Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83859
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor駱尚廉(Shang-Lien Lo)
dc.contributor.authorPo-Wen Suen
dc.contributor.author蘇柏聞zh_TW
dc.date.accessioned2023-03-19T21:20:57Z-
dc.date.copyright2022-07-26
dc.date.issued2022
dc.date.submitted2022-07-21
dc.identifier.citationAnderegg, W. R., Prall, J. W., Harold, J., & Schneider, S. H. (2010). Expert credibility in climate change. Proceedings of the National Academy of Sciences, 107(27), 12107-12109. Arhonditsis, G. B., Brett, M. T., DeGasperi, C. L., & Schindler, D. E. (2004). Effects of climatic variability on the thermal properties of Lake Washington. Limnology and oceanography, 49(1), 256-270. Austin, R., & Petzold, T. J. (1981). The determination of the diffuse attenuation coefficient of sea water using the Coastal Zone Color Scanner Oceanography from space (pp. 239-256): Springer. Austin, R. W., & Petzold, T. J. (1986). Spectral dependence of the diffuse attenuation coefficient of light in ocean waters. Optical Engineering, 25(3), 253471. Belokon, K., Emmons, M., Fowler, W., Gilson, B., Hernandez, G., Johnson, A., . . . Tullos, E. (1997). Multispectral Imagery Reference Guide: LOGICON Geodynamics. Inc. Fairfax, Virginia. Bhagowati, B., & Ahamad, K. U. (2019). A review on lake eutrophication dynamics and recent developments in lake modeling. Ecohydrology & Hydrobiology, 19(1), 155-166. Borden, R. C. (2001). Performance Evaluation of Regional Wet Detention Ponds and Wetland for Urban Nonpoint Source Control. Bricaud, A., Morel, A., & Prieur, L. (1983). Optical efficiency factors of some phytoplankters 1. Limnology and oceanography, 28(5), 816-832. Carlson, R. E. (1977). A trophic state index for lakes 1. Limnology and oceanography, 22(2), 361-369. Chang, G. C., & Dickey, T. D. (2004). Coastal ocean optical influences on solar transmission and radiant heating rate. Journal of Geophysical Research: Oceans, 109(C1). Chatterjee, S., & Simonoff, J. S. (2013). Handbook of regression analysis (Vol. 5): Wiley Online Library. Chen, M., Ye, T.-R., Krumholz, L. R., & Jiang, H.-L. (2014). Temperature and cyanobacterial bloom biomass influence phosphorous cycling in eutrophic lake sediments. PloS one, 9(3), e93130. Chen, Y.-C., Wu, Y.-H., Shen, C.-W., & Chiu, Y.-J. (2018). Dynamic modeling of sediment budget in shihmen reservoir watershed in Taiwan. Water, 10(12), 1808. Cheng, W. P., & Chi, F.-H. (2003). Influence of eutrophication on the coagulation efficiency in reservoir water. Chemosphere, 53(7), 773-778. Danilov, R., & Ekelund, N. (1999). The efficiency of seven diversity and one similarity indices based on phytoplankton data for assessing the level of eutrophication in lakes in central Sweden. Science of the total environment, 234(1-3), 15-23. Darecki, M., & Stramski, D. (2004). An evaluation of MODIS and SeaWiFS bio-optical algorithms in the Baltic Sea. Remote Sensing of Environment, 89(3), 326-350. Deng, J., Qin, B., Paerl, H. W., Zhang, Y., Wu, P., Ma, J., & Chen, Y. (2014). Effects of nutrients, temperature and their interactions on spring phytoplankton community succession in Lake Taihu, China. PloS one, 9(12), e113960. Erickson, T. R., & Stefan, H. G. (2000). Linear air/water temperature correlations for streams during open water periods. Journal of Hydrologic Engineering, 5(3), 317-321. Gordon, H. R., Brown, O. B., Evans, R. H., Brown, J. W., Smith, R. C., Baker, K. S., & Clark, D. K. (1988). A semianalytic radiance model of ocean color. Journal of Geophysical Research: Atmospheres, 93(D9), 10909-10924. Gordon, H. R., Brown, O. B., & Jacobs, M. M. (1975). Computed relationships between the inherent and apparent optical properties of a flat homogeneous ocean. Applied optics, 14(2), 417-427. Gordon, H. R., Clark, D. K., Brown, J. W., Brown, O. B., Evans, R. H., & Broenkow, W. W. (1983). Phytoplankton pigment concentrations in the Middle Atlantic Bight: comparison of ship determinations and CZCS estimates. Applied optics, 22(1), 20-36. Gordon, H. R., & Wang, M. (1994). Influence of oceanic whitecaps on atmospheric correction of ocean-color sensors. Applied optics, 33(33), 7754-7763. Goswami, B. N., Venugopal, V., Sengupta, D., Madhusoodanan, M., & Xavier, P. K. (2006). Increasing trend of extreme rain events over India in a warming environment. Science, 314(5804), 1442-1445. Halldal, P., & French, C. (1958). Algal Growth in Crossed Gradients of Light Intensity and Temperature. Plant physiology, 33(4), 249. Halpert, M. S., Bell, G. D., Kousky, V. E., & Ropelewski, C. F. (1996). Climate assessment for 1995. Bulletin of the American Meteorological society, 77(5s), S1-S44. Haunschild, R., Bornmann, L., & Marx, W. (2016). Climate change research in view of bibliometrics. PloS one, 11(7), e0160393. Hausman, J. A. (1978). Specification tests in econometrics. Econometrica: Journal of the econometric society, 1251-1271. Havens, K. E., & Paerl, H. W. (2015). Climate change at a crossroad for control of harmful algal blooms: ACS Publications. Hocking, R. R. (2013). Methods and applications of linear models: regression and the analysis of variance: John Wiley & Sons. Huot, Y., Babin, M., Bruyant, F., Grob, C., Twardowski, M., & Claustre, H. (2007). Does chlorophyll a provide the best index of phytoplankton biomass for primary productivity studies? Biogeosciences discussions, 4(2), 707-745. Hupfer, M., & Hilt, S. (2008). Lake restoration. Hutchinson, G. E. (1957). A Treatise on. Limnology, 1, 243. Intergovernmental Panel on Climate Change. (2012). Managing the risks of extreme events and disasters to advance climate change adaptation (pp. 582): Cambridge University Press Cambridge, UK, and NY, USA. Intergovernmental Panel on Climate Change. (2014). Climate Change 2014 Report Fifth Assessment Report. Intergovernmental Panel On Climate Change. International Business Machines Corporation. (2019). IBM SPSS Statistics 26 Documentation. Endicott, NY, USA: Author. Irons, J. R., Dwyer, J. L., & Barsi, J. A. (2012). The next Landsat satellite: The Landsat data continuity mission. Remote Sensing of Environment, 122, 11-21. Jayaweera, M., & Asaeda, T. (1995). Impacts of environmental scenarios on chlorophyll-a in the management of shallow, eutrophic lakes following biomanipulation: An application of a numerical model. Ecological Engineering, 5(4), 445-468. Jeppesen, E., Moss, B., Bennion, H., Carvalho, L., DeMeester, L., Feuchtmayr, H., . . . Lauridsen, T. L. (2010). Interaction of climate change and eutrophication. Climate change impacts on freshwater ecosystems, 119-151. Jerlov, N. G. (1976). Marine optics (Vol. 14): Elsevier. Karl, T. R., & Knight, R. W. (1998). Secular trends of precipitation amount, frequency, and intensity in the United States. Bulletin of the American Meteorological society, 79(2), 231-242. Kirk, J. T. (1994). Light and photosynthesis in aquatic ecosystems: Cambridge university press. Kumar, S. (2015). Principles of remote sensing. Maharashtra, India: Author. Lau, K. M., & Wu, H. T. (2007). Detecting trends in tropical rainfall characteristics, 1979–2003. International Journal of Climatology: A Journal of the Royal Meteorological Society, 27(8), 979-988. Lee, Z., Carder, K., Peacock, T., Davis, C., & Mueller, J. (1996). Method to derive ocean absorption coefficients from remote-sensing reflectance. Applied optics, 35(3), 453-462. Lee, Z., Carder, K. L., & Arnone, R. A. (2002). Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters. Applied optics, 41(27), 5755-5772. Lee, Z., Carder, K. L., & Du, K. (2004). Effects of molecular and particle scatterings on the model parameter for remote-sensing reflectance. Applied optics, 43(25), 4957-4964. Lee, Z., Carder, K. L., Mobley, C. D., Steward, R. G., & Patch, J. S. (1998). Hyperspectral remote sensing for shallow waters. I. A semianalytical model. Applied optics, 37(27), 6329-6338. Lee, Z., Carder, K. L., Mobley, C. D., Steward, R. G., & Patch, J. S. (1999). Hyperspectral remote sensing for shallow waters: 2. Deriving bottom depths and water properties by optimization. Applied optics, 38(18), 3831-3843. Lee, Z., Du, K. P., & Arnone, R. (2005). A model for the diffuse attenuation coefficient of downwelling irradiance. Journal of Geophysical Research: Oceans, 110(C2). Lee, Z., Du, K., Arnone, R., Liew, S., & Penta, B. (2005). Penetration of solar radiation in the upper ocean: A numerical model for oceanic and coastal waters. Journal of Geophysical Research: Oceans, 110(C9). Lee, Z., Shang, S., Hu, C., Du, K., Weidemann, A., Hou, W., . . . Lin, G. (2015). Secchi disk depth: A new theory and mechanistic model for underwater visibility. Remote Sensing of Environment, 169, 139-149. Lee, Z., Shang, S., Qi, L., Yan, J., & Lin, G. (2016). A semi-analytical scheme to estimate Secchi-disk depth from Landsat-8 measurements. Remote Sensing of Environment, 177, 101-106. Lewis, M. R., Carr, M.-E., Feldman, G. C., Esaias, W., & McClain, C. (1990). Influence of penetrating solar radiation on the heat budget of the equatorial Pacific Ocean. Nature, 347(6293), 543. Liu, L., Ma, C., Huo, S., Xi, B., He, Z., Zhang, H., . . . Xia, X. (2018). Impacts of climate change and land use on the development of nutrient criteria. Journal of hydrology, 563, 533-542. Liu, S. C., Fu, C., Shiu, C. J., Chen, J. P., & Wu, F. (2009). Temperature dependence of global precipitation extremes. Geophysical Research Letters, 36(17). Livingstone, D. M. (2003). Impact of secular climate change on the thermal structure of a large temperate central European lake. Climatic change, 57(1), 205-225. Marra, G., & Boland, C. R. (1995). Hereditary nonpolyposis colorectal cancer: the syndrome, the genes, and historical perspectives. JNCI: Journal of the National Cancer Institute, 87(15), 1114-1125. McClain, C. R., Arrigo, K., Tai, K. S., & Turk, D. (1996). Observations and simulations of physical and biological processes at ocean weather station P, 1951–1980. Journal of Geophysical Research: Oceans, 101(C2), 3697-3713. Moore, T. S., Campbell, J. W., & Dowell, M. D. (2009). A class-based approach to characterizing and mapping the uncertainty of the MODIS ocean chlorophyll product. Remote Sensing of Environment, 113(11), 2424-2430. Morel, A. (1988). Optical modeling of the upper ocean in relation to its biogenous matter content (case I waters). Journal of Geophysical Research: Oceans, 93(C9), 10749-10768. Morel, A., & Antoine, D. (1994). Heating rate within the upper ocean in relation to its bio–optical state. Journal of Physical Oceanography, 24(7), 1652-1665. Morel, A., Gentili, B., Claustre, H., Babin, M., Bricaud, A., Ras, J., & Tieche, F. (2007). Optical properties of the “clearest” natural waters. Limnology and oceanography, 52(1), 217-229. Morel, A., & Maritorena, S. (2001). Bio?optical properties of oceanic waters: A reappraisal. Journal of Geophysical Research: Oceans, 106(C4), 7163-7180. Morel, A., & Prieur, L. (1977). Analysis of variations in ocean color 1. Limnology and oceanography, 22(4), 709-722. Morrill, J. C., Bales, R. C., & Conklin, M. H. (2005). Estimating stream temperature from air temperature: implications for future water quality. Journal of Environmental Engineering, 131(1), 139-146. Mueller, J. (1997). Revised SeaWiFS prelanuch algorithm for the diffuse attenuation coefficient K (490). SeaWiFS Project Technical Report Series. Mueller, J. L. (2000). SeaWiFS algorithm for the diffuse attenuation coefficient, K (490), using water-leaving radiances at 490 and 555 nm. SeaWiFS postlaunch calibration and validation analyses, part, 3(11), 24-27. National Aeronautics and Space Administration (2013). LDCM: A New Era in Earth Observation. Washington, DC, USA: Author. National Research Council (2000). Clean coastal waters: understanding and reducing the effects of nutrient pollution: National Academy Press Washington, DC. O'Reilly, J. E., Maritorena, S., Mitchell, B. G., Siegel, D. A., Carder, K. L., Garver, S. A., . . . McClain, C. (1998). Ocean color chlorophyll algorithms for SeaWiFS. Journal of Geophysical Research: Oceans, 103(C11), 24937-24953. Odermatt, D., Gitelson, A., Brando, V. E., & Schaepman, M. (2012). Review of constituent retrieval in optically deep and complex waters from satellite imagery. Remote Sensing of Environment, 118, 116-126. Paerl, H., Fulton, R., Graneli, E., & Turner, J. (2006). Ecology of harmful marine algae Ecology of Harmful Algae (pp. 95-107): Springer Berlin. Pal, M., Samal, N. R., Roy, P. K., & Roy, M. B. (2015). Electrical conductivity of lake water as environmental monitoring–A case study of Rudrasagar Lake. IOSR J. Environ. Sci. Toxicol. Food Technol, 9, 66-71. Platt, T., Sathyendranath, S., Caverhill, C. M., & Lewis, M. R. (1988). Ocean primary production and available light: further algorithms for remote sensing. Deep Sea Research Part A. Oceanographic Research Papers, 35(6), 855-879. Qin, B., Zhu, G., Gao, G., Zhang, Y., Li, W., Paerl, H. W., & Carmichael, W. W. (2010). A drinking water crisis in Lake Taihu, China: linkage to climatic variability and lake management. Environmental management, 45(1), 105-112. Rhee, G. Y., & Gotham, I. J. (1981). The effect of environmental factors on phytoplankton growth: Temperature and the interactions of temperature with nutrient limitation 1. Limnology and oceanography, 26(4), 635-648. Sathyendranath, S., Platt, T., Caverhill, C. M., Warnock, R. E., & Lewis, M. R. (1989). Remote sensing of oceanic primary production: computations using a spectral model. Deep Sea Research Part A. Oceanographic Research Papers, 36(3), 431-453. Smith, R. C., & Baker, K. S. (1981). Optical properties of the clearest natural waters (200–800 nm). Applied optics, 20(2), 177-184. Smith, V. H., & Schindler, D. W. (2009). Eutrophication science: where do we go from here? Trends in ecology & evolution, 24(4), 201-207. Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M. M., Allen, S. K., Boschung, J., . . . Midgley, P. M. (2014). Climate Change 2013: The physical science basis. contribution of working group I to the fifth assessment report of IPCC the intergovernmental panel on climate change. Tu, M.-C., Smith, P., & Filippi, A. M. (2018). Hybrid forward-selection method-based water-quality estimation via combining Landsat TM, ETM+, and OLI/TIRS images and ancillary environmental data. PloS one, 13(7), e0201255. United Nations (1992). United Nations Framework Convention of Climate Change. NY, USA: Author. United States Geological Survey (2018). Landsat missions. Reston, VA, USA: Author. Vanhellemont, Q. (2017). ACOLITE Manual version 20170718.0. Brussels, Belgium: Royal Belgian Institute of Natural Sciences. Vanhellemont, Q., & Ruddick, K. (2014). Turbid wakes associated with offshore wind turbines observed with Landsat 8. Remote Sensing of Environment, 145, 105-115. Vanhellemont, Q., & Ruddick, K. (2015). Advantages of high quality SWIR bands for ocean colour processing: Examples from Landsat-8. Remote Sensing of Environment, 161, 89-106. Vystavna, Y., Hejzlar, J., & Kop??ek, J. (2017). Long-term trends of phosphorus concentrations in an artificial lake: Socio-economic and climate drivers. PloS one, 12(10), e0186917. Werdell, P. J., & Bailey, S. W. (2005). An improved in-situ bio-optical data set for ocean color algorithm development and satellite data product validation. Remote Sensing of Environment, 98(1), 122-140. World Health Organization. (1993). Guidelines for drinking-water quality: World Health Organization. Xia, R., Zhang, Y., Critto, A., Wu, J., Fan, J., Zheng, Z., & Zhang, Y. (2016). The potential impacts of climate change factors on freshwater eutrophication: implications for research and countermeasures of water management in China. Sustainability, 8(3), 229. Yang, W., Matsushita, B., Chen, J., Yoshimura, K., & Fukushima, T. (2013). Application of a semianalytical algorithm to remotely estimate diffuse attenuation coefficient in turbid inland waters. IEEE Geoscience and Remote Sensing Letters, 11(6), 1046-1050. Yang, X.-e., Wu, X., Hao, H.-l., & He, Z.-l. (2008). Mechanisms and assessment of water eutrophication. Journal of zhejiang university Science B, 9(3), 197-209. Yung, Y.-K., Wong, C., Broom, M., Ogden, J., Chan, S., & Leung, Y. (1997). Long-term changes in hydrography, nutrients and phytoplankton in Tolo Harbour, Hong Kong. Paper presented at the Asia-Pacific Conference on Science and Management of Coastal Environment. Zaneveld, J. R., Kitchen, J. C., & Pak, H. (1981). The influence of optical water type on the heating rate of a constant depth mixed layer. Journal of Geophysical Research, 86. Zanter, K. (2016). LANDSAT 8 (L8) Data Users Handbook (LSDS-1574 Version 2.0). United States Geological Survey, South Dakota. Zhou, W., Yuan, X., Huo, W., & Yin, K. (2004). Distribution of chlorophyll a and primary productivity in the adjacent sea area of Changjiang River Estuary. Acta Oceanologica Sinica, 26(3), 143-150. 行政院環境保護署(2019)。民國108年環境水質監測年報。台北市:作者。 盧瑞山(1999)。類神經網路於環境資訊之鑑識、推估及預測之研究。國立台灣大學環境工程學研究所博士論文,台北市。 蘇柏聞(2017)。以多尺度遙測產品評估台灣珊瑚礁棲地適合度。國立成功大學環境工程學研究所碩士論文,台南市。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83859-
dc.description.abstract氣候變遷調適為因應全球暖化的對策,旨在降低社會和生物系統的脆弱性,表示透過預測氣候變遷帶來的不利影響,隨即採取合適的行動預防或減少損害。優養化為自然水體必然會面臨的環境問題,而造成水質變化的因子很多,且不同因子對水體的影響程度尚不清楚,尤其是與氣候變遷有關的因子。以時間和空間高解析度監測水質之參數至關重要,其原因為減輕污染的費用通常較早期預防及干預措施昂貴。因此,本研究將Landsat 8衛星影像應用於埤塘監測總磷濃度。 在桃園地區埤塘監測部分,本研究利用Landsat 8衛星影像,以多元迴歸模型建立衛星波段反射率與總磷濃度之關係。大氣校正採用ACOLITE軟體,並選取短紅外光波段對衛星影像進行處理。本研究之方法通過p值和變異數膨脹因素閾值對參數作正向選擇,預測結果由多元迴歸分析推導得出方程式,其R2值為0.67,且在近紅外光波段最具相關性,即Landsat 8衛星的波段5。於研究範圍內繞37B池、繞32B池和社子1號池三口埤塘中,僅繞32B池和社子1號池取得些許的像元,其原因為部分埤塘的水表面被太陽能光電板覆蓋所致。總磷濃度之結果顯示,將本研究之模型套用至整個桃園地區的埤塘,使用衛星遙測評估埤塘水質具有可行性,而推導之關係方程式可能適用於擴展埤塘的時間和空間有效水質數據。zh_TW
dc.description.abstractClimate change adaptation is a response to global warming that aims to reduce the vulnerability of social and biological systems. This means anticipating the adverse impacts of climate change and then taking appropriate actions to prevent or reduce damage. Eutrophication is an inevitable environmental problem for natural water bodies. However, there are many factors that cause water quality changes, and the influence of different factors on water bodies is not clear, especially for those factors related to climate change. Monitoring water quality parameters at high spatial and temporal resolution is essential because pollution mitigation is usually more expensive than early prevention and intervention. Therefore, this study applied Landsat 8 satellite imagery to monitor the total phosphorus (TP) concentration in irrigation ponds. For irrigation pond monitoring in the Taoyuan area, this study used Landsat 8 satellite imagery to establish the relationship between satellite reflectance and the concentration of TP using a multiple regression model. ACOLITE software was used for atmospheric correction, and shortwave infrared (SWIR) bands were selected to process the satellite imagery. P values and variation inflation factor (VIF) thresholds were used for forward selection of variables, and prediction variables in the multiple regression equation were derived. The derived equation yielded a coefficient of determination (R2) of 0.67. The near-infrared band (band 5 of Landsat 8) was found to be the most significant band. The imagery retrieved for two of the three studied ponds, Shetzu No. 1 and Jao No. 37B, contained only a few pixels of the irrigation ponds because parts of the surfaces of the irrigation ponds are covered by floating photovoltaic plants. The TP concentrations results show that it is feasible to apply the model to the whole area of Taoyuan and use satellite remote sensing to assess water quality, and the derived equation could be used to temporally and spatially extend the available water quality data of these irrigation ponds.en
dc.description.provenanceMade available in DSpace on 2023-03-19T21:20:57Z (GMT). No. of bitstreams: 1
U0001-2107202220580400.pdf: 4755291 bytes, checksum: 828a39f27a052a6888538a0d4af44640 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents口試委員會審定書 i 致謝 ii 摘要 iii ABSTRACT iv 目錄 vi 表目錄 viii 圖目錄 x 第一章 前言 1 1.1 研究背景 1 1.2 研究目的 3 第二章 文獻回顧 4 2.1 氣候變遷定義 4 2.2 優養化指標 6 2.3 桃園埤圳重要濕地與範圍坵塊 12 2.4 衛星遙測原理 20 2.4.1 大氣校正 20 2.4.2 水色反演算法 25 2.5 衛星影像產品 40 2.5.1 影像資料格式 40 2.5.2 產品等級 42 第三章 材料與方法 44 3.1 研究區域 44 3.2 Landsat 8衛星影像 47 第四章 結果與討論 52 4.1 衛星影像取得及篩選 52 4.2 衛星影像處理 57 4.3 建立反演算法 71 4.4 多元迴歸模型擬合結果 74 4.5 桃園地區埤塘時空分布 77 第五章 結論與建議 85 5.1 結論 85 5.2 建議 86 參考文獻 87
dc.language.isozh-TW
dc.subject優養化zh_TW
dc.subject埤塘zh_TW
dc.subject多元回歸分析zh_TW
dc.subject遙感探測zh_TW
dc.subject水庫zh_TW
dc.subject水質zh_TW
dc.subjectWater qualityen
dc.subjectEutrophicationen
dc.subjectIrrigation ponden
dc.subjectMultiple regression analysisen
dc.subjectRemote sensingen
dc.subjectReservoiren
dc.titleLandsat 8衛星影像應用於桃園地區埤塘總磷水質監測zh_TW
dc.titleTotal Phosphorus for Water Quality Monitoring of Irrigation Ponds Using Landsat 8 Imagery in Taoyuan, Taiwanen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree博士
dc.contributor.oralexamcommittee闕蓓德(Pei-Te Chiueh),張嘉玲(Chia-Ling Chang),盧瑞山(Ruei-Shan Lu),江謝令涵(Lin-Han Chiang Hsieh)
dc.subject.keyword優養化,埤塘,多元回歸分析,遙感探測,水庫,水質,zh_TW
dc.subject.keywordEutrophication,Irrigation pond,Multiple regression analysis,Remote sensing,Reservoir,Water quality,en
dc.relation.page79
dc.identifier.doi10.6342/NTU202201618
dc.rights.note未授權
dc.date.accepted2022-07-22
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept環境工程學研究所zh_TW
Appears in Collections:環境工程學研究所

Files in This Item:
File SizeFormat 
U0001-2107202220580400.pdf
  Restricted Access
4.64 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved