Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83867
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor盧奕璋zh_TW
dc.contributor.advisorYi-Chang Luen
dc.contributor.author楊智翔zh_TW
dc.contributor.authorChih-Hsiang Yangen
dc.date.accessioned2023-03-19T21:21:21Z-
dc.date.available2025-12-31-
dc.date.copyright2022-07-26-
dc.date.issued2022-
dc.date.submitted2002-01-01-
dc.identifier.citation[1] A. Sabu and N. Vishwanath, “An improved visibility restoration of single haze images for security surveillance systems,” in 2016 Online International Conference on Green Engineering and Technologies, 2016, pp. 1–5.
[2] X. Pan, F. Xie, Z. Jiang, and J. Yin, “Haze removal for a single remote sensing image based on deformed haze imaging model,” IEEE Signal Processing Letters, vol. 22, no. 10, pp. 1806–1810, 2015.
[3] N. Hautiere, J.-P. Tarel, and D. Aubert, “Mitigation of visibility loss for advanced camera-based driver assistance,” IEEE Transactions on Intelligent Transportation Systems, vol. 11, no. 2, pp. 474–484, 2010.
[4] W. E. K. Middleton, “Vision through the atmosphere,” University of Toronto Press, 1952.
[5] Y. Y. Schechner, S. G. Narasimhan, and S. K. Nayar, “Polarization-based vision through haze,” Applied Optics, vol. 42, no. 3, pp. 511–525, Jan 2003.
[6] S. Narasimhan and S. Nayar, “Contrast restoration of weather degraded images,”IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25, no. 6, pp. 713–724, 2003.
[7] R. Fattal, “Single image dehazing,” ACM Transactions on Graphics, vol. 27, no. 3, p. 1–9, aug 2008.
[8] R. T. Tan, “Visibility in bad weather from a single image,” in 2008 IEEE Conference on Computer Vision and Pattern Recognition, 2008, pp. 1–8.
[9] K. He, J. Sun, and X. Tang, “Single image haze removal using dark channel prior,”IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 33, no. 12, pp. 2341–2353, 2011.
[10] Q. Zhu, J. Mai, and L. Shao, “A fast single image haze removal algorithm using color attenuation prior,” IEEE Transactions on Image Processing, vol. 24, no. 11, pp. 3522–3533, 2015.
[11] D. Berman, T. Treibitz, and S. Avidan, “Non-local image dehazing,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 1674–1682.
[12] J. Liu, R. W. Liu, J. Sun, and T. Zeng, “Rank-one prior: Toward real-time scene recovery,” in 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 14 797–14 805.
[13] A. Khmag, S. A. Al-Haddad, A. R. Ramli, and B. Kalantar, “Single image dehazing using second-generation wavelet transforms and the mean vector l2-norm,” Visual Computer, vol. 34, no. 5, p. 675–688, May 2018.
[14] B. Cai, X. Xu, K. Jia, C. Qing, and D. Tao, “Dehazenet: An end-to-end system for single image haze removal,” IEEE Transactions on Image Processing, vol. 25, no. 11, pp. 5187–5198, 2016.
[15] W. Ren, S. Liu, H. Zhang, J. Pan, X. Cao, and M.-H. Yang, “Single image dehazing via multi-scale convolutional neural networks,” in European Conference on Computer Vision, 2016, pp. 154–169.
[16] B. Li, X. Peng, Z. Wang, J. Xu, and D. Feng, “AOD-Net: All-in-one dehazing network,” in 2017 IEEE International Conference on Computer Vision, 2017, pp. 4780–4788.
[17] X. Qin, Z. Wang, Y. Bai, X. Xie, and H. Jia, “FFA-Net: Feature fusion attention network for single image dehazing,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 07, 2020, pp. 11 908–11 915.
[18] Y. Li, R. T. Tan, and M. S. Brown, “Nighttime haze removal with glow and multiple light colors,” in 2015 IEEE International Conference on Computer Vision, 2015, pp. 226–234.
[19] J. Zhang, Y. Cao, S. Fang, Y. Kang, and C. W. Chen, “Fast haze removal for nighttime image using maximum reflectance prior,” in 2017 IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 7016–7024.
[20] T. Yu, K. Song, P. Miao, G. Yang, H. Yang, and C. Chen, “Nighttime single image dehazing via pixel-wise alpha blending,” IEEE Access, vol. 7, pp. 114 619–114 630, 2019.
[21] E. H. Land, “The retinex theory of color vision,” Scientific American, vol. 237, no. 6, pp. 108–128, Dec 1977.
[22] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” Foundations and Trends in Machine Learning, vol. 3, no. 1, p. 1–122, jan 2011.
[23] B. Li, W. Ren, D. Fu, D. Tao, D. Feng, W. Zeng, and Z. Wang, “Benchmarking single-image dehazing and beyond,” IEEE Transactions on Image Processing, vol. 28, no. 1, pp. 492–505, 2019.
