請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83835完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳安宇 | zh_TW |
| dc.contributor.advisor | An-Yeu Wu | en |
| dc.contributor.author | 黃教峻 | zh_TW |
| dc.contributor.author | Chiao-Chun Huang | en |
| dc.date.accessioned | 2023-03-19T21:19:55Z | - |
| dc.date.available | 2023-12-26 | - |
| dc.date.copyright | 2022-08-02 | - |
| dc.date.issued | 2022 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | [1] International Data Corporation, “Global Smartphone Shipments Expected to Decline 3.5% in 2022.” https://www.idc.com/getdoc.jsp?containerId=prUS49226922
[2] Statista research report, “Volume of data/information created, worldwide from 2010 to 2025.” https://www.statista.com/statistics/871513/worldwide-data-created/#statisticContainer [3] Grand View Research, “Identity Verification Market Size, Share & Trends Analysis, 2022-2030.” https://www.grandviewresearch.com/industry-analysis/identity-verification-market-report [4] Wang, Chen, et al. "User authentication on mobile devices: Approaches, threats and trends." Computer Networks 170 (2020): 107118. [5] Android Authority, “How fingerprint scanners work: Optical, capacitive, and ultrasonic explained.” https://www.androidauthority.com/howfingerprint-scanners-work-670934 [6] Nam, Jin-Moon, Seung-Min Jung, and Moon-Key Lee. "Design and implementation of a capacitive fingerprint sensor circuit in CMOS technology." Sensors and Actuators A: Physical 135.1 (2007): 283-291. [7] Tang, Hao-Yen, et al. "3-D ultrasonic fingerprint sensor-on-a-chip." IEEE Journal of Solid-State Circuits 51.11 (2016): 2522-2533. [8] Yi He, Bo Pi. (2019). Multi-layer optical designs of under-screen optical sensor module having spaced optical collimator array and optical sensor array for on-screen fingerprint sensing (U.S. Patent No. 20190012512). U.S. Patent and Trademark Office. [9] Hong, Lin, Yifei Wan, and Anil Jain. "Fingerprint image enhancement: Algorithm and performance evaluation." IEEE transactions on pattern analysis and machine intelligence 20.8 (1998): 777-789. [10] Joshi, Indu, et al. "Latent fingerprint enhancement using generative adversarial networks." 2019 IEEE winter conference on applications of computer vision (WACV). IEEE, 2019. [11] F. Galton, “Finger Prints”, Macmillan, London, 1892. [12] E. R. Henry, “Classification and uses of fingerprints”, George Routledge and Sons, London, 1900. [13] Sherlock, Barry G., D. M. Monro, and K. Millard. "Fingerprint enhancement by directional Fourier filtering." IEE Proceedings-Vision, Image and Signal Processing 141.2 (1994): 87-94. [14] P. H. Huang, “Implementation For AFIS”, M.S Thesis, National Tsing Hua University, 2004. [15] Xiao, Qinghan, and Hazem Raafat. "Fingerprint image postprocessing: a combined statistical and structural approach." Pattern Recognition 24.10 (1991): 985-992. [16] Kim, Seonjoo, Dongjae Lee, and Jaihie Kim. "Algorithm for detection and elimination of false minutiae in fingerprint images." International Conference on Audio-and Video-Based Biometric Person Authentication. Springer, Berlin, Heidelberg, 2001. [17] D. Maltoni, D. Maio, A. K. Jain, and S. Prabhakar, Handbook of fingerprint recognition. Springer, 2009. [18] Danilo Valdes-Ramirez, et al. "A Review of Fingerprint Feature Representations and Their Applications for Latent Fingerprint Identification: Trends and Evaluation." IEEE Access 7.1 (2019): 48484-48499. [19] Shen, Xuening, et al. "A new automated fingerprint identification system." Journal of Computer Science and Technology 4.4 (1989): 289-294. [20] Wan, Dingrui, and Jie Zhou. "Fingerprint recognition using model-based density map." IEEE Transactions on Image Processing 15.6 (2006): 1690-1696. [21] Kovacs-Vajna, Zsolt Miklos. "A fingerprint verification system based on triangular matching and dynamic time warping." IEEE Transactions on Pattern Analysis and Machine Intelligence 22.11 (2000): 1266-1276. [22] Zhang, Weiwei, and Yangsheng Wang. "Core-based structure matching algorithm of fingerprint verification." 2002 International Conference on Pattern Recognition. Vol. 1. IEEE, 2002. [23] Qi, Jin, Suzhen Yang, and Yangsheng Wang. "Fingerprint matching combining the global orientation field with minutia." Pattern Recognition Letters 26.15 (2005): 2424-2430. [24] Vij, Akhil, and Anoop Namboodiri. "Learning minutiae neighborhoods: A new binary representation for matching fingerprints." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. 2014. [25] Chowdhury, Anurag, et al. "Can a CNN Automatically Learn the Significance of Minutiae Points for Fingerprint Matching?." Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. 2020. [26] Tang, Yao, et al. "FingerNet: An unified deep network for fingerprint minutiae extraction." 2017 IEEE International Joint Conference on Biometrics (IJCB). IEEE, 2017. [27] Minaee, Shervin, Elham Azimi, and Amirali Abdolrashidi. "Fingernet: Pushing the limits of fingerprint recognition using convolutional neural network." arXiv preprint arXiv:1907.12956 (2019). [28] Lu Jiang, et al. "A direct fingerprint minutiae extraction approach based on convolutional neural networks." 2016 International Joint Conference on Neural Networks (IJCNN). IEEE, 2016. [29] Gonzalez, Rafael C., and Richard Eugene Woods. Digital Image Processing. Pearson, 2018. [30] Shih, Frank Y. Image processing and mathematical morphology: fundamentals and applications. CRC press, 2017. [31] Chen, Kuan-Chun, Ching-Yao Chou, and An-Yeu Andy Wu. "Co-design of sparse coding and dictionary learning for real-time physiological signals monitoring." 2019 IEEE International Workshop on Signal Processing Systems (SiPS). IEEE, 2019. [32] Mairal, Julien, et al. "Online dictionary learning for sparse coding." Proceedings of the 26th annual international conference on machine learning. 2009. [33] Chou, Ching-Yao, et al. "Compressed-domain ECG-based biometric user identification using compressive analysis." Sensors 20.11 (2020): 3279. [34] J. Shlens, A tutorial on principal component analysis. Apr. 2014. [35] Feng, Jianjiang, Jie Zhou, and Anil K. Jain. "Orientation field estimation for latent fingerprint enhancement." IEEE Trans. Pattern Analysis and Machine Intelligence 35.4 (2012): 925-940. [36] Cole, Simon A. Suspect identities: A history of fingerprinting and criminal identification. Harvard University Press, 2009. [37] Tang, Wei, et al. "Orientation Field Estimation for Embedded Fingerprint Authentication System." IEICE TRANSACTIONS on Information and Systems 93.7 (2010): 1918-1926. [38] Trivedi, Amit Kumar. "Fingerprint Orientation Estimation: Challenges and Opportunities." arXiv preprint arXiv:2010.11563 (2020). [39] Bazen, Asker M., and Sabih H. Gerez. "Systematic methods for the computation of the directional fields and singular points of fingerprints." IEEE transactions on pattern analysis and machine intelligence 24.7 (2002): 905-919. [40] Alhalabi, Wadee, Mohammad AU Khan, and Tariq M. Khan. "Orientation Field Estimation for Noisy Fingerprint Image Enhancement." Procedia Computer Science 163 (2019): 352-369. [41] Schroff, Florian, Dmitry Kalenichenko, and James Philbin. "Facenet: A unified embedding for face recognition and clustering." Proceedings of the IEEE conference on computer vision and pattern recognition. 2015. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83835 | - |
| dc.description.abstract | 隨著3C產品與個人資料的大量成長,掌管使用權的身分辨識技術逐漸受到重視,其中利用生物特徵進行辨識的作法,已逐漸取代傳統知識型驗證成為主流趨勢,例如在智慧型手機的解鎖系統中,指紋辨識已佔有廣大的市場,而新興的屏下指紋辨識系統,能夠直接將指紋感測器安裝於螢幕下方,因此不需要額外的空間放置指紋感測器,不但使用起來更方便,也提供全面屏手機指紋辨識的做法。然而,屏下指紋易受到顯示面板與相關電路的雜訊影響,導致圖像品質不佳,要使用傳統局部特徵點的辨識作法,就須要先透過高運算與費時的指紋重建方法,以提升指紋圖像品質,此過程對於講求低運算複雜度的終端裝置是較不友善的。
針對上述問題,本文利用全域方向場(Orientation Field)提取特徵,觀察角度分布以建立頻率向量(Frequency vector),由於方向場對於雜訊有較高的容忍度,因此高複雜度的指紋重建方法將可以被省略。為了更進一步提升辨識能力,我們使用三元組損失(Triplet loss)來訓練類神經網路模型,將原先頻率向量變換為一個轉換向量(Transformed vector),使之拉近自身特徵間距離並推離其他資料的特徵。最後利用比對基礎的辨識方法(Matching-based method)進行指紋辨識,其中表決決策法(Vote decision method)能使自身與其他指紋間的辨識分數有更明顯的差距,以此獲得更好的辨識結果。綜合以上所述,本文設計了一個基於全域向量場的指紋辨識作法,並利用類神經網路增強萃取特徵,最後透過比對基礎方式進行指紋辨識,此作法不須要高複雜度的指紋重建過程,將更適合終端裝置使用。 | zh_TW |
| dc.description.abstract | With the massive growth of 3C products and personal data, user identification that controls the access right has gained a lot more interest. Among these methods, the use of biometrics for identification has gradually replaced traditional knowledge-based methods and become the mainstream. For example, fingerprint has already occupied a vast market in the smartphone authentication system. Novel in-display fingerprint technique can directly install sensor under display screen, so no additional space is required to place the sensor, which is more convenient to use and provides a solution to perform fingerprint authentication in full-screen smartphones. However, in-display fingerprint is easily affected by the noise of display panel and related circuits, which causes poor image quality. If we want to use traditional local-minutiae-based method, it is necessary to use high-computation and long-latency reconstruction methods to improve fingerprint quality. However, this is not friendly to edge devices that require low computational complexity.
Based on the above problems, this thesis uses global orientation field to extract features by observing the angle distribution to create the frequency vector. Since the orientation field is more tolerant to noise, high-complexity reconstruction methods can be avoided. To further improve the recognition ability, we use triplet loss to train the neural network model and change the original frequency vector into a transformed vector, where it can gather self-features while pushing away other features. Finally, we use a matching-based method for fingerprint authentication. Meanwhile, a vote decision method is used to enlarge the score gap between self and other data to obtain a better result. This method doesn’t require high-complexity reconstruction processes; therefore, it is more suitable for edge devices. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T21:19:55Z (GMT). No. of bitstreams: 1 U0001-2607202222150400.pdf: 5579272 bytes, checksum: 4e262f730780993470266f939b323248 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 誌謝 vii
摘要 ix ABSTRACT xi CONTENTS xiii LIST OF FIGURES xvii LIST OF TABLES xx Chapter 1 Introduction 1 1.1 Background 1 1.1.1 Biometric user identification 1 1.1.2 Fingerprint authentication in smartphones 3 1.1.3 Fingerprint Sensors 4 1.2 Motivation and Main Contributions 6 1.2.1 In-display fingerprint sensor 6 1.2.2 Low image quality from the in-display fingerprint sensor 8 1.2.3 Heavy computation and long latency of reconstruction 8 1.2.4 Thesis Target 10 1.3 Thesis Organization 10 Chapter 2 Review of Fingerprint Authentication System 13 2.1 Fingerprint Authentication System 13 2.2 Related Works of Fingerprint Authentication 17 2.2.1 Traditional-based Methods 17 2.2.2 Neural-network-based Methods 18 2.3 Challenges of the Prior Works 19 2.4 Summary 20 Chapter 3 Fingerprint Preprocessing 23 3.1 Fingerprint Enhancement and Noise Removal 23 3.1.1 General Noise Removal 23 3.1.2 Specific Noise Removal 28 3.2 Fingerprint ROI Extraction 30 3.3 Summary 33 Chapter 4 Feature Extraction of Fingerprint 35 4.1 Sparse Coding Based Feature Extraction 35 4.1.1 From local feature to global feature 35 4.1.2 Introduction of Sparse Coding 36 4.1.3 Sparse Coding Algorithm 36 4.1.4 Dictionary Learning 38 4.2 PCA-Based Feature Extraction 40 4.2.1 Problems with previous Sparse Coding Method 40 4.2.2 PCA-assisted Dictionary Method 40 4.3 Extraction Flow of Fingerprint Feature 42 4.4 Orientation-Based Feature Extraction 44 4.4.1 Image-Based Feature Robustness Problem 44 4.4.2 Fingerprint Orientation introduction 45 4.4.3 Calculation of Orientation Field 48 4.4.4 Orientation frequency vector generator 51 4.4.5 Orientation-based feature extraction 52 4.5 Experience of Feature Robustness 53 4.6 Summary 54 Chapter 5 Enhanced Techniques for Fingerprint Authentication System 55 5.1 Overview of our Fingerprint Authentication System 55 5.1.1 Enrollment Stage 56 5.1.2 Verification Stage 57 5.2 Triplet Embedding Model 58 5.2.1 Observation of frequency vector 58 5.2.2 Triplet loss 58 5.2.3 Triplet embedding model in our authentication system 60 5.3 Matching-based Authentication Method 62 5.3.1 Overview of the matching-based method 62 5.3.2 Distance Metric 63 5.3.3 Judgment method: l1-Norm Method 63 5.3.4 Judgment method: Voting decision 65 5.4 Summary 66 Chapter 6 Validation of Proposed Framework 67 6.1 Experiment datasets 67 6.1.1 Open Dataset: FVC-2000 67 6.1.2 Industry Dataset: Noisy version 68 6.1.3 Industry Dataset: Rotated version 69 6.2 Experiment Details 69 6.2.1 Experiment of Feature Selection 69 6.2.2 Experiment of Triplet Embedding model 71 6.2.3 Experiment of Preprocessing and Vote decision method 72 6.2.4 Experiment of ROI extraction and Rotated image 74 6.2.5 Experiment of Open source code and Our Method 77 Chapter 7 Conclusions and Future Directions 79 7.1 Main Contributions 79 7.2 Future Directions 81 Bibliography 83 | - |
| dc.language.iso | en | - |
| dc.subject | 類神經網路 | zh_TW |
| dc.subject | 三元組損失 | zh_TW |
| dc.subject | 類神經網路 | zh_TW |
| dc.subject | 指紋方向場 | zh_TW |
| dc.subject | 指紋辨識 | zh_TW |
| dc.subject | 生物識別 | zh_TW |
| dc.subject | 三元組損失 | zh_TW |
| dc.subject | 生物識別 | zh_TW |
| dc.subject | 指紋方向場 | zh_TW |
| dc.subject | 指紋辨識 | zh_TW |
| dc.subject | Triplet loss | en |
| dc.subject | Biometrics | en |
| dc.subject | Fingerprint authentication | en |
| dc.subject | Orientation field | en |
| dc.subject | Neural Network | en |
| dc.subject | Triplet loss | en |
| dc.subject | Biometrics | en |
| dc.subject | Fingerprint authentication | en |
| dc.subject | Orientation field | en |
| dc.subject | Neural Network | en |
| dc.title | 基於壓縮領域之指紋辨識系統 | zh_TW |
| dc.title | Compressed-Domain Based Fingerprint Authentication System | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 110-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 盧奕璋;蔡佩芸;袁峙 | zh_TW |
| dc.contributor.oralexamcommittee | Yi-Chang Lu;Pei-Yun Tsai;Chih Yuan | en |
| dc.subject.keyword | 生物識別,指紋辨識,指紋方向場,類神經網路,三元組損失, | zh_TW |
| dc.subject.keyword | Biometrics,Fingerprint authentication,Orientation field,Neural Network,Triplet loss, | en |
| dc.relation.page | 86 | - |
| dc.identifier.doi | 10.6342/NTU202201750 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2022-07-27 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電子工程學研究所 | - |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-110-2.pdf 未授權公開取用 | 5.45 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
