請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83834完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 徐振哲 | zh_TW |
| dc.contributor.advisor | Cheng-Che Hsu | en |
| dc.contributor.author | 朱育宏 | zh_TW |
| dc.contributor.author | Yu-Hong Chu | en |
| dc.date.accessioned | 2023-03-19T21:19:53Z | - |
| dc.date.available | 2023-12-27 | - |
| dc.date.copyright | 2022-07-29 | - |
| dc.date.issued | 2022 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | 1. S. K. Fan, Y. T. Shen, L. P. Tsai, C. C. Hsu, F. H. Ko, and Y. T. Cheng, "Atmospheric-pressure microplasma in dielectrophoresis-driven bubbles for optical emission spectroscopy," Lab Chip, 12 (19), 3694-3699 (2012). 2. D. Pappas, "Status and potential of atmospheric plasma processing of materials," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 29 (2)(2011). 3. D. Mariotti, "Nonequilibrium and effect of gas mixtures in an atmospheric microplasma," Applied Physics Letters, 92 (15)(2008). 4. T. Matsumoto, D. Wang, T. Namihira, and H. Akiyam, in Air Pollution - A Comprehensive Perspective, 2012. 5. T. Oda, "ATMOSPHERIC PRESSURE NONTHERMAL PLASMA DECOMPOSITION OF GASEOUS AIR CONTAMINANTS AND THAT DIAGNOSIS," presented at the ICESP X, 2006 (unpublished). 6. C. Meyer, D. Demecz, E. L. Gurevich, U. Marggraf, G. Jestel, and J. Franzke, "Development of a novel dielectric barrier microhollow cathode discharge for gaseous atomic emission spectroscopy," Journal of Analytical Atomic Spectrometry, 27 (4)(2012). 7. U. Kogelschatz, "Dielectric-Barrier Discharges: Their History, Discharge Physics, and Industrial Applications," Plasma Chemistry and Plasma Processing, 23 (1), 1-46 (2003). 8. Y.-J. Yang, and C.-C. Hsu, "A Flexible Paper-Based Microdischarge Array Device: A Novel Route to Cost-Effective and Simple Setup Microplasma Generation Devices," IEEE Transactions on Plasma Science, 42 (12), 3756-3759 (2014). 9. Y.-C. Hong, "Atmospheric-Pressure Air Plasma Jet and Its Striation Discharge Mode for Treatment of Thermally Sensitive Materials," Coatings, 11 (7)(2021). 10. Kenji Ishikawa, and Masaru Hori, in Plasma Medical Science, edited by S. Toyokuni et al., 2018, pp. 5-107. 11. Y. Sato, T. Sato, and D. Yoshino, "Characteristics of plasma in culture medium generated by positive pulse voltage and effects of organic compounds on its characteristics," Plasma Sources Science and Technology, 25 (6)(2016). 12. A. T. Ambujakshan, J. M. Pringle, C. S. Corr, Z. Chen, J. du Plessis, P. D. Hodgson, and X. J. Dai, "Superior performance of plasma treated water as an anodizing electrolyte for producing nanoporous titanium dioxide nanotubes," Plasma Processes and Polymers, 14 (12)(2017). 13. A. T. Ambujakshan, A. Sadek, K. Magniez, S. Mateti, E. Mayes, G. Devi, J. M. Pringle, J. d. Plessis, Z. Chen, C. S. Corr, P. D. Hodgson, and X. J. Dai, "Plasma treated water - A promising electrolyte to produce nanoporous titanium dioxide nanotubes," Plasma Processes and Polymers, 14 (9)(2017). 14. J. Patel, L. Nemcova, P. Maguire, W. G. Graham, and D. Mariotti, "Synthesis of surfactant-free electrostatically stabilized gold nanoparticles by plasma-induced liquid chemistry," Nanotechnology, 24 (24), 245604 (2013). 15. X. Ma, S. Li, V. Hessel, L. Lin, S. Meskers, and F. Gallucci, "Synthesis of luminescent carbon quantum dots by microplasma process," Chemical Engineering and Processing - Process Intensification, 140, 29-35 (2019). 16. Y. J. Yang, M. Y. Tsai, W. C. Liang, H. Y. Chen, and C. C. Hsu, "Ultra-low-cost and flexible paper-based microplasma generation devices for maskless patterning of poly(ethylene oxide)-like films," ACS Appl Mater Interfaces, 6 (15), 12550-12555 (2014). 17. K. Shimizu, Y. Noma, M. Blajan, and S. Naritsuka, "Study on Surface Modification of GaN by Atmospheric Microplasma," IEEE Transactions on Industry Applications, 49 (5), 2308-2313 (2013). 18. P. K. Kao, and C. C. Hsu, "Battery-operated, portable, and flexible air microplasma generation device for fabrication of microfluidic paper-based analytical devices on demand," Anal Chem, 86 (17), 8757-8762 (2014). 19. C. H. Park, J. S. Lee, J. H. Kim, D.-K. Kim, O. J. Lee, H. W. Ju, B. M. Moon, J. H. Cho, M. H. Kim, P. P. Sun, S.-J. Park, and J. G. Eden, "Wound healing with nonthermal microplasma jets generated in arrays of hourglass microcavity devices," Journal of Physics D: Applied Physics, 47 (43)(2014). 20. O. J. Lee, H. W. Ju, G. Khang, P. P. Sun, J. Rivera, J. H. Cho, S. J. Park, J. G. Eden, and C. H. Park, "An experimental burn wound-healing study of non-thermal atmospheric pressure microplasma jet arrays," J Tissue Eng Regen Med, 10 (4), 348-357 (2016). 21. G. R. Stratton, C. L. Bellona, F. Dai, T. M. Holsen, and S. M. Thagard, "Plasma-based water treatment: Conception and application of a new general principle for reactor design," Chemical Engineering Journal, 273, 543-550 (2015). 22. X. Liao, Y. Su, D. Liu, S. Chen, Y. Hu, X. Ye, J. Wang, and T. Ding, "Application of atmospheric cold plasma-activated water (PAW) ice for preservation of shrimps (Metapenaeus ensis)," Food Control, 94, 307-314 (2018). 23. F. Judee, S. Simon, C. Bailly, and T. Dufour, "Plasma-activation of tap water using DBD for agronomy applications: Identification and quantification of long lifetime chemical species and production/consumption mechanisms," Water Res, 133, 47-59 (2018). 24. T. Krähling, S. Müller, C. Meyer, A.-K. Stark, and J. Franzke, "Liquid electrode dielectric barrier discharge for the analysis of solved metals," Journal of Analytical Atomic Spectrometry, 26 (10)(2011). 25. X. Peng, X. Guo, F. Ge, and Z. Wang, "Battery-operated portable high-throughput solution cathode glow discharge optical emission spectrometry for environmental metal detection," Journal of Analytical Atomic Spectrometry, 34 (2), 394-400 (2019). 26. B. Mitra, B. Levey, and Y. B. Gianchandani, "Hybrid Arc/Glow Microdischarges at Atmospheric Pressure and Their Use in Portable Systems for Liquid and Gas Sensing," IEEE Transactions on Plasma Science, 36 (4), 1913-1924 (2008). 27. D. Luo, D. Ma, Y. He, X. Li, S. Wang, and Y. Duan, "Needle electrode-based microplasma formed in a cavity chamber for optical emission spectrometric detection of volatile organic compounds through a filter paper sampling," Microchemical Journal, 130, 33-39 (2017). 28. J. Halim, "Synthesis and transport properties of 2D transition metal carbides (MXenes)," 2018 (unpublished). 29. Z. Donkó, "Modelling of low-current self-generated oscillations in a hollow cathode discharge," Journal of Physics D: Applied Physics, 32 (14), 1657-1664 (1999). 30. X. Aubert, G. Bauville, J. Guillon, B. Lacour, V. Puech, and A. Rousseau, "Analysis of the self-pulsing operating mode of a microdischarge," Plasma Sources Science and Technology, 16 (1), 23-32 (2007). 31. D. D. Hsu, and D. B. Graves, "Microhollow cathode discharge stability with flow and reaction," Journal of Physics D: Applied Physics, 36 (23), 2898-2907 (2003). 32. O. Taylan, and H. Berberoglu, "Electrical characterization and an equivalent circuit model of a microhollow cathode discharge reactor," Journal of Applied Physics, 116 (4)(2014). 33. C. Lazzaroni, and P. Chabert, "Discharge resistance and power dissipation in the self-pulsing regime of micro-hollow cathode discharges," Plasma Sources Science and Technology, 20 (5)(2011). 34. C. Lazzaroni, and P. Chabert, "A global model of the self-pulsing regime of micro-hollow cathode discharges," Journal of Applied Physics, 111 (5)(2012). 35. P. Chabert, C. Lazzaroni, and A. Rousseau, "A model for the self-pulsing regime of microhollow cathode discharges," Journal of Applied Physics, 108 (11)(2010). 36. Electronics Tutorials (2014), "Unijunction Transistor," Retrieved from https://www.electronics-tutorials.ws/power/unijunction-transistor.html 37. WatElectronics (2019), "Uni Junction Transistor Working, Types and Applications," Retrieved from https://www.watelectronics.com/uni-junction-transistor-working-types/ 38. C. Meyer, S. Muller, E. L. Gurevich, and J. Franzke, "Dielectric barrier discharges in analytical chemistry," Analyst, 136 (12), 2427-2440 (2011). 39. J. Pons, E. Moreau, and G. Touchard, "Asymmetric surface dielectric barrier discharge in air at atmospheric pressure: electrical properties and induced airflow characteristics," Journal of Physics D: Applied Physics, 38 (19), 3635-3642 (2005). 40. R. Brandenburg, "Dielectric barrier discharges: progress on plasma sources and on the understanding of regimes and single filaments," Plasma Sources Science and Technology, 26 (5)(2017). 41. D. Ashpis, M. Laun, and E. Griebeler, in 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition (2012). 42. Electronics Tutorials (2021), "Capacitors in Series," Retrieved from https://www.electronics-tutorials.ws/capacitor/cap_7.html 43. D. P. Subedi, U. M. Joshi, and C. S. Wong, in Plasma Science and Technology for Emerging Economies: An AAAPT Experience, edited by R. S. Rawat, Springer Singapore, Singapore, 2017, pp. 693-737. 44. M. Forte, J. Jolibois, J. Pons, E. Moreau, G. Touchard, and M. Cazalens, "Optimization of a dielectric barrier discharge actuator by stationary and non-stationary measurements of the induced flow velocity: application to airflow control," Experiments in Fluids, 43 (6), 917-928 (2007). 45. N. D. Wilde, H. Xu, N. Gomez-Vega, and S. R. H. Barrett, "A model of surface dielectric barrier discharge power," Applied Physics Letters, 118 (15)(2021). 46. X. Liu, S. Cheng, H. Liu, S. Hu, D. Zhang, and H. Ning, "A survey on gas sensing technology," Sensors (Basel), 12 (7), 9635-9665 (2012). 47. M. J. Kangas, R. M. Burks, J. Atwater, R. M. Lukowicz, P. Williams, and A. E. Holmes, "Colorimetric Sensor Arrays for the Detection and Identification of Chemical Weapons and Explosives," Crit Rev Anal Chem, 47 (2), 138-153 (2017). 48. J. W. Robinson, Frame, E.S., & Frame II, G.M., "Undergraduate Instrumental Analysis (7th ed.). ", CRC Press, Boca Raton, (2014), pp. 49. E. Hurtado-Fernandez, M. Velazquez-Gomez, S. Lacorte, and L. Ramos, "Exhaustive characterization of (semi-)volatile organic contaminants in car dust using comprehensive two-dimensional gas chromatography Time-of-flight mass spectrometry," J Hazard Mater, 411, 125058 (2021). 50. T.-V. Dinh, I.-Y. Choi, Y.-S. Son, and J.-C. Kim, "A review on non-dispersive infrared gas sensors: Improvement of sensor detection limit and interference correction," Sensors and Actuators B: Chemical, 231, 529-538 (2016). 51. H. Hussain, J. Kim, and S. Yi, "Characteristics and Temperature Compensation of Non-Dispersive Infrared (NDIR) Alcohol Gas Sensors According to Incident Light Intensity," Sensors (Basel), 18 (9)(2018). 52. F. H. Huang, S. Y. Lin, and C. C. Hsu, "A low-cost microplasma generation unit allowing for the on-site processing of ZnO-based gas sensors," Analyst, 144 (22), 6653-6659 (2019). 53. M. Jang, J. Lee, S. Y. Park, J. Lee, K. M. Lee, W. Song, S. Myung, S. S. Lee, H.-K. Jung, Y. C. Kang, S. K. Kwak, and K.-S. An, "Rational surface modification of ZnO with siloxane polymers for room-temperature-operated thin-film transistor-based gas sensors," Applied Surface Science, 542(2021). 54. R.-Y. Peng, and W.-C. Liu, "Study of a High-Performance Chemoresistive Ethanol Gas Sensor Synthesized With Au Nanoparticles and an Amorphous IGZO Thin Film," IEEE Transactions on Electron Devices, 68 (2), 753-760 (2021). 55. Chemical Retrieval on the Web (2021), "ELECTRICAL CONDUCTIVITY OF CONJUGATED POLYMERS," Retrieved from https://polymerdatabase.com/polymer%20physics/Polymer%20Conductivity2.html 56. I. Fratoddi, I. Venditti, C. Cametti, and M. V. Russo, "Chemiresistive polyaniline-based gas sensors: A mini review," Sensors and Actuators B: Chemical, 220, 534-548 (2015). 57. Y. Yan, G. Yang, J. L. Xu, M. Zhang, C. C. Kuo, and S. D. Wang, "Conducting polymer-inorganic nanocomposite-based gas sensors: a review," Sci Technol Adv Mater, 21 (1), 768-786 (2021). 58. Y. Chen, R. E. Owyeung, and S. R. Sonkusale, "Combined optical and electronic paper-nose for detection of volatile gases," Anal Chim Acta, 1034, 128-136 (2018). 59. H. Nazemi, J. Antony Balasingam, S. Swaminathan, K. Ambrose, M. U. Nathani, T. Ahmadi, B. L. Y, and A. Emadi, "Mass Sensors Based on Capacitive and Piezoelectric Micromachined Ultrasonic Transducers-CMUT and PMUT," Sensors (Basel), 20 (7)(2020). 60. G. Korotcenkov, in Handbook of Gas Sensor Materials, 2013, pp. 307-328. 61. N. R. Stradiotto, H. Yamanaka, and M. V. B. Zanoni, "Electrochemical sensors: a powerful tool in analytical chemistry," Journal of the Brazilian Chemical Society, 14 (2), 159-173 (2003). 62. R. Hanafi, R. D. Mayasari, Masmui, Agustanhakri, J. Raharjo, and R. Nuryadi, in The 8th National Physics Seminar 2019 (2019). 63. I. Cretescu, D. Lutic, and L. R. Manea, in Electrochemical Sensors Technology, 2017. 64. S. S. Harilal, B. E. Brumfield, N. L. LaHaye, K. C. Hartig, and M. C. Phillips, "Optical spectroscopy of laser-produced plasmas for standoff isotopic analysis," Applied Physics Reviews, 5 (2)(2018). 65. S. G. Spruytte, C. W. Coldren, A. F. Marshall, M. C. Larson, and J. S. Harris, "MBE Growth of Nitride-Arsenide Materials for long Wavelength Opto-electronics," MRS Internet Journal of Nitride Semiconductor Research, 5 (S1), 474-480 (2000). 66. Z. Duan, F. He, X. Si, J. W. Bradley, and J. Ouyang, "Experimental study of atmospheric-pressure micro-plasmas for the ambient sampling of conductive materials," Journal of Physics D: Applied Physics, 51 (6)(2018). 67. W. Li, Z. Yin, X. Cheng, W. Hang, J. Li, and B. Huang, "Pulsed microdischarge with inductively coupled plasma mass spectrometry for elemental analysis on solid metal samples," Anal Chem, 87 (9), 4871-4878 (2015). 68. C. Li, X. Jiang, and X. Hou, "Dielectric barrier discharge molecular emission spectrometer as gas chromatographic detector for amines," Microchemical Journal, 119, 108-113 (2015). 69. Z. Wu, M. Chen, P. Li, Q. Zhu, and J. Wang, "Dielectric barrier discharge non-thermal micro-plasma for the excitation and emission spectrometric detection of ammonia," Analyst, 136 (12), 2552-2557 (2011). 70. T. Yang, D. X. Gao, Y. L. Yu, M. L. Chen, and J. H. Wang, "Dielectric barrier discharge micro-plasma emission spectrometry for the detection of acetone in exhaled breath," Talanta, 146, 603-608 (2016). 71. F. Meng, X. Li, and Y. Duan, "Chip-based ingroove microplasma with orthogonal signal collection: new approach for carbon-containing species detection through open air reaction for performance enhancement," Sci Rep, 4, 4803 (2014). 72. Y. Yang, Y. Wang, X. Hou, Y. Lin, L. Yang, X. Hou, and C. Zheng, "Can low-temperature point discharge Be used as atomic emission source for sensitive determination of cyclic volatile methylsiloxanes?," Anal Chim Acta, 1124, 121-128 (2020). 73. K. Kakegawa, R. Harigane, M. Aida, H. Miyahara, S. Maruo, and A. Okino, "Development of a High-Density Microplasma Emission Source for a Micro Total Analysis System," Anal Sci, 33 (4), 505-510 (2017). 74. X. Jiang, Z. Hu, H. He, J. Luo, Y. Tian, and X. Hou, "A two-dimensional sensor based on dielectric barrier discharge molecular optical emission and chemiluminescence for discrimination analysis of volatile halohydrocarbons," Microchemical Journal, 129, 16-22 (2016). 75. Z. Wu, J. Jiang, and N. Li, "Cold excitation and determination of hydrogen sulfide by dielectric barrier discharge molecular emission spectrometry," Talanta, 144, 734-739 (2015). 76. F. Meng, and Y. Duan, "Nitrogen microplasma generated in chip-based ingroove glow discharge device for detection of organic fragments by optical emission spectrometry," Anal Chem, 87 (3), 1882-1888 (2015). 77. B. Wang, W. Cao, and Y. Duan, "Selective detection of organophosphate nerve agents using microplasma device," Anal. Methods, 6 (6), 1848-1854 (2014). 78. R. L. Vander Wal, C. K. Gaddam, and M. J. Kulis, "An investigation of micro-hollow cathode glow discharge generated optical emission spectroscopy for hydrocarbon detection and differentiation," Appl Spectrosc, 68 (6), 649-656 (2014). 79. D. B. Luo, Y. X. Duan, Y. He, and B. Gao, "A novel DC microplasma sensor constructed in a cavity PDMS chamber with needle electrodes for fast detection of methanol-containing spirit," Sci Rep, 4, 7451 (2014). 80. B. Han, X. Jiang, X. Hou, and C. Zheng, "Dielectric barrier discharge carbon atomic emission spectrometer: universal GC detector for volatile carbon-containing compounds," Anal Chem, 86 (1), 936-942 (2014). 81. X. Yuan, X. Ding, Z. Zhao, X. Zhan, and Y. Duan, "Performance evaluation of a newly designed DC microplasma for direct organic compound detection through molecular emission spectrometry," Journal of Analytical Atomic Spectrometry, 27 (12)(2012). 82. B. Mitra, and Y. B. Gianchandani, "The Detection of Chemical Vapors in Air Using Optical Emission Spectroscopy of Pulsed Microdischarges From Two- and Three- Electrode Microstructures," IEEE Sensors Journal, 8 (8), 1445-1454 (2008). 83. Y. Duan, Y. Su, and Z. Jin, "Capillary-discharge-based portable detector for chemical vapor monitoring," Review of Scientific Instruments, 74 (5), 2811-2816 (2003). 84. Z. Jin, Y. Su, and Y. Duan, "A low-power, atmospheric pressure, pulsed plasma source for molecular emission spectrometry," Anal Chem, 73 (2), 360-365 (2001). 85. M. Arslan, M. Zareef, H. E. Tahir, Z. Guo, A. Rakha, H. Xuetao, J. Shi, L. Zhihua, Z. Xiaobo, and M. R. Khan, "Discrimination of rice varieties using smartphone-based colorimetric sensor arrays and gas chromatography techniques," Food Chem, 368, 130783 (2022). 86. D. H. Park, J. M. Heo, W. Jeong, Y. H. Yoo, B. J. Park, and J. M. Kim, "Smartphone-Based VOC Sensor Using Colorimetric Polydiacetylenes," ACS Appl Mater Interfaces, 10 (5), 5014-5021 (2018). 87. P. Devi, and J. P. Singh, "A Highly Sensitive Colorimetric Gas Sensor Based on Indium Oxide Nanostructures for H2S Detection at Room Temperature," IEEE Sensors Journal, 21 (17), 18512-18518 (2021). 88. M. Salimi, and S. M. R. Milani Hosseini, "Smartphone-based detection of lung cancer-related volatile organic compounds (VOCs) using rapid synthesized ZnO nanosheet," Sensors and Actuators B: Chemical, 344(2021). 89. I. Yoon, G. Eom, S. Lee, B. K. Kim, S. K. Kim, and H. J. Lee, "A Capacitive Micromachined Ultrasonic Transducer-Based Resonant Sensor Array for Portable Volatile Organic Compound Detection with Wireless Systems," Sensors (Basel), 19 (6)(2019). 90. S. Choi, K. Park, S. Lee, Y. Lim, B. Oh, H. Y. Chae, C. S. Park, H. Shin, and J. J. Kim, "A Three-Step Resolution-Reconfigurable Hazardous Multi-Gas Sensor Interface for Wireless Air-Quality Monitoring Applications," Sensors (Basel), 18 (3)(2018). 91. E. H. Doeven, G. J. Barbante, A. J. Harsant, P. S. Donnelly, T. U. Connell, C. F. Hogan, and P. S. Francis, "Mobile phone-based electrochemiluminescence sensing exploiting the ‘USB On-The-Go’ protocol," Sensors and Actuators B: Chemical, 216, 608-613 (2015). 92. A. C. Sun, C. Yao, A. G. Venkatesh, and D. A. Hall, "An Efficient Power Harvesting Mobile Phone-Based Electrochemical Biosensor for Point-of-Care Health Monitoring," Sens Actuators B Chem, 235, 126-135 (2016). 93. H. Jiang, A. Sun, A. G. Venkatesh, and D. A. Hall, "An Audio Jack-Based Electrochemical Impedance Spectroscopy Sensor for Point-of-Care Diagnostics," IEEE Sens J, 17 (3), 589-597 (2017). 94. K. Suzuki, A. Komuro, S. Sato, M. Sakurai, K. Mitsuhashi, N. Sekiya, Y. Watanabe, K. Kanagawa, and A. Ando, "Development of small high-voltage AC power supply for a dielectric barrier discharge plasma actuator," Rev Sci Instrum, 92 (2), 024707 (2021). 95. J. S. Wiley, J. T. Shelley, and R. G. Cooks, "Handheld low-temperature plasma probe for portable "point-and-shoot" ambient ionization mass spectrometry," Anal Chem, 85 (14), 6545-6552 (2013). 96. G. Parameswarreddy, K. S. Pavan, E. N. Skariah, and S. T. K, in 2021 IEEE Texas Power and Energy Conference (TPEC) (2021), pp. 1-6. 97. G. Fonte (2016), "MAKING WAVES," Retrieved from https://www.nutsvolts.com/magazine/article/making_waves 98. Texas Instruments (2017), "LM386 Low Voltage Audio Power Amplifier datasheet (Rev. C)," Retrieved from https://www.ti.com/lit/ds/symlink/lm386.pdf 99. CircuitBread (2020), "Different Regions of BJT Operation," Retrieved from https://www.circuitbread.com/tutorials/different-regions-of-bjt-operation 100. Electronics Tutorials (2017), "Kirchhoff’s Current Law," Retrieved from https://www.electronics-tutorials.ws/dccircuits/kirchhoffs-current-law.html 101. B. L. Dokić, and B. Blanuša, in Power Electronics: Converters and Regulators, Springer International Publishing, Cham, 2015, pp. 43-141. 102. Electronics Tutorials (2022), "Parallel Resonance Circuit," Retrieved from https://www.electronics-tutorials.ws/accircuits/parallel-resonance.html 103. D. Rodriguez, R. Gorur, and P. Hansen, "Effect of humidity on the breakdown characteristics of air in non-uniform fields at 30 kHz," IEEE Transactions on Dielectrics and Electrical Insulation, 17 (1), 45-52 (2010). 104. SIGLENT Technologies (2017), "How do I determine what bandwidth of scope I require for my application?," Retrieved from https://siglentna.com/operating-tip/determine-bandwidth-scope-require-application/ 105. Keysight Technologies "示波器測試探棒負載實驗," Retrieved from http://literature.cdn.keysight.com/litweb/pdf/5990-9175ZHA.pdf 106. ElectronicsBeliever (2017), "What Creates Ringing and Voltage Spikes in Switching MOSFET?," Retrieved from http://electronicsbeliever.com/snubber-circuit-design-analysis/ 107. D. Staack, B. Farouk, A. Gutsol, and A. Fridman, "DC normal glow discharges in atmospheric pressure atomic and molecular gases," Plasma Sources Science and Technology, 17 (2)(2008). 108. P. J. Bruggeman, N. Sadeghi, D. C. Schram, and V. Linss, "Gas temperature determination from rotational lines in non-equilibrium plasmas: a review," Plasma Sources Science and Technology, 23 (2)(2014). 109. Electronics Tutorials (2022), "Series Resonance Circuit," Retrieved from https://www.electronics-tutorials.ws/accircuits/series-resonance.html 110. eGauge (2015), "Knowledge of Power is Power," Retrieved from https://www.egauge.net/blog/2015/09/30/knowledge-about-power/ | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83834 | - |
| dc.description.abstract | 電漿作為物質的第四態,在分析化學的檢測應用上利用其發射光譜而具有廣泛的應用,而微電漿因體積小、設備成本低、功率消耗低等優勢,所以在可攜式的檢測應用上也佔有一席之地。本研究設計兩種可攜式高壓模組,分別建構出兩套氣體檢測平台用以檢測揮發性有機物蒸氣,為了測試此兩套檢測平台作為有機氣體檢測器的表現,本研究使用乙醇蒸氣作為待測氣體,並且針對此兩種高壓模組的電性特徵、光譜表現等實驗結果進行評估。 本研究的第一套檢測平台使用藍芽遙控高壓模組產生DBD電漿,其中的設計概念為透過手機將正弦波聲音訊號遠端輸出,利用藍芽耳機模組將該訊號輸入至LM386功率放大器,透過將正弦波過度放大飽和而修飾成方波並用來控制BJT的開關,BJT在瞬間開關時將使變壓器獲得電壓而能使MGD產生電漿。在該模組的設計過程中,因選用的藍芽耳機模組為PWM擬合波形,所以須使用低通濾波器修飾波形,此外LM386具有內建直流偏壓且較小的電壓增益,因此須使用分壓器消除直流偏壓,並在增益腳位間連接電容以提升電壓增益,最後使用加速電容提升BJT開關速度後即可實現以手機聲頻訊號進行控制的DBD電漿系統。由於藍芽耳機模組內部為全橋式換流電路且BJT開啟時僅具有內電阻而降低電源電壓輸出,於是採用三個獨立電源運作以免損壞元件並維持電漿的穩定性。 本研究提出三種操作模式控制藍芽遙控高壓模組,掃頻模式使電漿開關頻率呈線性變化,可找出使乙醇特徵峰具較強響應的條件;調節模式使電漿在特定開關頻率下運作,能夠對乙醇蒸氣定量檢測,於本研究中發現使用開關頻率7 kHz時監測CH特徵峰後可得R2為0.9969、LOD達791.7 ppb的檢量結果;突衝模式使電漿在設定的脈衝間隔下以特定的操作點條件運作,能夠節省能源並減緩電極老化、損壞,因此可對乙醇蒸氣進行長期監控。在掃頻模式繪製的甲醇、乙醇、異丙醇二維光譜中,由於特徵峰強度、相對高度不同,因此若能建立有機氣體二維光譜資料庫,則此裝置具有發展為電子鼻的潛力。然而此裝置僅在氣氛環境為氬氣時才有對乙醇蒸氣的檢測能力,若在空氣環境中改變電漿開關頻率也僅能延長MGD的壽命,光譜則無明顯的CN特徵峰,因此現階段此模組並不適用於空氣環境的有機氣體檢測。 本研究的第二套檢測平台使用自激振盪高壓模組產生直流微電漿,希望透過串聯不同鎮流電阻值改變電漿性質以找出在空氣環境中有利於有機氣體檢測的條件。實驗中測試的鎮流電阻值範圍落在1到100 kΩ之間,並且在電性量測中發現串聯不同鎮流電阻時均產生自脈衝放電,且具有鎮流電阻值越小、峰值電流越大、放電持續時間越短的特性。在電漿光譜測試中也發現鎮流電阻越小,氮氣放光被抑制且具有較長的特徵峰拖尾,足以說明電漿性質在串聯不同鎮流電阻時會產生變化,且鎮流電阻越小時乙醇造成的CN特徵峰越明顯,因此在統整電性與光譜性質後可推測出高峰值電流、短放電持續時間造成高峰值功率時有利於空氣環境下偵測乙醇蒸氣。最後在串聯1 kΩ鎮流電阻後收取光譜並計算CN淨強度進行定量則可得R2為0.9963、LOD達37 ppm的檢量結果。 | zh_TW |
| dc.description.abstract | Plasma, as the fourth state of the matter, is widely used in the detection in analytical chemistry by optical emission spectroscopy. Besides, microplasma has the advantages of being small in size, low equipment cost, and low power consumption, which makes it has a place in portable detection applications. In this study, two portable high-voltage modules were designed to construct two sets of gas detection platforms to detect vapor of volatile organic compounds. In order to test the performance of these two gas detection platforms, ethanol vapor was used as the testing gas, and the experimental results, such as the electrical characteristics and spectral performance of the two high-voltage modules, were evaluated. The first gas detection platform developed by this research uses a Bluetooth remote control high-voltage module to generate DBD microplasma. By remotely transmitting the sine wave signals from a mobile phone through a Bluetooth headphone module and inputting the signals to the LM386 power amplifier, the sine wave could be saturated into a square wave that controls the switch of the BJT. Next, with the instant switch of the BJT, the transformer will obtain voltage and generate microplasma on the MGD. However, because the output waveform of the Bluetooth headphone module is PWM, a low-pass filter must be used to block high-frequency signals. Besides, due to the built-in DC bias and the small voltage gain of the LM386 chip, a voltage divider must be used to eliminate the DC bias, and a capacitor must be connected between the gain pins to increase the voltage gain. A speed-up capacitor is also added to increase the switching speed of the BJT to realize control of the DBD plasma system with audio signals from a mobile phone. Nevertheless, 3 independent power supplies are needed to avoid damage to the components and maintain the stability of the DBD due to the full-bridge converter inside the Bluetooth headphone module and the low impedence of the circuit that causes the output voltage decrease when BJT switches on. In this study, three operation modes are proposed to control the Bluetooth remote control high voltage module. The first operation mode is sweep mode which makes the switching frequency of the plasma change linearly and can be used to find the optimal switching frequency that makes the characteristic peaks of ethanol vapor have the strongest response. The second operation mode is regulate mode which operates plasma at a specific operation point and can be used for ethanol vapor calibration. In this study, by operating the switching frequency of 7 kHz and monitoring the CH characteristic peak, the calibration result showed that LOD was 791.7 ppb and R2 value was 0.9969. The third operation mode is burst mode which operates plasma at a specific operation point between the set up interburst intervals. This mode enables the possibility of long-term monitoring of ethanol vapor as it saves energy and prolongs the lifespan of electrodes. In addition, the two-dimensional spectra of methanol, ethanol, and isopropanol drawn in sweep mode have different intensities of characteristic peaks and relative heights. That means this device could be developed into an electronic nose by establishing a two-dimensional spectral database of different organic vapors. However, this device only has the ability to detect ethanol vapor when the atmosphere is argon. It could only change the lifespan of the MGD and have little CN characteristic peak responses in the spectra caused by ethanol vapor in air. Therefore, the vapor detection of volatile organic compounds with this module is still not applicable in air environment. The second gas detection platform developed by this research uses a self-oscillating high voltage module to generate DC microplasma. The purpose of constructing this gas testing platform is to change the plasma properties by connecting different values of ballast resistors in series and finding out the conditions that are beneficial to the detection of organic vapors in air. The selected values of ballast resistors in this work range from 1 to 100 kΩ. In the electrical measurements, it is found that self-pulsation discharge occurs at any selected value of ballast resistors. While connecting smaller values of ballast resistor, the characteristics of higher peak current and shorter discharge duration would be found. In addition, the performance of plasma spetra reveals that the characteristic peaks of nitrogen are suppressed and drag longer emission tails while connecting smaller values of ballast resistor, which indicates that the plasma properties change with different values of ballast resistor connecting. It is also found that the CN characteristic peak caused by ethanol vapor is more obvious when applying smaller values of ballast resistor. Therefore, by integrating electrical and spectral properties, it can be inferred that higher peak current and shorter discharge duration, which causes higher peak power, would be the conditions that are suitable for ethanol vapor detection in air. Finally, by connecting 1 kΩ ballast resistor in series, the net intensity of CN could be acquired for quantification, and the calibration result showed that LOD was 37 ppm and R2 value was 0.9963. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T21:19:53Z (GMT). No. of bitstreams: 1 U0001-2607202221000100.pdf: 12662552 bytes, checksum: 07de77c1a404787d5faa70f4d7411c65 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 誌謝 I 中文摘要 II ABSTRACT IV 目錄 VII 圖目錄 XI 表目錄 XIX 第 1 章 緒論 1 1.1 前言 1 1.2 研究動機與目標 2 1.3 論文總覽 2 第 2 章 文獻回顧 3 2.1 電漿之簡介 3 2.1.1 電漿產生機制與反應 3 2.1.2 帕邢定律 4 2.1.3 常壓與低壓電漿的特徵 5 2.2 微電漿簡介 6 2.2.1 微電漿種類 6 2.2.2 微電漿應用 10 2.3 直流電漿系統 14 2.3.1 直流電漿特徵曲線 14 2.3.2 微中空陰極放電的自脈衝放電特性 16 2.3.3 振盪電路模擬自脈衝放電 19 2.4 介電層屏蔽放電系統 21 2.4.1 DBD放電原理 21 2.4.2 等效電路與利薩如曲線 24 2.4.3 體積DBD與表面DBD 28 2.5 氣體檢測法 30 2.5.1 氣體檢測方式與檢測設備 30 2.5.2 電漿光譜應用於氣體檢測 35 2.6 智慧型手機的檢測應用 41 2.6.1 氣體檢測器 41 2.6.2 音頻訊號控制的電化學檢測應用 43 2.7 可攜式高壓電源供應器 45 第 3 章 電子元件介紹與電路設計 49 3.1 藍芽遙控高壓模組 49 3.1.1 電子元件與說明 49 3.1.2 升壓原理 55 3.2 自激振盪高壓模組 59 3.2.1 基礎知識 59 3.2.2 自激振盪電路運作原理 63 3.2.3 自激振盪電路之改良 66 第 4 章 實驗設備 69 4.1 微電漿產生裝置之製備 69 4.2 微電漿氣體檢測平台 71 4.2.1 DBD氣體檢測平台 71 4.2.2 直流微電漿氣體檢測平台 74 4.3 電漿量測設備 77 4.3.1 電漿放光量測 77 4.3.2 電漿電性量測 78 4.3.3 示波器設定與碳棒校正 80 4.3.4 化學藥品與氣體成分 85 第 5 章 實驗結果與討論 87 5.1 藍芽遙控高壓模組的演進 87 5.1.1 低通濾波器修飾藍芽耳機模組波形 87 5.1.2 功率放大器的測試與調整 90 5.1.3 電源無法整合的原因 94 5.1.4 加速電容的必要性 97 5.1.5 開關頻率與電漿電性 99 5.2 DBD氣體檢測平台的光譜檢測 105 5.2.1 不同環境光譜特徵 105 5.2.2 操作模式說明 107 5.2.3 氬氣環境下的光譜檢測應用 109 5.2.4 電漿光譜作為電子鼻之潛力 113 5.2.5 空氣環境下的光譜檢測應用 115 5.2.6 應用流程圖 119 5.3 直流微電漿氣體檢測平台的光譜檢測 120 5.3.1 直流微電漿的空氣光譜特徵 120 5.3.2 電漿電性分析 121 5.3.3 鎮流電阻的影響 124 5.3.4 電漿電性與光譜特徵統整 128 5.3.5 定量分析 130 第 6 章 結論與未來展望 133 第 7 章 參考文獻 135 第 8 章 附錄 147 8.1 舊版藍芽遙控高壓模組 147 8.1.1 RLC串聯諧振電路 147 8.1.2 升壓原理 150 8.1.3 舊版藍芽遙控高壓模組的劣勢 153 8.2 直流微電漿電極選擇 155 8.2.1 銅膠帶電極 155 8.2.2 針尖對鋁箔電極 158 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 電漿發射光譜 | zh_TW |
| dc.subject | 有機氣體檢測器 | zh_TW |
| dc.subject | 微電漿 | zh_TW |
| dc.subject | 微電漿 | zh_TW |
| dc.subject | 電漿發射光譜 | zh_TW |
| dc.subject | 空氣氣氛 | zh_TW |
| dc.subject | 可攜式 | zh_TW |
| dc.subject | 可攜式 | zh_TW |
| dc.subject | 藍芽遙控電漿 | zh_TW |
| dc.subject | 空氣氣氛 | zh_TW |
| dc.subject | 氬氣氣氛 | zh_TW |
| dc.subject | 氬氣氣氛 | zh_TW |
| dc.subject | 有機氣體檢測器 | zh_TW |
| dc.subject | 藍芽遙控電漿 | zh_TW |
| dc.subject | VOC detector | en |
| dc.subject | microplasma | en |
| dc.subject | plasma optical emission spectroscopy | en |
| dc.subject | portable | en |
| dc.subject | Bluetooth remote control plasma | en |
| dc.subject | air atmosphere | en |
| dc.subject | argon atmosphere | en |
| dc.subject | VOC detector | en |
| dc.subject | microplasma | en |
| dc.subject | plasma optical emission spectroscopy | en |
| dc.subject | portable | en |
| dc.subject | Bluetooth remote control plasma | en |
| dc.subject | air atmosphere | en |
| dc.subject | argon atmosphere | en |
| dc.title | 可攜式高壓模組之開發和微電漿光譜在有機氣體檢測之應用 | zh_TW |
| dc.title | Development of Portable High Voltage Modules and Application for Microplasma Spectroscopy in Organic Vapor Detection | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 110-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳建彰;陳奕君;陳嘉晉 | zh_TW |
| dc.contributor.oralexamcommittee | Jian-Zhang Chen;I-Chun Cheng;Chia-Chin Chen | en |
| dc.subject.keyword | 微電漿,電漿發射光譜,可攜式,藍芽遙控電漿,空氣氣氛,氬氣氣氛,有機氣體檢測器, | zh_TW |
| dc.subject.keyword | microplasma,plasma optical emission spectroscopy,portable,Bluetooth remote control plasma,air atmosphere,argon atmosphere,VOC detector, | en |
| dc.relation.page | 161 | - |
| dc.identifier.doi | 10.6342/NTU202201749 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2022-07-27 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 化學工程學系 | - |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-110-2.pdf 未授權公開取用 | 12.37 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