[24] K. He, J. Sun, and X. Tang, “Guided image filtering,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35, no. 6, pp. 1397–1409, 2013.
[25] Z. Lu, B. Long, and S. Yang, “Saturation based iterative approach for single image dehazing,” IEEE Signal Processing Letters, vol. 27, pp. 665–669, 2020.
[26] S.-C. Pei and T.-Y. Lee, “Nighttime haze removal using color transfer pre-processing and dark channel prior,” in 2012 19th IEEE International Conference on Image Processing, 2012, pp. 957–960.
[27] J. Zhang, Y. Cao, and Z. Wang, “Nighttime haze removal based on a new imaging model,” in 2014 IEEE International Conference on Image Processing, 2014, pp. 4557–4561.
[28] J. Zhang, Y. Cao, Z.-J. Zha, and D. Tao, “Nighttime dehazing with a synthetic benchmark,” in Proceedings of the 28th ACM International Conference on Multimedia, New York, NY, USA, 2020, p. 2355–2363.
[29] C.-H. Yang, Y.-H. Lin, and Y.-C. Lu, “A variation-based nighttime image dehazing flow with a physically valid illumination estimator and a luminance-guided coloring model,” IEEE Access, vol. 10, pp. 50 153–50 166, 2022.
[30] L. Xu, Q. Yan, Y. Xia, and J. Jia, “Structure extraction from texture via relative total variation,” ACM Transactions on Graphics, vol. 31, no. 6, nov 2012.
[31] Y. Liu, J. Shang, L. Pan, A. Wang, and M. Wang, “A unified variational model for single image dehazing,” IEEE Access, vol. 7, pp. 15 722–15 736, 2019.
[32] G. Meng, Y. Wang, J. Duan, S. Xiang, and C. Pan, “Efficient image dehazing with boundary constraint and contextual regularization,” in 2013 IEEE International Conference on Computer Vision, 2013, pp. 617–624.
[33] Y. Zhu, G. Tang, X. Zhang, J. Jiang, and Q. Tian, “Haze removal method for natural restoration of images with sky,” Neurocomputing, vol. 275, pp. 499–510, 2018.
[34] D. Scharstein and C. Pal, “Learning conditional random fields for stereo,” in 2007 IEEE Conference on Computer Vision and Pattern Recognition, 2007, pp. 1–8.
[35] A. Mittal, R. Soundararajan, and A. C. Bovik, “Making a“completely blind"image quality analyzer,” IEEE Signal Processing Letters, vol. 20, no. 3, pp. 209–212, 2013.
[36] L. Kang, P. Ye, Y. Li, and D. Doermann, “Convolutional neural networks for noreference image quality assessment,” in 2014 IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 1733–1740.
[37] Y. Fang, K. Ma, Z. Wang, W. Lin, Z. Fang, and G. Zhai, “No-reference quality assessment of contrast-distorted images based on natural scene statistics,” IEEE Signal Processing Letters, vol. 22, no. 7, pp. 838–842, 2015.
[38] J. Yan, J. Li, and X. Fu, “No-reference quality assessment of contrast-distorted images using contrast enhancement,” Computing Research Repository, vol. abs/1904.08879, 2019.
[39] K. Ma, W. Liu, K. Zhang, Z. Duanmu, Z. Wang, and W. Zuo, “End-to-end blind image quality assessment using deep neural networks,” IEEE Transactions on Image Processing, vol. 27, no. 3, pp. 1202–1213, 2018.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83867-
dc.description.abstract在有霧的天氣中,影像品質通常會降低。在本論文中,我們提出了一種基於變分的影像去霧流程,該流程包括具有物理特性的光源估測、亮度導向色彩模型和透射率優化程序,可以有效解決這個除霧問題。我們首先提出了一個新的日/夜分類器來區分輸入影像的場景類型。然後,我們設計了一個新的照明模型,以更好地解決場景中的非全局大氣光問題。此外,我們引入了一種基於視網膜皮層理論的優化流程來獲得環境照明,且保持了場景的結構。我們在色彩模型中使用輸入圖像作為照明的初始猜測,使得夜間的顏色一致性得到保證。而在白天場景中,我們使用輸入圖像的最大通道作為照明的初始估計,使得白天黑暗區域的外觀較為自然。我們亦開發了一種基於變分的流程來平滑估計的傳輸率圖,透過該程序可以消除塊狀效應和光暈。所提出的基於亮度的校正機制在存在大片天空區域的情況下進一步提高了影像的視覺品質。我們使用現實世界的有霧影像進行實驗。綜合實驗表明,與其他最先進的算法相比,所提出的方法可以有效地提供顏色一致性、保留細節並減少結果圖像中的光暈偽影和噪聲。zh_TW
dc.description.abstractImage quality is often reduced in hazy weather. In this thesis, we propose a robust variation-based image dehazing flow with a physically valid illumination estimator, a luminance-guided coloring model, and a transmission refinement procedure to effectively address this problem. We first propose a new day/night classifier to distinguish the scene type of the input image. Then, we design a new illumination model to better address the non-global air-light issue in the scene. Furthermore, we introduce a structure-preserving optimization flow based on Retinex theory to obtain ambient illumination. Color consistency in the nighttime is guaranteed because we use the input image as the initial guess of illumination in our coloring model. The natural appearance in the dark region for the daytime scene is promised because we use the maximum channel as the initial estimation of air light. A variationbased procedure is developed to smoothen the estimated transmission map, where the block effect and the halos can be eliminated through the procedure. The proposed luminance-based correction mechanism further improves visual image quality in the presence of a large sky region. Our experiments are implemented based on actual hazy images. The comprehensive experiments indicate that the proposed method can effectively provide color consistency, preserve details, and reduce halo artifacts and noise in the resulting images compared to other state-of-the-art algorithms.en
dc.description.provenanceMade available in DSpace on 2023-03-19T21:21:21Z (GMT). No. of bitstreams: 1
U0001-2706202209152600.pdf: 103280584 bytes, checksum: 0485acb8841d47fdb1477f3804245ad2 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents口試委員會審定書 iii
誌謝 v
摘要 vii
Abstract ix
1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Arrangement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2 Related work 7
2.1 Daytime Image Dehazing . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Nighttime Image Dehazing . . . . . . . . . . . . . . . . . . . . . . . . . 8
3 Background 11
3.1 Hazy Imaging Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Alternating Direction Method of Multipliers (ADMM) . . . . . . . . . . 12
3.3 Retinex Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4 Methods 17
4.1 The Proposed Dehazing Method . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Day/Night Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2.1 Traditional Method . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2.2 The Proposed Method . . . . . . . . . . . . . . . . . . . . . . . 19
4.3 The Proposed Nighttime Image Dehazing Method . . . . . . . . . . . . . 20
4.3.1 The Nighttime Hazy Imaging Model . . . . . . . . . . . . . . . . 20
4.3.2 The Physically Valid Illumination Estimator . . . . . . . . . . . . 22
4.3.3 The Luminance-Guided Coloring Model . . . . . . . . . . . . . . 26
4.3.4 The Transmission Refinement Procedure . . . . . . . . . . . . . 29
4.3.5 Haze-free Image Reconstruction . . . . . . . . . . . . . . . . . . 34
4.4 The Proposed Daytime Image Dehazing Method . . . . . . . . . . . . . . 34
4.4.1 The Physically Valid Air-light Estimator . . . . . . . . . . . . . . 37
4.4.2 Transmission Estimation and Refinement . . . . . . . . . . . . . 40
4.4.3 The Luminance-Guided Coloring Model and Sky Probability Map Calculation . . 41
4.4.4 Haze-free Image Reconstruction . . . . . . . . . . . . . . . . . . 43
5 Experiment 47
5.1 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2 Computational Complexity . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.3 Nighttime Image Dehazing Experiment . . . . . . . . . . . . . . . . . . 48
5.3.1 Quantitative Comparison of Synthetic Data . . . . . . . . . . . . 48
5.3.2 A Qualitative Comparison on the Real-World Dataset . . . . . . . 49
5.3.3 User study on a real-world dataset . . . . . . . . . . . . . . . . . 51
5.3.4 A Quantitative Comparison on the Real-world Dataset . . . . . . 54
5.4 Daytime Image Dehazing Experiment . . . . . . . . . . . . . . . . . . . 56
5.4.1 Synthetic daytime dehazing results . . . . . . . . . . . . . . . . . 56
5.4.2 Daytime Image Dehazing Results on Real-world Dataset . . . . . 57
5.5 Limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6 Conclusion 69
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
References 71
-
dc.language.isoen-
dc.subject交替方向乘子法zh_TW
dc.subject影像增強與復原zh_TW
dc.subject影像除霧zh_TW
dc.subjectalternating direction method of multipliers (ADMM)en
dc.subjectImage enhancement and restorationen
dc.subjectimage dehazingen
dc.title基於物理特性的光源估測與亮度導向色彩模型之影像除霧演算法zh_TW
dc.titleImage Dehazing Based on a Physically Valid Illumination Estimator and a Luminance-Guided Coloring Modelen
dc.typeThesis-
dc.date.schoolyear110-2-
dc.description.degree碩士-
dc.contributor.author-orcid0000-0002-7439-3316
dc.contributor.oralexamcommittee丁建均;劉宗德;王鈺強zh_TW
dc.contributor.oralexamcommitteeJian-Jiun Ding;Tsung-Te Liu;Yu-Chiang Frank Wangen
dc.subject.keyword影像增強與復原,影像除霧,交替方向乘子法,zh_TW
dc.subject.keywordImage enhancement and restoration,image dehazing,alternating direction method of multipliers (ADMM),en
dc.relation.page75-
dc.identifier.doi10.6342/NTU202201135-
dc.rights.note未授權-
dc.date.accepted2022-07-22-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電子工程學研究所-
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-110-2.pdf
  未授權公開取用
100.86 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved