請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83856
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林哲宇 | zh_TW |
dc.contributor.advisor | Che-Yu Lin | en |
dc.contributor.author | 陳奕丞 | zh_TW |
dc.contributor.author | Yi-Cheng Chen | en |
dc.date.accessioned | 2023-03-19T21:20:50Z | - |
dc.date.available | 2023-12-26 | - |
dc.date.copyright | 2022-07-29 | - |
dc.date.issued | 2022 | - |
dc.date.submitted | 2002-01-01 | - |
dc.identifier.citation | Fung, Y. C., & Skalak, R. (1981). Biomechanics: mechanical properties of living tissues.
Rousseau, E. P. M., Sauren, A. A. H. J., Van Hout, M. C., & Van Steenhoven, A. A. (1983). Elastic and viscoelastic material behavior of fresh and glutaraldehyde-treated porcine aortic valve tissue. Journal of Biomechanics, 16, 339-348. Lin, I. K., Ou, K. S., Liao, Y. M., Liu, Y., Chen, K. S., & Zhang, X. (2009). Viscoelastic characterization and modeling of polymer transducers for biological applications. Journal of Microelectromechanical Systems, 18, 1087-1099. Lin, C. Y., Shau, Y. W., Wang, C. L., & Kang, J. H. (2015). Modeling and analysis of the viscoelastic response of the ankle ligament complex in inversion ankle sprain. Annals of Biomedical Engineering, 43, 2047-2055. Lu, L., Dao, M., Kumar, P., Ramamurty, U., Karniadakis, G. E., & Suresh, S. (2020). Extraction of mechanical properties of materials through deep learning from instrumented indentation. Proceedings of the National Academy of Sciences of the United States of America, 117, 7052-7062. Al-Haik, M. S., Hussaini, M. Y., & Garmestani, H. (2006). Prediction of nonlinear viscoelastic behavior of polymeric composites using an artificial neural network. International Journal of Plasticity, 22, 1367-1392. Saeidirad, M. H., Rohani, A., & Zarifneshat, S. (2013). Predictions of viscoelastic behavior of pomegranate using artificial neural network and Maxwell model. Computers and Electronics in Agriculture, 98, 1-7. Oliver, W. C., & Pharr, G. M. (1992). An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of Materials Research, 7, 1564-1583. Bell, T. J., Field, J. S., & Swain, M. V. (1992). Elastic-plastic characterization of thin films with spherical indentation. Thin Solid Films, 220, 289-294. Moussa, C., Bartier, O., Mauvoisin, G., Pilvin, P., & Delattre, G. (2012). Characterization of homogenous and plastically graded materials with spherical indentation and inverse analysis. Journal of Materials Research, 27, 20-27. Huang, Y. P., & Zheng, Y. P. (2015). Measurement of soft tissue elasticity in vivo: techniques and applications. CRC Press. Carson, W. C., Gerling, G. J., Krupski, T. L., Kowalik, C. G., Harper, J. C., & Moskaluk, C. A. (2011). Material characterization of ex vivo prostate tissue via spherical indentation in the clinic. Medical Engineering & Physics, 33, 302-309. Yao, W., Yoshida, K., Fernandez, M., Vink, J., Wapner, R. J., Ananth, C. V., ... & Myers, K. M. (2014). Measuring the compressive viscoelastic mechanical properties of human cervical tissue using indentation. Journal of the Mechanical Behavior of Biomedical Materials, 34, 18-26. Maccabi, A., Shin, A., Namiri, N. K., Bajwa, N., St. John, M., Taylor, Z. D., ... & Saddik, G. N. (2018). Quantitative characterization of viscoelastic behavior in tissue-mimicking phantoms and ex vivo animal tissues. PLoS ONE, 13, e0191919. Lakes, R., & Lakes, R. S. (2009). Viscoelastic materials. Cambridge University Press. Kalyanam, S., Toohey, K. S., & Insana, M. F. (2021). Modeling biphasic hydrogels under spherical indentation: Application to soft tissues. Mechanics of Materials, 161, 103987. Toohey, K. S., Kalyanam, S., Palaniappan, J., & Insana, M. F. (2016). Indentation analysis of biphasic viscoelastic hydrogels. Mechanics of Materials, 92, 175-184. Mattei, G., Gruca, G., Rijnveld, N., & Ahluwalia, A. (2015). The nano-epsilon dot method for strain rate viscoelastic characterisation of soft biomaterials by spherical nano-indentation. Journal of the Mechanical Behavior of Biomedical Materials, 50, 150-159. Sneddon, I. N. (1965). The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. International Journal of Engineering Science, 3, 47-57. Field, J. S., & Swain, M. V. (1993). A simple predictive model for spherical indentation. Journal of Materials Research, 8, 297-306. Cheneler, D., Mehrban, N., & Bowen, J. (2013). Spherical indentation analysis of stress relaxation for thin film viscoelastic materials. Rheologica Acta, 52, 695-706. Bahram, M., Mohseni, N., & Moghtader, M. (2016). An introduction to hydrogels and some recent applications. In Emerging concepts in analysis and applications of hydrogels. IntechOpen. Ahmed, E. M. (2015). Hydrogel: Preparation, characterization, and applications: A review. Journal of Advanced Research, 6, 105-121. Mesa-Múnera, E., Ramírez-Salazar, J. F., Boulanger, P., & Branch, J. W. (2012). Inverse-FEM characterization of a brain tissue phantom to simulate compression and indentation. Ingeniería y Ciencia, 8, 11-36. Jamal, M., & Morgan, M. N. (2019). Characterization of material properties based on inverse finite element modelling. Inventions, 4, 40. Wang, W., Wang, H., Zhou, J., Fan, H., & Liu, X. (2021). Machine learning prediction of mechanical properties of braided-textile reinforced tubular structures. Materials & Design, 212, 110181. Chibani, S., & Coudert, F. X. (2020). Machine learning approaches for the prediction of materials properties. Apl Materials, 8, 080701. Kashfi, M., Goodarzi, S., & Rastgou, M. (2022). Plastic properties determination using virtual dynamic spherical indentation test and machine learning algorithms. Journal of Mechanical Science and Technology, 36, 325-331. Cacopardo, L., Guazzelli, N., Nossa, R., Mattei, G., & Ahluwalia, A. (2019). Engineering hydrogel viscoelasticity. Journal of the Mechanical Behavior of Biomedical Materials, 89, 162-167. Ganser, C., Czibula, C., Tscharnuter, D., Schöberl, T., Teichert, C., & Hirn, U. (2018). Combining adhesive contact mechanics with a viscoelastic material model to probe local material properties by AFM. Soft Matter, 14, 140-150. Plaseied, A., & Fatemi, A. (2008). Deformation response and constitutive modeling of vinyl ester polymer including strain rate and temperature effects. Journal of Materials Science, 43, 1191-1199. Solares, S. D. (2016). Nanoscale effects in the characterization of viscoelastic materials with atomic force microscopy: coupling of a quasi-three-dimensional standard linear solid model with in-plane surface interactions. Beilstein Journal of Nanotechnology, 7, 554-571. Takagi, H., Takahashi, M., Maeda, R., Onishi, Y., Iriye, Y., Iwasaki, T., & Hirai, Y. (2008). Analysis of time dependent polymer deformation based on a viscoelastic model in thermal imprint process. Microelectronic Engineering, 85, 902-906. Zhao, G., Xu, J., Feng, Y., Tang, J., Chen, Y., Xin, S., ... & Xu, J. (2021). A rate-dependent cohesive zone model with the effects of interfacial viscoelasticity and progressive damage. Engineering Fracture Mechanics, 248, 107695. Huang, Y. W., Lee, W. S., Chuang, Y. F., Cao, W., Yang, F., & Lee, S. (2019). Time-dependent deformation of artificial muscles based on Nylon 6. Materials Science and Engineering: C, 98, 445-451. Bazli, L., Bagherian, M. H., Karrabi, M., Abbassi‐Sourki, F., & Azizi, H. (2020). Effect of starch ratio and compatibilization on the viscoelastic behavior of POE/starch blends. Journal of Applied Polymer Science, 137, 48877. Pei, Z., Wang, L., Wu, P., Zhang, J., & Zhou, D. (2019). Analytical solution of deformations for two-layer Timoshenko beams glued by a viscoelastic interlayer. Mathematical Problems in Engineering, 2019. Güven, U. (2022). Effects of lateral inertia on the group velocities and specific damping capacities of viscoelastic polymeric rods. International Journal of Impact Engineering, 162, 104156. Kocur, G. K., Harmanci, Y. E., Chatzi, E., Steeb, H., & Markert, B. (2021). Automated identification of the coefficient of restitution via bouncing ball measurement. Archive of Applied Mechanics, 91, 47-60. Oyen, M. L. (2006). Analytical techniques for indentation of viscoelastic materials. Philosophical Magazine, 86, 5625-5641. Kumar, M. R., & Narasimhan, R. (2004). Analysis of spherical indentation of linear viscoelastic materials. Current Science, 1088-1095. Cheng, L., Xia, X., Scriven, L. E., & Gerberich, W. W. (2005). Spherical-tip indentation of viscoelastic material. Mechanics of Materials, 37, 213-226. Mahmoudi, A. H., & Nourbakhsh, S. H. (2011). A Neural Networks approach to characterize material properties using the spherical indentation test. Procedia Engineering, 10, 3062-3067. Chowdhury, M. (2012). Thin polymer films out of thermodynamic equilibrium (Doctoral dissertation, Dissertation, Albert-Ludwigs-Universität Freiburg, 2012). Larsson, P. L., & Carlsson, S. (1998). On microindentation of viscoelastic polymers. Polymer Testing, 17, 49-75. Yoo, L., Reed, J., Shin, A., Kung, J., Gimzewski, J. K., Poukens, V., ... & Demer, J. L. (2011). Characterization of ocular tissues using microindentation and hertzian viscoelastic models. Investigative Ophthalmology & Visual Science, 52, 3475-3482. Boyer, G., Zahouani, H., Le Bot, A., & Laquieze, L. (2007, August). In vivo characterization of viscoelastic properties of human skin using dynamic micro-indentation. In 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 4584-4587). IEEE. Kohl, J. G., Singer, I. L., & Simonson, D. L. (2008). Determining the viscoelastic parameters of thin elastomer based materials using continuous microindentation. Polymer Testing, 27, 679-682. Smirnov, S. V., Veretennikova, I. A., Fomin, V. M., Filippov, A. A., & Brusentseva, T. A. (2019). Studying the viscoelastic properties of an epoxy resin strengthened with silicon dioxide nanoparticles by instrumented microindentation. Mechanics of Composite Materials, 55, 337-348. Yahaya, M. Z., & Mohamad, A. A. (2017). Hardness testing of lead-free solders: a review. Soldering & Surface Mount Technology. Daphalapurkar, N. P., Dai, C., Gan, R. Z., & Lu, H. (2009). Characterization of the linearly viscoelastic behavior of human tympanic membrane by nanoindentation. Journal of the Mechanical Behavior of Biomedical Materials, 2, 82-92. Jin, H., & Lewis, J. L. (2004). Determination of Poisson’s ratio of articular cartilage by indentation using different-sized indenters. Journal of Biomechanical Engineering, 126, 138-145. Fischer-Cripps, A. C., & Nicholson, D. W. (2004). Nanoindentation. Mechanical engineering series. Applied Mechanics Reviews, 57, B12-B12. Chen, G. (2021). Recurrent neural networks (RNNs) learn the constitutive law of viscoelasticity. Computational Mechanics, 67, 1009-1019. Aulova, A., Oseli, A., & Bek, M. (2021). Neural networks for predicting the temperature-dependent viscoelastic response of PEEK under constant stress rate loading. Polymer Testing, 100, 107233. Boughton, O. R., Ma, S., Zhao, S., Arnold, M., Lewis, A., Hansen, U.,... & Abel, R. L. (2018). Measuring bone stiffness using spherical indentation. PLoS ONE, 13, e0200475. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83856 | - |
dc.description.abstract | 材料性質的測定不論是對於發展理論以及實務應用來說都是非常重要的事情,準確的量測材料性質才可以推導出正確的理論以及在實務上做正確的評估及應用。在材料黏彈性質測定領域中,使用圓球壓痕測試來進行測定是很常見的方法,然而,使用圓球壓痕測試只能測到材料的局部黏彈性質,為相對的性質,而非材料真正的性質。
為了準確得到材料真正的黏彈性質,本研究探討使用類神經網路對生醫材料進行圓球壓痕測試而得到的黏彈性質測量結果進行最佳化之方法,並設計不同的神經網路架構進行學習,輸出最佳的材料黏彈性之預測結果,同時降低模型預測之誤差。 本研究主要透過有限元素模擬軟體進行圓球壓痕測試,將應力鬆弛試驗過程中的負載之數據輸出,並藉由赫茲接觸力學將其轉換成應力,接著再使用Generalized Maxwell Solid Model (3rd order) 對數據進行曲線擬合取得實驗的黏彈性質之測量值,將測量值以及有限元素模擬軟體中材料設定之實際值輸入至神經網路進行學習,並進行材料黏彈性之預測。 由研究結果顯示,運用類神經網路對圓球壓痕測試於生醫材料黏彈性測量結果進行最佳化是可行的。最終,本研究訓練出兩種神經網路模型用於最佳化圓球壓痕測試於生醫材料黏彈性之測量,在與本研究之有限元素模擬架設條件相同下,透過此兩種神經網路模型可以準確地預測材料之黏彈性質。 | zh_TW |
dc.description.abstract | Material properties characterization is very important for the development of theory and practical applications. Only by accurately characterize material properties can we derive correct theories and make correct evaluations and applications in practice. In the field of material viscoelastic properties characterization, it is very common to use the spherical indentation test to measure. However, the spherical indentation test can only measure the local viscoelastic properties of the material, which are relative properties, not the true nature of the material.
In order to accurately obtain the true viscoelastic properties of materials, this study explores a method to optimize the viscoelastic properties measurement results obtained from spherical indentation testing of biomedical materials using neural networks, and designs two different neural networks. The framework learns to output the best prediction result of material viscoelasticity, and at the same time reduces the error of model prediction. In this study, the spherical indentation test is mainly carried out through finite element simulation software, and the load data during the stress relaxation test is output, and converted into stress by Hertzian contact mechanics, and then the Generalized Maxwell Solid Model (3rd order) is used to curve fitting the data to obtain the experimental viscoelastic measurement value, input the measurement value and the actual value of the material setting in the finite element simulation software into the neural network for learning, and predict the viscoelasticity of the material. The results of the study show that it is feasible to optimize the viscoelasticity measurement results of biomedical materials using the spherical indentation test by neural network. Finally, this study trains two neural network models to optimize the measurement of viscoelasticity of biomedical materials by spherical indentation test. Both model can accurately predict the viscoelastic properties of materials. | en |
dc.description.provenance | Made available in DSpace on 2023-03-19T21:20:50Z (GMT). No. of bitstreams: 1 U0001-1406202202110100.pdf: 11720618 bytes, checksum: 854788f7ae4119d92b978252102a06b6 (MD5) Previous issue date: 2022 | en |
dc.description.tableofcontents | 論文口試委員審定書 i
誌謝 ii 中文摘要 iii ABSTRACT iv 目錄 vi 圖目錄 viii 表目錄 xiv Chapter 1 緒論 - 1 - 1.1 前言 - 1 - 1.2 研究動機 - 8 - 1.3 論文架構 - 9 - Chapter 2 理論與背景知識 - 10 - 2.1 Generalized Maxwell Solid Model - 10 - 2.1.1 Generalized Maxwell Solid Model統御方程式之推導 - 11 - 2.1.2 Stress relaxation - 14 - 2.2 圓球壓痕測試 - 16 - 2.2.1 赫茲接觸力學 (Hertzian Contact Mechanics) - 18 - 2.3 神經網路 - 21 - 2.3.1 多層感知器 (Multilayer Perceptron) - 21 - 2.3.2 激活函數 (Activation function) - 22 - 2.3.3 損失函數 (Loss function) - 25 - 2.3.4 反向傳播 (Back propagation) - 26 - Chapter 3 研究方法 - 27 - 3.1 資料準備 - 27 - 3.2 有限元素模型之建立 - 28 - 3.2.1 實例操作 - 29 - 3.3 資料預處理 - 41 - 3.3.1 透過赫茲接觸力學將原始資料進行換算 - 41 - 3.3.2 曲線擬合 - 41 - Chapter 4 神經網路架構實現與結果討論 - 48 - 4.1 神經網路模型一 (NN-1) - 49 - 4.1.1 使用原始資料進行訓練 - 50 - 4.1.2 使用無因次化資料進行訓練 - 54 - 4.2 神經網路模型二 (NN-2) - 62 - 4.3 神經網路結果討論 - 67 - Chapter 5 結論與未來展望 - 68 - 5.1 結論 - 68 - 5.2 未來展望 - 70 - 參考文獻 - 71 - 附錄A - 78 - | - |
dc.language.iso | zh_TW | - |
dc.title | 運用類神經網路最佳化圓球壓痕測試於生醫材料黏彈性測量之研究 | zh_TW |
dc.title | Optimization of the Spherical Indentation Testing Results on the Viscoelastic Properties of Biomaterials Using Neural Network | en |
dc.type | Thesis | - |
dc.date.schoolyear | 110-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 舒貽忠;張凱閔 | zh_TW |
dc.contributor.oralexamcommittee | Yi-Chung Shu;Ke-Vin Chang | en |
dc.subject.keyword | 黏彈性力學,有限元素模擬,壓痕測試,神經網路,生醫材料, | zh_TW |
dc.subject.keyword | Viscoelasticity,Finite Element Simulation,Indentation,Neural Network,Biomaterials, | en |
dc.relation.page | 101 | - |
dc.identifier.doi | 10.6342/NTU202200939 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2022-07-25 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 應用力學研究所 | - |
顯示於系所單位: | 應用力學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-110-2.pdf 目前未授權公開取用 | 11.45 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。