Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83814
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳景然(Ching-Jan Chen)
dc.contributor.authorHou-Fong Maen
dc.contributor.author馬浩峰zh_TW
dc.date.accessioned2023-03-19T21:19:06Z-
dc.date.copyright2022-08-04
dc.date.issued2022
dc.date.submitted2022-07-29
dc.identifier.citation[1] S. Yu, R. Chen, and A. Viswanathan, “Survey of resonant converter topologies”, 2018 T.I. Power Supply Design Seminar, 2018. [2] R. D’Cruz and M. Rajesh, “Half bridge LLC resonant DC-DC converter for solar array simulator application,” in Proc. Int. Conf. Tech. Adv. Power Energy (TAP Energy), Kollam, India, Jun. 2015, pp. 138–143. [3] R. Yang, “A half-bridge LLC resonant converter with loose-coupling transformer and transition capacitor,” in Proc. IEEE Conf. Ind. Electron. Appl., Hangzhou, China, Jun. 2014, pp. 1344–1349. [4] Y. Huang, Y. Hsieh, Y. Lin, H. Chiu, and J. Lin, “Study and implementation on start-up control of full-bridge LLC resonant converter,” in Proc. IEEE Transport. Electrific. Conf. Expo., Asia-Pacific (ITEC Asia-Pacific), Bangkok, Thailand, Jun. 2018. [5] R. Lin and C. Lin, “Design criteria for resonant tank of LLC DC-DC resonant converter,” in Proc. IEEE Conf. Ind. Electron. (IECON), Glendale, AZ, USA, Nov. 2010, pp. 427–432. [6] J. Deng, S. Li, S. Hu, C. Mi, and R. Ma, “Design methodology of LLC resonant converters for electric vehicle battery chargers,” IEEE Trans. Veh. Technol., vol. 63, no. 4, pp. 1581–1592, May 2014. [7] Y. Shen, W. Zhao, Z. Chen, and C. Cai, “Full-bridge LLC resonant converter with series-parallel connected transformers for electric vehicle on-board charger,” IEEE Access., vol. 6, pp. 13490–13500, Mar. 2018. [8] A. Amirahmadi, M. Domb, and E. Persson, “High power density high efficiency wide input voltage range LLC resonant converter utilizing E-mode GaN switches,” in Proc. IEEE Appl. Power Electron. Conf. Expo. (APEC), Tampa, FL, USA, Mar. 2017, pp. 350–354. [9] M. Joung, H. Kim, and J. Baek, “Dynamic analysis and optimal design of high efficiency full bridge LLC resonant converter for server power system,” in Proc. IEEE Appl. Power Electron. Conf. Expo. (APEC), Orlando, FL, USA, Feb. 2012, pp. 1292–1297. [10] B. Kim, K. Park, C. Kim, B. Lee, and G. Moon, “LLC resonant converter with adaptive link-voltage variation for a high-power-density adapter,” IEEE Trans. Power Electron., vol. 25, no. 9, pp. 2248–2252, Sept. 2010. [11] S. Hu, J. Deng, C. Mi, and M. Zhang, “LLC resonant converters for PHEV battery chargers,” in Proc. IEEE Appl. Power Electron. Conf. Expo. (APEC), Long Beach, CA, USA, Mar. 2013, pp. 3051–3054. [12] H. Wu, T. Mu, X. Gao, and Y. Xing, “A secondary-side phase-shift-controlled LLC resonant converter with reduced conduction loss at normal operation for hold-up time compensation application,” IEEE Trans. Power Electron., vol. 30, no. 10, pp. 5352–5357, Oct. 2015. [13] [Online] Available: https://cioafrica.co/toyota-invests-624-million-to-make-electric-vehicle-parts/ [14] [Online] Available: https://www.lifewire.com/what-is-liquid-crystal-display-lcd-2625913 [15] [Online] Available: https://facilityexecutive.com/2018/10/commissioning-solar-pv-systems/ [16] [Online] Available: https://www.netadmin.com.tw/netadmin/zh-tw/technology/C6E22B B7A4554857B91D5214FAA99C03 [17] P. Wong, P. Xu, B. Yang and F. C. Lee, “Performance improvements of interleaving VRMs with coupling inductors”, IEEE Trans. on Power Electron., vol. 16, No. 4, Jul. 2001. [18] B. Yang, “Topology investigation for front end DC/DC power conversion for distributed power system”, Ph. D Thesis, pp. 142-186, Sep. 2003. [19] M. Noah, S. Endo, H. Ishibashi, K. Nanamori, J. Imaoka, K. Umetani and M. Yamamoto, “A current sharing method utilizing single balancing transformer for a multiphase LLC resonant converter with integrated magnetics”, IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 6, issue 2, Jun. 2018. [20] M. Noah, K. Umetani, S. Endo, H. Ishibashi, J. Imaoka, and M. Yamamoto, “A lagrangian dynamics model of integrated transformer incorporated in a multi-phase LLC resonant converter”, 2017 IEEE ECCE, Oct. 2017. [21] S. Li, Q. Min, E. Rong, R. Zhang, X. Du, and S. Lu, “A magnetic integration half-turn planar transformer and its analysis for LLC resonant DC-DC converters”, IEEE Access, Sep. 2019. [22] C. Fei, F. C. Lee, Q. Li, “A new design paradigm for GaN based LLC converter”, 2017 IEEE SPEC, Dec. 2017. [23] M. Noah, S. Kimura, S. Endo, M. Yamamoto, J. Imaoka, K. Umetani and W. Martinez, “A novel three-phase LLC resonant converter with integrated magnetics for lower turn-off losses and higher power density”, 2017 APEC, Mar. 2017. [24] C. Park and S. Han, “Analysis and design of an integrated magnetics planar transformer for high power density LLC resonant converter”, IEEE Access, vol. 9, Nov. 2021. [25] M. Li and Z. Ouyang, B. Zhao and M. A. E. Andersen, “Analysis and modeling of integrated magnetics for LLC resonant converters”, IECON 2017, Oct. 2017. [26] H. Yang and Z. Lu, “Analysis on near-field effect caused by stray magnetic field of integrated LLC transformer”, 2014 International Power Electronics and Application Conference and Exposition, Nov. 2014. [27] F. C. Lee, Q. Li, Z. Liu, Y. Yang, C. Fei and M. Mu, “Application of GaN devices for 1kW server power supply with integrated magnetics”, CPSS Transactions on Power Electronics and Applications, vol. 1, issue 1, Dec. 2016. [28] S. Bolte, F. Schafmeister and J. Bocker, “Bidirectional resonant converter with integrated magnetics for on-board chargers”, 2019 IEEE ISIE, Jun. 2019. [29] Y. Liu, H. Wu, J. Zou, Y. Tai and Z. Ge, “CLL Resonant Converter with Secondary Side Resonant Inductor and Integrated Magnetics”, IEEE Transactions on Power Electronics, vol. 36, Issue 10, Oct. 2021. [30] R. Chen, P. Brohlin and D. Dapkus, “Design and Magnetics Optimization of LLC Resonant Converter with GaN”, 2017 IEEE APEC, Mar. 2017. [31] B. Yang, R. Chen and F. C. Lee, “Integrated magnetic for LLC resonant converter”, 2002 IEEE APEC, Mar. 2002. [32] [Online] Available: https://www.elemon.net/ProductDet/all/fe/452/fe4528142?Supplier=all/ferrites/ferrites-tipo- ee,ec,etd,ei,eer,u,ep/FE4528142/EI28%20NH2B%20NO%20GAP/ [33] [Online] Available: http://www.nifer.hu/ferrites/ee-type-cores/ [34] [Online] Available: https://transformer-bobbin.com/pq-ferrite-core/ [35] TDK, Ferrite cores for switching power supplies, RM series datasheet, Nov. 2019. [36] R. Cheng, Y. Yang, H. Liang and Y. Jiang, “Thin-film integrated magnetic component for three-level LLC resonant converter”, 2005 IEEE International Conference on Industrial Technology, Dec. 2005. [37] M. Dai, X. Zhang, H. Li, D. Zhou, Y. Wang and D. Xu, “LLC converter with an integrated planar matrix transformer based on variable width winding”, 2019 22nd ICEMS, Aug. 2019. [38] R. Cheng, Y. Yang and Y. Jiang, “Design of LLC resonant converter with integrated magnetic technology”, 2005 International Conference on Electrical Machines and Systems, Sep. 2005. [39] C. W. Park and S. K. Han, “Design of an integrated magnetics structure for LLC resonant converter”, IECON 2017, Nov. 2017 [40] Y. Zhang, D. Xu, K. Mino and K. Sasagawa, “1MHz-1kW LLC resonant converter with integrated magnetics”, 2007 IEEE APEC, Feb. 2007. [41] TDK, “Ferrites and accessories”, ELP 64/10/50 with I 64/5/50 Cores datasheet, May 2017. [42] TDK, “Ferrites and accessories”, SIFERRIT material N87 datasheet, Sept. 2017. [43] M. K. Kazimierczuk, “High-frequency magnetic components”, U.K., West Sussex: Wiley, 2009. [44] M. Noah, T. Shirakawa, K. Umetani, J. Imaoka, M. Yamamoto, and E. Hiraki, “Effects of secondary leakage inductance on the LLC resonant converter”, 2019 IEEE APEC, Mar. 2019.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83814-
dc.description.abstract由於高效率與高功率密度之特性,LLC諧振轉換器已廣泛被採用在不同應用之中。為了改善轉換器之功率密度,諧振電感與變壓器整合在同一個鐵芯之整合磁件常被使用。諧振電感與變壓器之間之耦合效應會改變LLC轉換器之穩態特性,並引發如增益曲線偏移與元件應力過大等問題。但是,LLC轉換器之耦合效應從未被分析。 本論文旨在分析LLC諧振轉換器之整合磁件耦合效應,包括時域分析、電壓增益分析、諧振槽之輸入阻抗分析,亦計算了元件上之電壓與電流應力,以分析開關零電壓切換 (ZVS) 條件和能量損耗。此外,三種不同繞線方法之整合磁件設計亦展現與分析,並由Ansys Maxwell與Simplorer模擬所提出之磁件設計。具有400 V 輸入和 20 V/10 A 輸出之轉換器原型的實驗結果驗證了所提出分析之準確性。所提出之分析如在正規化頻率為1之增益曲線與諧振電感電流峰值,與實驗結果相比分別只有11.25%誤差與1.99%誤差,與傳統分析相比分別減少55%與81.6%。zh_TW
dc.description.abstractLLC resonant converter has been widely adopted in different applications due to its high efficiency and high-power density characteristics. To improve the power density of the converter, an integrated magnetic combining resonant inductor and transformer into the same core is often adopted. The coupling effects between resonant inductor and transformer change the LLC converter’s steady-state characteristics and induce issues such as gain curve shift, and component overstress. However, the coupling effects have never been analyzed for LLC converter. This thesis aims to analyze the coupling effects of the integrated magnetic for the LLC resonant converter, including time-domain analysis, voltage gain analysis, and the input impedance analysis of the resonant tank. Voltage and current stress on components are also calculated to analyze the zero-voltage switching conditions of switches and power loss. In addition, magnetic designs of integrated magnetic with three different winding structures are also performed and analyzed. The characteristics of the proposed magnetic designs are simulated by ANSYS Maxwell and Simplorer. Experimental results of a prototype converter with 400 V input and 20 V/10 A output verify the accuracy of the proposed analysis. The proposed analysis such as gain curve when the normalized frequency is 1 and peak value of resonant inductor current only have 11.25% mismatch and 1.99% mismatch respectively, compared with the experimental results, and reduce by 55% and 81.6% respectively compared with traditional analysis.en
dc.description.provenanceMade available in DSpace on 2023-03-19T21:19:06Z (GMT). No. of bitstreams: 1
U0001-2807202202333500.pdf: 9419939 bytes, checksum: cc20e17dc348f0e503e9674fd301dc81 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents口試委員會審定書 ……………………………………………………………………...i 致謝……………………………………………………………………………………...ii 中文摘要……………………………………………………………………………...iii Abstract………………………………………………………………………………iv Table of Contents………………………………………………………………………v List of Figures...………………………………………………………………………vii List of Tables……………………………………………………………………….xiii Chapter 1. Introduction………………………………………………………………1 1.1 Research Background and Recent Development……………………………1 1.2 Research Motivation and Objectives…………………………………………4 1.3 Thesis Organization………………………………………………………8 1.4 Thesis Contribution………………………………………………………9 Chapter 2. Circuit Analysis of Integrated Magnetic with Coupling Effect for LLC Resonant Converter………………………………………. 10 2.1 Time-Domain Analysis………………………………………………………10 2.2 Voltage Gain Analysis…………………………………………………….16 2.3 Input Impedance/Input Admittance Analysis………………………………20 2.4 Voltage Stress and Current Stress Analysis………………………………….22 2.4.1 Resonant Inductor Current iLr……………………………………….23 2.4.2 Rectifier Diode Current iD ………………………………………….25 2.4.3 Output Capacitor Current iCo……………………………………….26 2.4.4 Switch Current iQ1-4………………………………………………….26 2.5 Analysis of Zero-Voltage Switching Conditions of Switches ……………….28 2.6 Power Loss Analysis ……………………………………………………….31 Chapter 3. Magnetic Circuit Analysis of Integrated Magnetics……………………34 3.1 Ferrite Core Selection……………………………………………………...34 3.2 Symmetrical Winding Method………………………………………...……35 3.3 Asymmetrical Winding Method A…………………………………………38 3.4 Asymmetrical Winding Method B…………………………………………41 Chapter 4. Design of Integrated Magnetics…………………………………………45 4.1 Symmetrical Winding Method……………………………………………..46 4.2 Asymmetrical Winding Method A……………………………..……………48 4.3 Asymmetrical Winding Method B…………………………...………….…..51 Chapter 5. Maxwell Simulation and Co-Simulation with Simplorer….……………54 5.1 Symmetrical Winding Method………………………………………………54 5.2 Asymmetrical Winding Method A……………………………….………...59 5.3 Asymmetrical Winding Method B……………………………….………...64 Chapter 6. Power Loss Analysis of Magnetic Components………………………….71 6.1 Core Loss…………………………………………………….………………72 6.1.1 Hysteresis Loss…………………………………………………….72 6.1.2 Eddy Current Loss ………………………………………………….75 6.2 Copper Loss………………………………….………..……………………75 6.2.1 DC Resistance……………………………………………………….75 6.2.2 Skin Effect ………………………………………………………….77 6.2.3 Proximity Effect…………………………………………………….80 6.2.4 Fringing Effect …………………………………………………….86 Chapter 7. Experiment Results……………………………………………………….89 7.1 Experiment Setup………………………………………….………………89 7.2 Experiment Results Verification……………………………………………91 7.2.1 Integrated Magnetic Parameters Measurement…………………….91 7.2.2 Steady-State Operation…………………………………………….99 7.2.3 Efficiency Measurement……………………………………………107 7.2.4 Voltage Gain Curve Verification……………………………………116 Chapter 8. Conclusion and Future Works………………………………………….118 8.1 Conclusions………………………………………………….……………118 8.2 Future Works……………………………………………….………………119 Reference……………………………………………………………………………120
dc.language.isoen
dc.subject穩態分析zh_TW
dc.subjectLLC諧振轉換器zh_TW
dc.subject整合磁件zh_TW
dc.subject耦合效應zh_TW
dc.subject耦合系數zh_TW
dc.subjectintegrated magneticen
dc.subjectsteady-state analysisen
dc.subjectcoupling coefficientsen
dc.subjectcoupling effectsen
dc.subjectLLC resonant converteren
dc.titleLLC諧振轉換器之整合磁件耦合效應分析與設計zh_TW
dc.titleCoupling Effect Analysis and Design of Integrated Magnetics for LLC Resonant Converteren
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳耀銘(Yaow-Ming Chen),邱煌仁(Huang-Jen Chiu),劉宇晨(Yu-Chen Liu)
dc.subject.keywordLLC諧振轉換器,整合磁件,耦合效應,耦合系數,穩態分析,zh_TW
dc.subject.keywordLLC resonant converter,integrated magnetic,coupling effects,coupling coefficients,steady-state analysis,en
dc.relation.page122
dc.identifier.doi10.6342/NTU202201811
dc.rights.note未授權
dc.date.accepted2022-07-29
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
U0001-2807202202333500.pdf
  未授權公開取用
9.2 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved