細胞試驗及兩個動物試驗來討論蛋雞在 NAFLD 模式中膽酸的代謝情形,並評估 NAFLD 下的初級或次級膽酸在雞肝細胞中如何影響脂質代謝。動物試驗一使用低膽鹼高膽固醇飼糧 (high cholesterol and low choline diet, CLC) 將雞隻誘導成 NAFLD ,經六週飼糧誘導後,犧牲並採集肝臟、血清及盲腸內容物,進行肝臟膽酸合成及代謝相關的基因表現分析,血清與腸道內容物使用LC/MS分析各別膽酸含量,腸道內容物樣本經DNA萃取後進行NGS次世代定序。動物試驗二使用8隻羅曼蛋雞,將蛋雞依照產蛋期分為產蛋前期、初期、高峰期及產蛋末期,並收集此四階段之血清進行總膽酸含量測定,並使用LC/MS測定各別膽酸含量,建立各產蛋期的膽酸變化。在細胞試驗使用 LMH 雞肝上皮細胞為平台,以添加500μM Oleic acid方式誘導成脂肪肝模式,並以不同濃度之Taurine conjugated lithocholic acid (TLCA) 進行處理,觀察TLCA對雞隻脂肪肝的影響。 動物試驗一結果顯示合成膽酸相關基因CYP7A1、CYP8B1在CLC組顯著上升 (p<0.05),血清中TLCA、Taurochenodeoxycholic acid (TCDCA)兩種膽酸在CLC組的濃度亦顯著上升 (p<0.001),盲腸內容物也顯示CLC組別排出更多的次級膽酸,如:TLCA、Tauro-ursodeoxycholic acid、Taurohyocholic acid 皆顯著上升,腸道微生物組成分析顯示Alpha多樣性無顯著差異,但CLC組之膽酸耐受菌Alistipes屬之平均豐度較對照組多1.69 %。動物試驗二結果顯示,隨著週齡增長,血清中總膽酸濃度逐漸提升,產蛋末期之總膽酸濃度較產蛋前期高約兩倍,個別膽酸如:TCDCA在產蛋末期顯著高於產蛋前期,但TLCA的濃度則隨週齡增加而逐漸減少。細胞試驗結果顯示20 μM TLCA可減少脂肪油滴堆積,惟脂質代謝相關基因表現量無明顯變化,而膽酸合成基因CYP8B1在5μM TLCA處理組顯著高於對照組,且膽酸受體FXR基因表現在5μM TLCA組亦顯著上升,Western blotting結果顯示與脂質生合成有關之SREBP1蛋白質表現隨TLCA添加的濃度增加而逐漸降低。 本研究為首次闡述蛋雞在非酒精性脂肪肝下膽酸之變化,並發現CLC飼糧所誘導的脂肪肝會造成次級膽酸的增加,而自然產蛋週期下所導致的脂肪肝並不會有此現象,此外,膽酸分析資料顯示雞隻在膽酸共軛時偏向與牛磺酸結合而非甘胺酸。上述結果可作為以膽酸代謝角度改善 NAFLD之參考,然而尚有許多機制需進一步地釐清,例如:各產蛋期之腸道菌是否媒介次級膽酸的濃度改變、或是TLCA造成脂肪肝細胞中油滴減少的原因等,可透過其他試驗進一步闡明相關機制。zh_TW
dc.description.abstractIn the eggs industry, the accumulation of fat in the liver of chickens often causes the occurrence of non-alcoholic fatty liver disease (NAFLD) during laying periods, which reduces the egg production rate of chickens, causing egg industry in a bad situation. Bile acid is synthesized from cholesterol in the liver. Primary bile acid is the initially synthesized form of bile acid, the main products are cholic acid and chenodeoxycholic acid. Primary bile acid can be converted into other secondary bile acid forms by gut microbiome, for example: lithocholic, deoxycholic acid, etc. In addition to the functions involved in lipid and glucose metabolism, bile acid also has the function of regulating its own synthesis in order to inhibit bile acid accumulate in liver. Therefore, the method to improve NAFLD from the perspective of primary bile acid or secondary bile acid metabolism is gradually being paid attention. This study using in vivo and in vitro experiment to discuss bile acid metabolism in laying hens under NAFLD and to assess how primary or secondary bile acids under NAFLD affect lipid metabolism in chicken hepatocytes. In vivo experiment 1, the chickens were induced to NAFLD by using high cholesterol and low choline diet (CLC), after six weeks of dietary feeding, the liver、serum and cecal contents were sacrificed and collected for liver bile acid metabolism-related gene expression analysis, serum and cecal contents were analyzed by LC/MS for bile acid content, and cecal contents samples were extracted by DNA for 16s rRNA sequencing. In vivo experiment 2, using 8 Lohmann laying hens for study. The laying hens were divided into pre-laying, early, peak and later-laying period according to the eggs production rate, and the serum of these four stages was collected for the determination of total bile acid content. The content of bile acid was determined by LC/MS, and the change of bile acids concentration in each laying period was established. In the in vitro experiment, LMH cell were used as a platform to induce fatty liver model by adding 500 μM Oleic acid, and treated with different concentrations of Taurine conjugated lithocholic acid (TLCA) to observe the effect of TLCA on chicken fatty liver. The results of in vivo experiment 1 showed that the synthetic bile acid-related genes CYP7A1 and CYP8B1 were significantly increased in the CLC group (p<0.05), and the serum concentrations of TLCA and Taurochenodeoxycholic acid (TCDCA) were also significantly increased in the CLC group (p<0.001), cecal contents also showed that the CLC group excreted more secondary bile acids, such as: TLCA, Tauro-ursodeoxycholic acid, Taurohyocholic acid were all significantly increased, and the gut microbiome composition analysis showed no significant difference in Alpha diversity. The average abundance of bile acid-tolerant bacteria Alistipes was 1.69 % higher than that of the control group. The results of in vivo experiment 2 showed that with the increase of age, the concentration of total bile acids in serum gradually increased, and the concentration of total bile acid in the later laying period was twice higher than that in the pre-laying period. Individual bile acid such as TCDCA were significantly higher in the later laying period. In the pre-laying period, the concentration of TLCA decreased gradually with the increase of the age. In vitro experiment results showed that 20 μM TLCA could reduce the accumulation of fat oil droplets in Oil Red O staining, but the expression of lipid metabolic genes did not change significantly, while the bile acid synthesis gene CYP8B1 in the 5 μM TLCA group was significantly higher than that in the control group, and the expression of bile acid receptor FXR was significantly higher than control group and it also increased significantly in 5μM TLCA group. Western blotting results showed that the expression of SREBP1 protein which was related to lipid biosynthesis decreased gradually with the increase of TLCA concentration. This study is the first to describe the changes of bile acids in laying hens under non-alcoholic fatty liver disease, and found that fatty liver induced by CLC diet can increase secondary bile acids, while fatty liver induced by natural egg laying period does not happen. In addition, bile acid analysis data show that chickens prefer to bind taurine rather than glycine when bile acid is conjugated. The above results can be used as a reference for improving NAFLD from the perspective of bile acid metabolism. However, there are still many mechanisms have needed to be further clarified, such as whether the gut microbiome in each laying period mediate the concentration of secondary bile acids, or what is the mechanism of TLCA effect lipid metabolism that causing reduction of oil droplets in cells. All these doubts can be further elucidated by more experiments.en
dc.description.provenanceMade available in DSpace on 2023-03-19T21:23:03Z (GMT). No. of bitstreams: 1
U0001-1007202222035500.pdf: 10508350 bytes, checksum: 9262d86615febe75f3b6e512972bc760 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents致謝 II 中文摘要 IV Abstract VI 圖目錄 XII 表目錄 XIII 壹、文獻探討 1 一、非酒精性脂肪肝 1 (一)肝臟的功能 1 (二)脂肪肝定義 1 (三)非酒精性脂肪肝成因與改善方式 2 二、經產家禽與非酒精性脂肪肝 3 (一)肝臟堆積脂質的途徑 3 (二)脂肪肝的發現 4 (三)脂肪肝的成因 5 (四)以外觀判斷家禽脂肪肝之方法 7 (五)雞隻血液中的脂肪肝生物標記 9 (六)以雞隻作為非酒精性脂肪肝模型 10 三、膽酸 10 (一)膽酸所扮演的角色及功能 10 (二)膽酸結構與主要代謝路徑 12 (三)膽酸受體與其功能 13 (四)膽酸及其受體之臨床應用性 15 (五)膽酸與非酒精性脂肪肝 17 貳、研究目的 18 參、研究方法及材料 18 一、試驗假說 18 二、動物試驗 19 (一)動物試驗一 19 (二)動物試驗二 21 三、細胞試驗 28 四、動物試驗紀錄與樣品收集項目 30 (一)採樣處理 30 (二)生長性狀 31 (三)肝臟脂肪肝評級、秤重 31 (四)即時定量 PCR (real-time PCR) 分析 32 五、細胞培養 36 六、細胞油滴Oil Red O染色 37 (一)染劑製備 37 (二)細胞染色 37 (三)細胞定量 37 七、細胞存活率試驗 (cck-8 assay) 38 八、脂肪酸誘導細胞次級膽酸試驗 38 (一)油酸誘導藥品配製 38 (二)石膽酸藥品濃度配置 39 九、細胞三酸甘油酯濃度測定 40 十、樣品膽酸萃取 40 (一)糞便樣品膽酸萃取 40 (二)血清樣品膽酸萃取 41 十一、血清中總膽酸測定 41 十二、LC-MS 膽酸分析 42 十三、16S NGS分析 (動物試驗一CLC model的菌相組成分析) 42 十四、統計分析 43 肆、試驗結果 44 一、動物試驗一 44 (一)對照組及膽固醇低膽鹼飼糧體重表現 44 (二)對照組及膽固醇低膽鹼飼糧脂肪肝評級 45 (三)膽酸代謝相關基因 45 (四)脂質代謝相關基因 47 (五)血清與糞便中的個別膽酸濃度及分佈圖 48 (六)16S NGS分析 54 二、 動物試驗二 56 (一)正常飼養下蛋雞體重及產蛋率 56 (二)不同產蛋率之雞隻血清內膽酸總濃度 58 (三)不同產蛋率之雞隻血清內膽酸個別濃度 59 三、細胞試驗 62 (一)TLCA cck-8 test 62 (二)基因表現量測定 63 (三)Oil Red O染色 66 (四)細胞中三酸甘油酯含量 68 (五)Oil Red O染色定量 69 (六)西方點墨法western blotting 70 伍、討論 71 一、共軛膽酸 71 二、腸道微生物 72 三、次級膽酸的毒性 74 四、膽酸激活的相關受體路徑 75 五、膽酸與膽鹼 75 六、膽酸與衰老 76 陸、結論 77 柒、參考文獻 78
dc.language.isozh-TW
dc.subject脂質代謝zh_TW
dc.subject非酒精性脂肪肝zh_TW
dc.subject蛋雞zh_TW
dc.subject膽酸zh_TW
dc.subject腸道微生物zh_TW
dc.subjectNonalcoholic fatty liveren
dc.subjectLipid metabolismen
dc.subjectGut microbiotaen
dc.subjectBile aciden
dc.subjectLaying hensen
dc.title雞隻脂肪肝下膽酸濃度變化及次級膽酸對脂肪肝細胞的影響zh_TW
dc.titleThe changes of bile acids concentration and effects of secondary bile acid under fatty liver in chickensen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林巧威(Chiao-Wei Lin),彭劭于(Shao-Yu Peng)
dc.subject.keyword非酒精性脂肪肝,蛋雞,膽酸,腸道微生物,脂質代謝,zh_TW
dc.subject.keywordNonalcoholic fatty liver,Laying hens,Bile acid,Gut microbiota,Lipid metabolism,en
dc.relation.page94
dc.identifier.doi10.6342/NTU202201383
dc.rights.note未授權
dc.date.accepted2022-07-12
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept動物科學技術學研究所zh_TW
顯示於系所單位:動物科學技術學系

文件中的檔案:
檔案 大小格式 
U0001-1007202222035500.pdf
  未授權公開取用
10.26 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved