Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83800
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張煥宗(Huan-Tsung Chang)
dc.contributor.authorHui-Ling Yuen
dc.contributor.author余慧玲zh_TW
dc.date.accessioned2023-03-19T21:18:33Z-
dc.date.copyright2022-08-10
dc.date.issued2022
dc.date.submitted2022-08-02
dc.identifier.citation[1] Yin, M., Jiang, N., Guo, L., Ni, Z., Al-Brakati, A. Y., Othman, M. S., Abdel Moneim, A. E., Kassab, R. B., Oleuropein suppresses oxidative, inflammatory, and apoptotic responses following glycerol-induced acute kidney injury in rats. Life Sci. 2019, 232, 116634. [2] Chawla, L. S., Eggers, P. W., Star, R. A., Kimmel, P. L., Acute kidney injury and chronic kidney disease as interconnected syndromes. N. Engl. J. Med. 2014, 371 (1), 58-66. [3] Makris, K., Spanou, L., Acute kidney injury: definition, pathophysiology and clinical phenotypes. Clin. Biochem. Rev. 2016, 37 (2), 85-98. [4] AlBasher, G., Alfarraj, S., Alarifi, S., Alkhtani, S., Almeer, R., Alsultan, N., Alharthi, M., Alotibi, N., Al-Dbass, A., Abdel Moneim, A. E., Nephroprotective role of selenium nanoparticles against glycerol-Induced acute kidney injury in rats. Biol. Trace Elem. Res. 2020, 194 (2), 444-454. [5] Zuk, A., Bonventre, J. V., Acute kidney injury. Annu. Rev. Med. 2016, 67, 293-307. [6] Hoste, E. A., Bagshaw, S. M., Bellomo, R., Cely, C. M., Colman, R., Cruz, D. N., Edipidis, K., Forni, L. G., Gomersall, C. D., Govil, D., Honor?, P. M., Joannes-Boyau, O., Joannidis, M., Korhonen, A. M., Lavrentieva, A., Mehta, R. L., Palevsky, P., Roessler, E., Ronco, C., Uchino, S., Vazquez, J. A., Vidal Andrade, E., Webb, S., Kellum, J. A., Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study. Intensive Care Med. 2015, 41 (8), 1411-23. [7] Li, K., Chen, Y., Zhang, J., Guan, Y., Sun, C., Li, X., Xie, X., Zhang, D., Yu, X., Liu, T., Zhang, X., Kong, F., Zhao, S., Microenvironment derived from metanephros transplantation inhibits the progression of acute kidney injury in glycerol-induced rat models. Ren. Fail. 2020, 42 (1), 89-97. [8] Bosch, X., Poch, E., Grau, J. M., Rhabdomyolysis and acute kidney injury. N. Engl. J. Med. 2009, 361 (1), 62-72. [9] Kumar P, K. C., Clark clinical medicine. 7st ed.; Saunders Press, London: 2009. [10] Davidson S, B. N., College NR, Davidson’s principles and practice of medicine. 21st ed.; Elsevier, Amsterdam: 2010. [11] Lameire, N., Van Biesen, W., Vanholder, R., The changing epidemiology of acute renal failure. Nat. Rev. Nephrol. 2006, 2 (7), 364-377. [12] Bagley, W. H., Yang, H., Shah, K. H., Rhabdomyolysis. Int. Emergency Med. 2007, 2 (3), 210-218. [13] Kim, J. H., Lee, S. S., Jung, M. H., Yeo, H. D., Kim, H.-J., Yang, J. I., Roh, G. S., Chang, S.-H., Park, D. J., N-acetylcysteine attenuates glycerol-induced acute kidney injury by regulating MAPKs and Bcl-2 family proteins. Nephrol. Dial. Transplant. 2009, 25 (5), 1435-1443. [14] Holt, S., Moore, K., Pathogenesis and treatment of renal dysfunction in rhabdomyolysis. Intensive Care Med. 2001, 27 (5), 803-811. [15] Star, R. A., Treatment of acute renal failure. Kidney Int. 1998, 54 (6), 1817-1831. [16] Palevsky, P. M, Z. J., O’Connor, T. Z, Chertow, G. M, Crowley, S. T, Choudhury, D, Intensity of renal support in critically Ill patients with acute kidney injury. N. Engl. J. Med. 2008, 359 (1), 7-20. [17] Floyd, R. A., Carney, J. M., Free radical damage to protein and DNA: Mechanisms involved and relevant observations on brain undergoing oxidative stress. Ann. Neurol. 1992, 32 (S1), S22-S27. [18] Leutner, S., Eckert, A., M?ller, W. E., ROS generation, lipid peroxidation and antioxidant enzyme activities in the aging brain. J. Neural Transm. 2001, 108 (8), 955-967. [19] Boutaud, O., Moore Kevin, P., Reeder Brandon, J., Harry, D., Howie Alexander, J., Wang, S., Carney Clare, K., Masterson Tina, S., Amin, T., Wright David, W., Wilson Michael, T., Oates John, A., Roberts, L. J., Acetaminophen inhibits hemoprotein-catalyzed lipid peroxidation and attenuates rhabdomyolysis-induced renal failure. Proc. Natl. Acad. Sci. 2010, 107 (6), 2699-2704. [20] Ozawa, Y., Oxidative stress in the light-exposed retina and its implication in age-related macular degeneration. Redox Biol. 2020, 37, 101779. [21] Kalogeris, T., Bao, Y., Korthuis, R. J., Mitochondrial reactive oxygen species: A double edged sword in ischemia/reperfusion vs preconditioning. Redox Biol. 2014, 2, 702-714. [22] Ismail, T., Kim, Y., Lee, H., Lee, D.-S., Lee, H.-S., Interplay between mitochondrial peroxiredoxins and ROS in cancer development and progression. Int. J. Mol. Sci. 2019, 20 (18). [23] Tasanarong, A., Vohakiat, A., Hutayanon, P., Piyayotai, D., New strategy of α- and γ-tocopherol to prevent contrast-induced acute kidney injury in chronic kidney disease patients undergoing elective coronary procedures. Nephrol. Dial. Transplant. 2013, 28 (2), 337-344. [24] Khaledifar, A., Momeni, A., Ebrahimi, A., Kheiri, S., Mokhtari, A., Comparison of N-acetylcysteine, ascorbic acid, and normal saline effect in prevention of contrast-induced nephropathy. ARYA Atheroscler. 2015, 11 (4), 228-232. [25] Albabtain, M. A., Almasood, A. L. I., Alshurafah, H., Alamri, H., Tamim, H., Efficacy of ascorbic acid, N-acetylcysteine, or combination of both on top of saline hydration versus saline hydration alone on prevention of contrast-induced nephropathy: A prospective randomized study. J. Interv. Cardiol. 2013, 26 (1), 90-96. [26] Reyes, L. F., Miller, J. C., Cisneros-Zevallos, L., Antioxidant capacity, anthocyanins and total phenolics in purple-and red-fleshed potato (Solanum tuberosum L.) genotypes. Am. J. Potato Res. 2005, 82 (4), 271. [27] Azevedo, J., Fernandes, I., Faria, A., Oliveira, J., Fernandes, A., Freitas, V. d., Mateus, N., Antioxidant properties of anthocyanidins, anthocyanidin-3-glucosides and respective portisins. Food Chem. 2010, 119 (2), 518-523. [28] Martins, S., Mussatto, S. I., Mart?nez-Avila, G., Monta?ez-Saenz, J., Aguilar, C. N., Teixeira, J. A., Bioactive phenolic compounds: Production and extraction by solid-state fermentation. A review. Biotechnol. Adv. 2011, 29 (3), 365-373. [29] Qin, C. X., Williams, S. J., Woodman, O. L., Antioxidant activity contributes to flavonol cardioprotection during reperfusion of rat hearts. Free Radical Biol. Med. 2011, 51 (7), 1437-1444. [30] Hou, J., Wang, H., Ge, Z., Zuo, T., Chen, Q., Liu, X., Mou, S., Fan, C., Xie, Y., Wang, L., Treating acute kidney injury with antioxidative black phosphorus nanosheets. Nano Lett. 2020, 20 (2), 1447-1454. [31] Zhao, X., Wang, L.-Y., Li, J.-M., Peng, L.-M., Tang, C.-Y., Zha, X.-J., Ke, K., Yang, M.-B., Su, B.-H., Yang, W., Redox-mediated artificial non-enzymatic antioxidant MXene nanoplatforms for acute kidney injury alleviation. Adv. Sci. 2021, 8 (18), 2101498. [32] Holmstr?m, K. M., Finkel, T., Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat. Rev. Mol. Cell Biol. 2014, 15 (6), 411-421. [33] Nordberg, J., Arn?r, E. S. J., Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radical Biol. Med. 2001, 31 (11), 1287-1312. [34] Pan, J., He, H., Su, Y., Zheng, G., Wu, J., Liu, S., Rao, P., GST-TAT-SOD: Cell permeable bifunctional antioxidant enzyme—A potential selective radioprotector. Oxid. Med. Cell. Longevity. 2016, 5935080. [35] Shi, X.-L., Shi, Z.-H., Huang, H., Zhu, H.-G., Zhou, P., Ju, D., Therapeutic effect of recombinant human catalase on H1N1 influenza-induced pneumonia in Mice. Inflammation. 2010, 33 (3), 166-172. [36] Lin, Y., Ren, J., Qu, X., Catalytically active nanomaterials: A promising candidate for artificial enzymes. Acc. Chem. Res. 2014, 47 (4), 1097-1105. [37] Day, B. J., Catalase and glutathione peroxidase mimics. Biochem. Pharmacol. 2009, 77 (3), 285-296. [38] Doctrow, S. R., Huffman, K., Marcus, C. B., Musleh, W., Bruce, A., Baudry, M., Malfroy, B., Salen-manganese complexes: Combined superoxide dismutase/catalase mimics with broad pharmacological efficacy. Adv. Pharmacol. 1996, 38, 247-269. [39] Thangudu, S., Su, C.-H., Peroxidase mimetic nanozymes in cancer phototherapy: Progress and perspectives. Biomolecules. 2021, 11 (7). [40] Gao, L., Zhuang, J., Nie, L., Zhang, J., Zhang, Y., Gu, N., Wang, T., Feng, J., Yang, D., Perrett, S., Yan, X., Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2 (9), 577-583. [41] Kwon, H. J., Kim, D., Seo, K., Kim, Y. G., Han, S. I., Kang, T., Soh, M., Hyeon, T., Ceria nanoparticle systems for selective scavenging of mitochondrial, intracellular, and extracellular reactive oxygen species in parkinson's disease. Angew. Chem. Int. Ed. 2018, 57 (30), 9408-9412. [42] Liu, T., Xiao, B., Xiang, F., Tan, J., Chen, Z., Zhang, X., Wu, C., Mao, Z., Luo, G., Chen, X., Deng, J., Ultrasmall copper-based nanoparticles for reactive oxygen species scavenging and alleviation of inflammation related diseases. Nat. Commun. 2020, 11 (1), 2788. [43] Naguib, M., Kurtoglu, M., Presser, V., Lu, J., Niu, J., Heon, M., Hultman, L., Gogotsi, Y., Barsoum, M. W., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011, 23 (37), 4248-4253. [44] Naguib, M., Mashtalir, O., Carle, J., Presser, V., Lu, J., Hultman, L., Gogotsi, Y., Barsoum, M. W., Two-dimensional transition metal carbides. ACS Nano. 2012, 6 (2), 1322-1331. [45] Anasori, B., Lukatskaya, M. R., Gogotsi, Y., 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2017, 2 (2), 16098. [46] Huang, K., Li, Z., Lin, J., Han, G., Huang, P., Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications. Chem. Soc. Rev. 2018, 47 (14), 5109-5124. [47] Alhabeb, M., Maleski, K., Anasori, B., Lelyukh, P., Clark, L., Sin, S., Gogotsi, Y., Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 2017, 29 (18), 7633-7644. [48] Sun, Y., Gao, S., Lei, F., Xiao, C., Xie, Y., Ultrathin two-dimensional inorganic materials: New opportunities for solid state nanochemistry. Acc. Chem. Res. 2015, 48 (1), 3-12. [49] Chen, Y., Tan, C., Zhang, H., Wang, L., Two-dimensional graphene analogues for biomedical applications. Chem. Soc. Rev. 2015, 44 (9), 2681-2701. [50] Yim, D., Lee, D.-E., So, Y., Choi, C., Son, W., Jang, K., Yang, C.-S., Kim, J.-H., Sustainable nanosheet antioxidants for sepsis therapy via scavenging intracellular reactive oxygen and nitrogen species. ACS Nano. 2020, 14 (8), 10324-10336. [51] Fu, Z., Wang, N., Legut, D., Si, C., Zhang, Q., Du, S., Germann, T. C., Francisco, J. S., Zhang, R., Rational design of flexible two-dimensional MXenes with multiple functionalities. Chem. Rev. 2019, 119 (23), 11980-12031. [52] Wang, H., Wu, Y., Yuan, X., Zeng, G., Zhou, J., Wang, X., Chew, J. W., Clay-inspired MXene-based electrochemical devices and photo-electrocatalyst: State-of-the-art progresses and challenges. Adv. Mater. 2018, 30 (12), 1704561. [53] Xu, Q., Ma, J., Khan, W., Zeng, X., Li, N., Cao, Y., Zhao, X., Xu, M., Highly green fluorescent Nb2C MXene quantum dots. Chem. Commun. 2020, 56 (49), 6648-6651. [54] Kalambate, P. K., Gadhari, N. S., Li, X., Rao, Z., Navale, S. T., Shen, Y., Patil, V. R., Huang, Y., Recent advances in MXene–based electrochemical sensors and biosensors. TrAC, Trends Anal. Chem. 2019, 120, 115643. [55] Morales-Garc?a, ?., Calle-Vallejo, F., Illas, F., MXenes: New horizons in catalysis. ACS Catal. 2020, 10 (22), 13487-13503. [56] He, S., Zhu, Q., Soomro, R. A., Xu, B., MXene derivatives for energy storage applications. Sustain. Energy Fuels. 2020, 4 (10), 4988-5004. [57] Zhang, Y., Wang, L., Zhang, N., Zhou, Z., Adsorptive environmental applications of MXene nanomaterials: A review. RSC Adv. 2018, 8 (36), 19895-19905. [58] Zamhuri, A., Lim, G. P., Ma, N. L., Tee, K. S., Soon, C. F., MXene in the lens of biomedical engineering: Synthesis, applications and future outlook. Biomed. Eng. Online. 2021, 20 (1), 33. [59] Li, H., Wen, Y., Zhu, X., Wang, J., Zhang, L., Sun, B., Novel heterostructure of a MXene@NiFe-LDH nanohybrid with superior peroxidase-like activity for sensitive colorimetric detection of glutathione. ACS Sustainable Chem. Eng. 2020, 8 (1), 520-526. [60] Li, Y., Kang, Z., Kong, L., Shi, H., Zhang, Y., Cui, M., Yang, D.-P., MXene-Ti3C2/CuS nanocomposites: Enhanced peroxidase-like activity and sensitive colorimetric cholesterol detection. Mater. Sci. Eng. C. 2019, 104, 110000. [61] Liu, J., Lu, W., Lu, X., Zhang, L., Dong, H., Li, Y., Versatile Ti3C2Tx MXene for free-radical scavenging. Nano Res. 2022, 15 (3), 2558-2566. [62] Madesh, M., Balasubramanian, K. A., Microtiter plate assay for superoxide dismutase using MTT reduction by superoxide. Indian J. Biochem. Biophys. 1998, 35 (3), 184-8. [63] Locatelli, M., Gindro, R., Travaglia, F., Cosson, J. D., Rinaldi, M., Arlorio, M., Study of the DPPH-scavenging activity: development of a free software for the correct interpretation of data. Food Chem. 2009, 114 (3), 889-897. [64] Li, H. W., X.; Li, P.; Li, Y.; Wang, H., Comparative study of antioxidant activity of grape (Vitis vinifera) seed powder assessed by different methods. J. Food Drug Anal. 2008, 16, 67-73. [65] Wilkinson, G. N., Statistical estimations in enzyme kinetics. Biochem J. 1961, 80 (2), 324-332. [66] Wu, C.-W., Unnikrishnan, B., Chen, I. W. P., Harroun, S. G., Chang, H.-T., Huang, C.-C., Excellent oxidation resistive MXene aqueous ink for micro-supercapacitor application. Energy Storage Mater. 2020, 25, 563-571. [67] Wang, Y., Li, Y., Qiu, Z., Wu, X., Zhou, P., Zhou, T., Zhao, J., Miao, Z., Zhou, J., Zhuo, S., Fe3O4@Ti3C2 MXene hybrids with ultrahigh volumetric capacity as an anode material for lithium-ion batteries. J. Mater. Chem. A. 2018, 6 (24), 11189-11197. [68] Wang, T., Yu, X., Fan, M., Meng, Q., Xiao, Y., Yin, Y.-X., Li, H., Guo, Y.-G., Direct regeneration of spent LiFePO4 via a graphite prelithiation strategy. Chem. Commun. 2020, 56 (2), 245-248. [69] Ren, C. E., Zhao, M.-Q., Makaryan, T., Halim, J., Boota, M., Kota, S., Anasori, B., Barsoum, M. W., Gogotsi, Y., Porous two-dimensional transition metal carbide (MXene) flakes for high-performance Li-ion storage. ChemElectroChem. 2016, 3 (5), 689-693. [70] Zou, G., Guo, J., Peng, Q., Zhou, A., Zhang, Q., Liu, B., Synthesis of urchin-like rutile titania carbon nanocomposites by iron-facilitated phase transformation of MXene for environmental remediation. J. Mater. Chem. A. 2016, 4 (2), 489-499. [71] Iqbal, A., Hong, J., Ko, T. Y., Koo, C. M., Improving oxidation stability of 2D MXenes: synthesis, storage media, and conditions. Nano Converg. 2021, 8 (1), 9. [72] Li, Z., Wang, L., Sun, D., Zhang, Y., Liu, B., Hu, Q., Zhou, A., Synthesis and thermal stability of two-dimensional carbide MXene Ti3C2. Mater. Sci. Eng., B. 2015, 191, 33-40. [73] Li, Z., Yu, L., Milligan, C., Ma, T., Zhou, L., Cui, Y., Qi, Z., Libretto, N., Xu, B., Luo, J., Shi, E., Wu, Z., Xin, H., Delgass, W. N., Miller, J. T., Wu, Y., Two-dimensional transition metal carbides as supports for tuning the chemistry of catalytic nanoparticles. Nat. Commun. 2018, 9 (1), 5258. [74] Ghidiu, M., Lukatskaya, M. R., Zhao, M.-Q., Gogotsi, Y., Barsoum, M. W., Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature. 2014, 516 (7529), 78-81. [75] Osti, N. C., Naguib, M., Ostadhossein, A., Xie, Y., Kent, P. R. C., Dyatkin, B., Rother, G., Heller, W. T., van Duin, A. C. T., Gogotsi, Y., Mamontov, E., Effect of metal ion intercalation on the structure of MXene and water dynamics on its internal surfaces. ACS Appl. Mater. Interfaces. 2016, 8 (14), 8859-8863. [76] Jiang, X., Kuklin, A. V., Baev, A., Ge, Y., ?gren, H., Zhang, H., Prasad, P. N., Two-dimensional MXenes: From morphological to optical, electric, and magnetic properties and applications. Phys. Rep. 2020, 848, 1-58. [77] Cao, S., Shen, B., Tong, T., Fu, J., Yu, J., 2D/2D heterojunction of ultrathin MXene/Bi2WO6 nanosheets for improved photocatalytic CO2 reduction. Adv. Funct. Mater. 2018, 28 (21), 1800136. [78] Low, J., Zhang, L., Tong, T., Shen, B., Yu, J., TiO2/MXene Ti3C2 composite with excellent photocatalytic CO2 reduction activity. J. Catal. 2018, 361, 255-266. [79] Melchior, S. A., Raju, K., Ike, I. S., Erasmus, R. M., Kabongo, G., Sigalas, I., Iyuke, S. E., Ozoemena, K. I., High-voltage symmetric supercapacitor based on 2D titanium carbide (MXene, Ti2CTx)/carbon nanosphere composites in a neutral aqueous electrolyte. J. Electrochem. Soc. 2018, 165 (3), A501-A511. [80] Naguib, M., Mashtalir, O., Lukatskaya, M. R., Dyatkin, B., Zhang, C., Presser, V., Gogotsi, Y., Barsoum, M. W., One-step synthesis of nanocrystalline transition metal oxides on thin sheets of disordered graphitic carbon by oxidation of MXenes. Chem. Commun. 2014, 50 (56), 7420-7423. [81] Osswald, S., Havel, M., Gogotsi, Y., Monitoring oxidation of multiwalled carbon nanotubes by Raman spectroscopy. J. Raman Spectrosc. 2007, 38 (6), 728-736. [82] Li, Z.-F., Zhang, H., Liu, Q., Sun, L., Stanciu, L., Xie, J., Fabrication of high-surface-area Graphene/Polyaniline nanocomposites and their application in supercapacitors. ACS Appl. Mater. Interfaces. 2013, 5 (7), 2685-2691. [83] Wen, Y., Zhang, L., Liu, J., Wen, X., Chen, X., Ma, J., Tang, T., Mijowska, E., Hierarchical porous carbon sheets derived on a MgO template for high-performance supercapacitor applications. Nanotechnology. 2019, 30 (29), 295703. [84] Souleiman, M., Hermet, P., Haidoux, A., Levelut, C., Haines, J., Cambon, O., Combined experimental and theoretical Raman scattering studies of α-quartz-type FePO4 and GaPO4 end members and Ga1?xFexPO4 solid solutions. RSC Adv. 2013, 3 (44), 22078-22086. [85] Zaghib, K., Julien, C. M., Structure and electrochemistry of FePO4·2H2O hydrate. J. Power Sources. 2005, 142 (1), 279-284. [86] Zhang, C. J., Pinilla, S., McEvoy, N., Cullen, C. P., Anasori, B., Long, E., Park, S.-H., Seral-Ascaso, A., Shmeliov, A., Krishnan, D., Morant, C., Liu, X., Duesberg, G. S., Gogotsi, Y., Nicolosi, V., Oxidation stability of colloidal two-dimensional titanium carbides (MXenes). Chem. Mater. 2017, 29 (11), 4848-4856. [87] Wang, Y., Wang, M.-Q., Lei, L.-L., Chen, Z.-Y., Liu, Y.-S., Bao, S.-J., FePO4 embedded in nanofibers consisting of amorphous carbon and reduced graphene oxide as an enzyme mimetic for monitoring superoxide anions released by living cells. Microchim. Acta. 2018, 185 (2), 140. [88] Giorgio, M., Trinei, M., Migliaccio, E., Pelicci, P. G., Hydrogen peroxide: A metabolic by-product or a common mediator of ageing signals? Nat. Rev. Mol. Cell Biol. 2007, 8 (9), 722-728. [89] Ge, C., Fang, G., Shen, X., Chong, Y., Wamer, W. G., Gao, X., Chai, Z., Chen, C., Yin, J.-J., Facet energy versus enzyme-like ativities: The unexpected protection of palladium nanocrystals against oxidative damage. ACS Nano. 2016, 10 (11), 10436-10445. [90] Wei, H., Wang, E., Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chem. Soc. Rev. 2013, 42 (14), 6060-6093. [91] Kim, M.-C., Lee, D., Jeong, S. H., Lee, S.-Y., Kang, E., Nanodiamond–gold nanocomposites with the peroxidase-like oxidative catalytic activity. ACS Appl. Mater. Interfaces. 2016, 8 (50), 34317-34326. [92] Song, Z., Wang, B., Yu, J., Ma, C., Zhou, C., Chen, T., Yan, Q., Wang, K., Sun, L., Density functional study on the heterogeneous oxidation of NO over α-Fe2O3 catalyst by H2O2: Effect of oxygen vacancy. Appl. Surf. Sci. 2017, 413, 292-301. [93] Nguyen, V.-H., Nguyen, B.-S., Hu, C., Nguyen, C. C., Nguyen, D. L., Nguyen Dinh, M. T., Vo, D.-V. N., Trinh, Q. T., Shokouhimehr, M., Hasani, A., Kim, S. Y., Le, Q. V., Novel architecture titanium carbide (Ti3C2Tx) MXene cocatalysts toward photocatalytic hydrogen production: A mini-review. Nanomaterials 2020, 10 (4).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83800-
dc.description.abstract急性腎損傷 (Acute kidney injury, AKI) 是一種常見的臨床疾病,具有高發病率、高死亡率和高醫療成本無幾的特點,每年至少導致170萬人死亡,平均每百萬人就有將近五千人患此疾病,在美國每年與AKI相關的醫療支出高達240億美元。AKI的臨床特徵包含代謝功能障礙、腎小管損傷、嚴重發炎反應及氧化壓力積累;其中發炎反應過程中會產生一系列的生物事件,如活性氧類 (reactive oxygen species, ROS) 的過量產生、組織缺氧及巨噬細胞促發炎極化;因而引發一系列病理過程,包括細胞凋亡和腎纖維化,從而導致腎臟排泄功能迅速下降、尿量減少和氮代謝累積增加。目前,在腎功能完全喪失的情況下,除了腎臟替代療法,如血液透析、腹膜透析及腎臟移植三種方法外尚無有效的臨床治療方法。鑒於前述事實,本研究中致力於開發具有抗氧化和抗發炎特性的人工奈米?,作為AKI的有效治療策略。本研究將磷酸鐵及二氧化鈦組成的異質結構藉由一步法修飾於Ti3C2Tx (MXene) 奈米片上,形成複合材料FeP-Ti/MXene;該複合材料具有廣譜 ROS 清除能力和仿過氧化氫?的活性,可用於治療由橫紋肌溶解引起AKI的白化小鼠。在體外試驗中,我們發現FeP-Ti/MXene可有效避免人胚胎腎細胞 (HEK-293T) 氧化壓力積累及緩解由脂多醣誘發引起巨噬細胞 (Raw 264.7) 的發炎反應。在動物實驗中,FeP-Ti/MXene顯著改善了 AKI小鼠的存活率,同時尿素氮 (BUN)、肌酸酐 (CRE)、發炎因子及腎組織切片評估得知FeP-Ti/MXene對AKI具有顯著的治療效果。總的來說,將廣譜抗氧化劑結合仿過氧化氫?能有效減緩AKI導致的臨床病徵,並為開發AKI治療手段提供一個新穎的研究方向。zh_TW
dc.description.abstractAcute kidney injury (AKI) is a common syndrome with very high morbidity, mortality and cost, involving more than 5000 cases per million people and causing at least 1.7 million deaths per year. The cost is as high as $24 billion. AKI features as metabolism dysfunction, tubular damage, inflammatory events, and oxidative stress. Moreover, a series of biological events would generate during the inflammatory response process, such as the excessive production of reactive oxygen species (ROS), the absence of oxygen situation, and the regulation of macrophages, triggering a series of pathological processes, including cellular apoptosis and renal fibrosis. Herein, we reported a FePO4/TiO2 heterostructure decorated Ti3C2Tx (FeP-Ti/MXene) nanocomposites that has broad-spectrum ROS scavenging activity and catalase-mimic activity for the treatment of AKI in mice. FeP-Ti/MXene showed anti-inflammatory properties in reducing the accumulation of ROS in human embryonic kidney cells (HEK-293T) and the inflammation of LPS induced macrophage (Raw264.7). Most importantly, we found that FeP-Ti/MXene alleviated oxidative stress-induced cellular apoptosis and significantly improved the treatment outcomes of AKI. Meanwhile, which was evaluated by the expression of blood urea nitrogen, creatinine, inflammatory factors, and tissue analyses showed that FeP-Ti/MXene is effective and efficient for the treatment of AKI. These findings open an avenue to the use of FeP-Ti/MXene as a novel nanodrug to treat AKI.en
dc.description.provenanceMade available in DSpace on 2023-03-19T21:18:33Z (GMT). No. of bitstreams: 1
U0001-0208202214031500.pdf: 4074788 bytes, checksum: 25c6155e265604ce9bf7a974192881e1 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents目錄 國立臺灣大學碩士學位論文口試委員審定書 I 致謝 II 中文摘要 IV Abstract V 目錄 VI 圖目錄 IX 表目錄 XIII 第一章 緒論 1 1.1 急性腎損傷 (Acute kidney injury, AKI) 1 1.2 清除ROS及抗發炎治療策略 2 1.3 MXene 4 1.4 研究動機 5 第二章 實驗部分 6 2.1實驗材料 6 2.2層狀 MXene (Ti3C2Tx) 奈米片的製備 6 2.3 FeP-Ti/MXene 的製備 7 2.4 材料鑑定 7 2.5 仿過氧化氫?活性測試 8 2.6 仿過氧化物?活性測試 9 2.7 仿氧化?活性測試 9 2.8 仿超氧化物歧化?活性測試 9 2.9 FeP-Ti/MXene抗氧化活性測試 9 2.10 FeP-Ti/MXene去除自由基能力測試 10 2.11 FeP-Ti/MXene酵素動力學分析 10 2.12 細胞培養 10 2.13 生物相容性測試 11 2.14 溶血性試驗 11 2.15 小鼠急性腎損傷 (AKI) 模型 12 2.16 FeP-Ti/MXene對於 AKI 小鼠的治療 12 2.17 腎功能測試 12 2.18 腎臟組織學 12 第三章 結果與討論 13 3.1 FeP-Ti/MXene的型態與光學性質 13 3.2 FeP-Ti/MXene的表徵鑑定 14 3.3 FeP-Ti/MXene的仿過氧化氫?能力 15 3.4 FeP-Ti/MXene 與天然過氧化氫?對於環境活性之探討 15 3.5 FeP-Ti/MXene 的ROS/RNS清除活性 16 3.6 FeP-Ti/MXene 的穩態動力學分析 16 3.7 FeP-Ti/MXene仿過氧化氫?活性機制 17 3.8 FeP-Ti/MXene的生物相容性 17 3.8.1 FeP-Ti/MXene的細胞毒性 18 3.8.2 FeP-Ti/MXene的溶血活性 18 3.9 FeP-Ti/MXene 細胞內清除ROS能力 18 3.10 FeP-Ti/MXene 於甘油誘導的 AKI 小鼠體內的治療效果 19 第四章 結論 20 References 21 Figures 34 Table 65
dc.language.isozh-TW
dc.subject仿過氧化氫?zh_TW
dc.subject急性腎損傷zh_TW
dc.subject抗氧化劑zh_TW
dc.subject抗發炎zh_TW
dc.subject活性氧類zh_TW
dc.subjectAcute kidney injuryen
dc.subjectcatalase-like activityen
dc.subjectROS scavenging activityen
dc.subjectFeP-Ti/MXeneen
dc.subjectReactive oxygen speciesen
dc.title一鍋法製備具有抗氧化和抗發炎活性的 FeP-Ti/MXene 奈米複合材料以減輕小鼠急性腎損傷zh_TW
dc.titleOne-pot Preparation of FeP-Ti/MXene Nanocomposites with Anti-oxidant and Anti-inflammatory Activities to Alleviate Acute Kidney Injury in Miceen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃志清(Chih-Ching Huang),黃郁棻(Yu-Fen Huang),胡焯淳(Cho-Chun Hu)
dc.subject.keyword急性腎損傷,活性氧類,抗氧化劑,仿過氧化氫?,抗發炎,zh_TW
dc.subject.keywordAcute kidney injury,Reactive oxygen species,FeP-Ti/MXene,ROS scavenging activity,catalase-like activity,en
dc.relation.page65
dc.identifier.doi10.6342/NTU202201969
dc.rights.note未授權
dc.date.accepted2022-08-02
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
U0001-0208202214031500.pdf
  未授權公開取用
3.98 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved