請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83797完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林啟萬(Chii-Wann Lin) | |
| dc.contributor.author | Chia-Hung Cho | en |
| dc.contributor.author | 卓嘉虹 | zh_TW |
| dc.date.accessioned | 2023-03-19T21:18:27Z | - |
| dc.date.copyright | 2022-08-23 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-08-01 | |
| dc.identifier.citation | [1] Parkinson’s disease foundation. Available at: https://www.parkinson.org/ Understanding-Parkinsons/Statistics. Accessed 2022-02-10. [2] A Amon and F Alesch. Systems for deep brain stimulation: review of technical features. Journal of Neural Transmission, 124(9):1083–1091, 2017. [3] Mahboubeh Parastarfeizabadi and Abbas Z Kouzani. Advances in closed-loop deep brain stimulation devices. Journal of neuroengineering and rehabilitation, 14(1):1– 20, 2017. [4] Michael S Okun. Deep-brain stimulation for parkinson’s disease. New England Journal of Medicine, 367(16):1529–1538, 2012. [5] Chia-Chi Hsieh and Ming-Dou Ker. Design of multi-channel monopolar biphasic stimulator for implantable biomedical applications. In 2018 IEEE 61st International Midwest Symposium on Circuits and Systems (MWSCAS), pages 1–4. IEEE, 2018. [6] John E Fleming and Madeleine M Lowery. Changes in neuronal entropy in a network model of the cortico-basal ganglia during deep brain stimulation. In 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pages 5172–5175. IEEE, 2019. [7] Walid Bouthour, Pierre M?gevand, John Donoghue, Christian L?scher, Niels Birbaumer, and Paul Krack. Biomarkers for closed-loop deep brain stimulation in parkinson disease and beyond. Nature Reviews Neurology, 15(6):343–352, 2019. [8] Lin Yao, Peter Brown, and Mahsa Shoaran. Resting tremor detection in parkinson’s disease with machine learning and kalman filtering. In 2018 IEEE Biomedical Circuits and Systems Conference (BioCAS), pages 1–4. IEEE, 2018. [9] Thibaud Lebouvier, Tanguy Chaumette, S?bastien Paillusson, Charles Duyckaerts, Stanislas Bruley des Varannes, Michel Neunlist, and Pascal Derkinderen. The second brain and parkinson’s disease. European Journal of Neuroscience, 30(5):735–741, 2009. [10] William Dauer and Serge Przedborski. Parkinson’s disease: Mechanisms and models. Neuron, 39(6):889–909, 2003. [11] Joseph Jankovic. Parkinson’s disease: clinical features and diagnosis. Journal of neurology, neurosurgery & psychiatry, 79(4):368–376, 2008. [12] Karin Wirdefeldt, Hans-Olov Adami, Philip Cole, Dimitrios Trichopoulos, and Jack Mandel. Epidemiology and etiology of parkinson’s disease: a review of the evidence. European journal of epidemiology, 26(1):1–58, 2011. [13] Amy Reeve, Eve Simcox, and Doug Turnbull. Ageing and parkinson’s disease: why is advancing age the biggest risk factor? Ageing research reviews, 14:19–30, 2014. [14] Joseph Jankovic and L Giselle Aguilar. Current approaches to the treatment of parkinson’s disease. Neuropsychiatric disease and treatment, 4(4):743, 2008. [15] Joseph Jankovic. Motor fluctuations and dyskinesias in parkinson’s disease: clinical manifestations. Movement disorders: official journal of the Movement Disorder Society, 20(S11):S11–S16, 2005. [16] Weidong Xu, Gary S Russo, Takao Hashimoto, Jianyu Zhang, and Jerrold L Vitek. Subthalamic nucleus stimulation modulates thalamic neuronal activity. Journal of Neuroscience, 28(46):11916–11924, 2008. [17] Ahmed A Moustafa, Izhar Bar-Gad, Alon Korngreen, and Hagai Bergman. Basal ganglia: physiological, behavioral, and computational studies. Frontiers in systems neuroscience, 8:150, 2014. [18] Jonathan E Rubin, Cameron C McIntyre, Robert S Turner, and Thomas Wichmann. Basal ganglia activity patterns in parkinsonism and computational modeling of their downstream effects. European Journal of Neuroscience, 36(2):2213–2228, 2012. [19] Jeremy Watts, Anahita Khojandi, Oleg Shylo, and Ritesh A Ramdhani. Machine learning’s application in deep brain stimulation for parkinson’s disease: A review. Brain Sciences, 10(11):809, 2020. [20] M Krause, W Fogel, A Heck, W Hacke, M Bonsanto, C Trenkwalder, and V Tronnier. Deep brain stimulation for the treatment of parkinson’s disease: subthalamic nucleus versus globus pallidus internus. Journal of Neurology, Neurosurgery & Psychiatry, 70(4):464–470, 2001. [21] Kenneth A Follett, Frances M Weaver, Matthew Stern, Kwan Hur, Crystal L Harris, Ping Luo, William J Marks Jr, Johannes Rothlind, Oren Sagher, Claudia Moy, et al. Pallidal versus subthalamic deep-brain stimulation for parkinson’s disease. New England Journal of Medicine, 362(22):2077–2091, 2010. [22] Sara Duffus, Ugonma Chukwueke, Roy Strowd, Jennifer Green, Ihtsham Haq, Jessica Tate, Maja Herco, Adrian Laxton, Stephen Tatter, and Mustafa Siddiqui. Unilateral vs. bilateral subthalamic stimulation in parkinson’s disease (p1. 168), 2015. [23] Shobha S Rao, Laura A Hofmann, and Amer Shakil. Parkinson’s disease: diagnosis and treatment. American family physician, 74(12):2046–2054, 2006. [24] Christopher R Butson and Cameron C McIntyre. Current steering to control the volume of tissue activated during deep brain stimulation. Brain stimulation, 1(1):7– 15, 2008. [25] Frank Steigerwald, Lorenz M?ller, Silvia Johannes, Cordula Matthies, and Jens Volkmann. Directional deep brain stimulation of the subthalamic nucleus: a pilot study using a novel neurostimulation device. Movement Disorders, 31(8):1240– 1243, 2016. [26] Martin Jakobs, Manja Klo?, Andreas Unterberg, and Karl Kiening. Rechargeable internal pulse generators as initial neurostimulators for deep brain stimulation in patients with movement disorders. Neuromodulation: Technology at the Neural Interface, 21(6):604–610, 2018. [27] John Edward Brough Randles. Kinetics of rapid electrode reactions. Discussions of the faraday society, 1:11–19, 1947. [28] David T Brocker and Warren M Grill. Principles of electrical stimulation of neural tissue. Handbook of clinical neurology, 116:3–18, 2013. [29] Alan L Hodgkin and Andrew F Huxley. A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of physiology, 117(4):500, 1952. [30] L Lapicque. Sur l’excitation electrique des nerfs trait?e comme une polarisation. J Physiol Pathol G?n?r, 9:620–635, 1907. [31] SD Stoney Jr, WD Thompson, and H Asanuma. Excitation of pyramidal tract cells by intracortical microstimulation: effective extent of stimulating current. Journal of neurophysiology, 31(5):659–669, 1968. [32] Amin Mahnam, S Mohammad Reza Hashemi, and Warren M Grill. Measurement of the current–distance relationship using a novel refractory interaction technique. Journal of neural engineering, 6(3):036005, 2009. [33] Daniel R Merrill, Marom Bikson, and John GR Jefferys. Electrical stimulation of excitable tissue: design of efficacious and safe protocols. Journal of neuroscience methods, 141(2):171–198, 2005. [34] AL t Gorman. Differential patterns of activation of the pyramidal system elicited by surface anodal and cathodal cortical stimulation. Journal of Neurophysiology, 29(4):547–564, 1966. [35] Ying-Chang Wu, Ying-Siou Liao, Wen-Hsiu Yeh, Sheng-Fu Liang, and Fu-Zen Shaw. Directions of deep brain stimulation for epilepsy and parkinson’s disease. Frontiers in Neuroscience, 15:671, 2021. [36] Neuropace. Available at: https://www.neuropace.com/patients/ neuropace-rns-system/. Accessed 2022-03-04. [37] Meng-Chen Lo and Alik S Widge. Closed-loop neuromodulation systems: next-generation treatments for psychiatric illness. International review of psychiatry, 29(2):191–204, 2017. [38] Adam O Hebb, Jun Jason Zhang, Mohammad H Mahoor, Christos Tsiokos, Charles Matlack, Howard Jay Chizeck, and Nader Pouratian. Creating the feedback loop: closed-loop neurostimulation. Neurosurgery Clinics, 25(1):187–204, 2014. [39] Tamanna TK Munia and Selin Aviyente. Time-frequency based phase-amplitude coupling measure for neuronal oscillations. Scientific reports, 9(1):1–15, 2019. [40] Bo Hjorth. Eeg analysis based on time domain properties. Electroencephalography and clinical neurophysiology, 29(3):306–310, 1970. [41] Joshua S Richman and J Randall Moorman. Physiological time-series analysis using approximate entropy and sample entropy. American Journal of Physiology-Heart and Circulatory Physiology, 2000. [42] Chiara Pappalettera, Francesca Miraglia, Maria Cotelli, Paolo Maria Rossini, and Fabrizio Vecchio. Analysis of complexity in the eeg activity of parkinson’s disease patients by means of approximate entropy. GeroScience, pages 1–9, 2022. [43] Naveenraj Kamalakannan,Shiva Prasaath Sudha Balamurugan,and Kalaivani Shanmugam. A novel approach for the early detection of parkinson’s disease using eeg signal. Technology (IJEET), 12(5):80–95, 2021. [44] Jeremy Watts, Anahita Khojandi, Oleg Shylo, and Ritesh A Ramdhani. Machine learning’s application in deep brain stimulation for parkinson’s disease: A review. Brain Sciences, 10(11):809, 2020. [45] Viviana G?mez-Orozco, Iv?n de la Pava, Andr?s ?lvarez-Meza, Mauricio A ?lvarez, and ?lvaro Orozco-Guti?rrez. A machine learning approach to support deep brain stimulation programming. Revista Facultad de Ingenier?a Universidad de Antioquia, (95):20–33, 2020. [46] Wolf-Julian Neumann and Maria C Rodriguez-Oroz. Machine learning will extend the clinical utility of adaptive deep brain stimulation, 2021. [47] Yael Niv.Reinforcement learning in the brain.Journal of Mathematical Psychology, 53(3):139–154, 2009. [48] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018. [49] Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient methods for reinforcement learning with function approximation. Advances in neural information processing systems, 12, 1999. [50] Richard Bellman. Dynamic Programming. Princeton University Press, Princeton, NJ, USA, 1 edition, 1957. [51] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016. [52] Jonathan E Rubin. Computational models of basal ganglia dysfunction: the dynamics is in the details. Current opinion in neurobiology, 46:127–135, 2017. [53] Rosa Q So, Alexander R Kent, and Warren M Grill. Relative contributions of local cell and passing fiber activation and silencing to changes in thalamic fidelity during deep brain stimulation and lesioning: a computational modeling study. Journal of computational neuroscience, 32(3):499–519, 2012. [54] Jonathan E Rubin and David Terman. High frequency stimulation of the subthalamic nucleus eliminates pathological thalamic rhythmicity in a computational model. Journal of computational neuroscience, 16(3):211–235, 2004. [55] David Terman, Jonathan E Rubin, AC Yew, and CJ Wilson. Activity patterns in a model for the subthalamopallidal network of the basal ganglia. Journal of Neuroscience, 22(7):2963–2976, 2002. [56] Charles R Harris, K Jarrod Millman, St?fan J Van Der Walt, Ralf Gommers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J Smith, et al. Array programming with numpy. Nature, 585(7825):357–362, 2020. [57] M Rizzone, M Lanotte, Bruno Bergamasco, A Tavella, E Torre, G Faccani, A Melcarne, and Leonardo Lopiano. Deep brain stimulation of the subthalamic nucleus in parkinson’s disease: effects of variation in stimulation parameters. Journal of Neurology, Neurosurgery & Psychiatry, 71(2):215–219, 2001. [58] Rajamannar Ramasubbu, Stefan Lang, and Zelma HT Kiss. Dosing of electrical parameters in deep brain stimulation (dbs) for intractable depression: a review of clinical studies. Frontiers in Psychiatry, 9:302, 2018. [59] Yixin Guo, Jonathan E Rubin, Cameron C McIntyre, Jerrold L Vitek, and David Terman. Thalamocortical relay fidelity varies across subthalamic nucleus deep brain stimulation protocols in a data-driven computational model. Journal of neurophysiology, 99(3):1477–1492, 2008. [60] Alan D Dorval,Alexis M Kuncel,Merrill J Birdno,Dennis A Turner,and Warren M Grill. Deep brain stimulation alleviates parkinsonian bradykinesia by regularizing pallidal activity. Journal of neurophysiology, 104(2):911–921, 2010. [61] Todd M Herrington, Jennifer J Cheng, and Emad N Eskandar. Mechanisms of deep brain stimulation. Journal of neurophysiology, 115(1):19–38, 2016. [62] Stable baselines docs. Available at: https://stable-baselines.readthedocs.io/en/ master/guide/rl_tips.html#. Accessed 2022-03-31. [63] P Gorzelic, SJ Schiff, and Alok Sinha. Model-based rational feedback controller design for closed-loop deep brain stimulation of parkinson’s disease. Journal of neural engineering, 10(2):026016, 2013. [64] Seung-Bo Lee, Yong-Jeong Kim, Sungeun Hwang, Hyoshin Son, Sang Kun Lee, Kyung-Il Park, and Young-Gon Kim. Predicting parkinson’s disease using gradient boosting decision tree models with electroencephalography signals. Parkinsonism & related disorders, 2022. [65] Lin Yao, Peter Brown, and Mahsa Shoaran.Improved detection of parkinsonian resting tremor with feature engineering and kalman filtering. Clinical Neurophysiology, 131(1):274–284, 2020. [66] Simon Little and Peter Brown. What brain signals are suitable for feedback control of deep brain stimulation in parkinson’s disease? Annals of the New York Academy of Sciences, 1265(1):9–24, 2012. [67] Pauli Virtanen, Ralf Gommers, Travis E Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, et al. Scipy 1.0: fundamental algorithms for scientific computing in python. Nature methods, 17(3):261–272, 2020. [68] Antropy: entropy and complexity of (eeg) time-series in python. Available at: https://raphaelvallat.com/antropy/build/html/index.html. Maintained by Raphael Vallat. Accessed 2022-03-24. [69] Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-critic methods. In International conference on machine learning, pages 1587–1596. PMLR, 2018. [70] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra,and Martin Riedmiller. Deterministic policy gradient algorithms. In International conference on machine learning, pages 387–395. PMLR, 2014. [71] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015. [72] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep learning library. In Advances in Neural Information Processing Systems 32, pages 8024–8035. Curran Associates, Inc., 2019. [73] Openai spinning up: Twin delayed ddpg. Available at: https://spinningup.openai. com/en/latest/algorithms/td3.html#background. Accessed 2022-03-30. [74] Hado Hasselt. Double q-learning. Advances in neural information processing systems, 23, 2010. [75] Dmitrii Krylov, Remi Tachet, Romain Laroche, Michael Rosenblum, and Dmitry V Dylov. Reinforcement learning framework for deep brain stimulation study. arXiv preprint arXiv:2002.10948, 2020. [76] Meili Lu, Xile Wei, Yanqiu Che, Jiang Wang, and Kenneth A Loparo. Application of reinforcement learning to deep brain stimulation in a computational model of parkinson's disease. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 28(1):339–349, 2019. [77] Qitong Gao, Michael Naumann, Ilija Jovanov, Vuk Lesi, Karthik Kamaravelu, Warren M Grill, and Miroslav Pajic. Model-based design of closed loop deep brain stimulation controller using reinforcement learning. In 2020 ACM/IEEE 11th International Conference on Cyber-Physical Systems (ICCPS), pages 108–118. IEEE, 2020. [78] Elie M Adam, Emery N Brown, Nancy Kopell, and Michelle M McCarthy. Deep brain stimulation in the subthalamic nucleus for parkinson’s disease can restore dynamics of striatal networks. Proceedings of the National Academy of Sciences, 119(19):e2120808119, 2022. [79] Hosein M Golshan, Adam O Hebb, and Mohammad H Mahoor. Lfp-net: A deep learning framework to recognize human behavioral activities using brain stn-lfp signals. Journal of neuroscience methods, 335:108621, 2020. [80] Get started with machine learning on arduino. Available at: https://docs.arduino.cc/tutorials/nano-33-ble-sense/get-started-with-machine-learning. Accessed 2022-06-03. [81] Tensorflow lite for microcontrollers. Available at: https://www.tensorflow.org/lite/microcontrollers. Accessed 2022-06-02. [82] Vibhash D Sharma,Delaram Safarpour,Shyamal H Mehta,Nora Vanegas-Arroyave, Daniel Weiss, Jeffrey W Cooney, Zoltan Mari, and Alfonso Fasano. Telemedicine and deep brain stimulation-current practices and recommendations. Parkinsonism & related disorders, 89:199–205, 2021. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83797 | - |
| dc.description.abstract | 帕金森氏症 (Parkinson’s disease, PD) 是一種影響中樞神經系統的慢性神經 退化性疾病,目前影響全球約一千萬人 [1]。深腦電刺激 (deep brain stimulation, DBS) 的技術在運動障礙和神經系統疾病中的應用,包括 PD、震顫、肌張力障礙、癲癇、強迫症等,已被證明是一種有效的治療方式 [2]。然而,廣泛使用的 開迴路系統仍然存在一些尚待修正的缺點,例如它們的個體依賴性、能量消耗 程度、頻繁回診和試錯性調整的特徵 [3]。閉迴路的策略採用具有判別性的訊 號或生物標誌物,從而使系統能夠透過算法自動調整 DBS 參數 [3]。我們設計強化學習 (reinforcement learning, RL) 與 Gym 框架,模擬基底神經節-丘腦 (basal ganglia-thalamic, BGT) 大腦網路作為訓練環境,並為任何輸入狀態找到適當的刺激參數(頻率和振幅)。特徵提取模塊則作為 BGT 大腦網路(動作電位訊號)與來自真實大腦的胞外訊號之間的映射工具,進而允許未來的動物實驗和臨床試 驗的測試。結果顯示,基於RL的DBS控制策略在能秏上較開迴路系統節省了 68.81% 的平均功率,並修正丘腦(thalamus, TH)中的錯誤響應(平均錯誤響應在正常情況為 0.0; 在PD下修正回 0.0258),同時為未來應用奠定了基礎。 | zh_TW |
| dc.description.abstract | Parkinson’s disease (PD) is a chronic neurodegenerative disease affecting the central nervous system and currently influencing about 10 million people worldwide [1]. The usage of deep brain stimulation (DBS) technology in movement disorders and neurological diseases, including PD, tremor, dystonia, epilepsy, obsessive-compulsive disorder (OCD), etc., has proven to be an effective treatment modality [2]. However, general open-loop systems pose several shortcomings that have yet to be revised, such as their subject dependency, energy-consuming, frequent-clinic visiting, and trial-and-error adjusting features [3]. The closed-loop strategy employs discriminative signals/biomarkers to enable the system to tune parameters automatically through the designed algorithms [3]. We designed reinforcement learning (RL) with the Gym framework that models the basal ganglia-thalamic (BGT) brain network as a training environment and finds appropriate stimulation parameters (frequency and amplitude) for different input states. The feature extraction module was a mapping tool between the BGT brain network (AP signals) and extracellular signals from real brains, permitting future animal experiments and clinical trials. Results showed that the RL-based DBS control strategy significantly outperforms open-loop systems in energy efficiency, i.e., conserving 68.81% of average power dissipation, and revises error responses in the thalamus (i.e., an average EI of 0.0 in normal and 0.0258 in PD states) while establishing a foundation for future application. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T21:18:27Z (GMT). No. of bitstreams: 1 U0001-2001202216034000.pdf: 24879070 bytes, checksum: 891907f8e111f08652b7ba9757d020a7 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | Verification Letter from the Oral Examination Committee i Acknowledgements ii 摘要 iii Abstract iv Contents v List of Figures viii List of Tables xi Denotation xii Chapter 1 Introduction 1 1.1 Parkinson’sDisease .......................... 1 1.2 Deep Brain Stimulation ........................ 4 1.2.1 DBS Brief Overview ......................... 4 1.2.2 DBS System Features......................... 5 1.2.3 Principles of Electrical Stimulation.................. 7 1.2.4 Open-loop and Closed-loop DBS................... 15 1.2.5 Biomarkers and Features for PD ................... 17 1.2.6 Machine Learning in DBS ...................... 19 1.3 Reinforcement Learning ........................ 21 1.3.1 Preliminaries ............................. 22 1.3.2 Policy Gradient ............................ 24 1.3.3 Actor-Critic Algorithms........................ 25 1.3.4 RL Workflow ............................. 27 1.4 Aims and Objectives .......................... 29 Chapter 2 Methodology 31 2.1 PD Brain Model Simulation—The BGTnetwork .......................... 31 2.1.1 Model for Each Neuron........................ 32 2.1.2 Model for Synaptic Currents ..................... 36 2.2 Environmental Interfacing ....................... 39 2.2.1 Action and State............................ 39 2.2.2 Episode Termination Condition.................... 44 2.2.3 Reward ................................ 45 2.3 RL Model Construction ................................ 47 2.4 Related Works ................................ 50 Chapter 3 Results and Discussion 52 3.1 Environmental Validation ................................ 52 3.1.1 Single-compartment Ablation..................... 52 3.1.2 Integrated BGT Network Outcomes ................. 57 3.1.3 Biomarker Signal for Model Training ........................... 59 3.2 Rewards Ablation............................ 62 3.3 RL Control Strategies ......................... 63 3.3.1 PD Initial States............................ 64 3.3.2 Normal Initial States ......................... 66 3.4 Comprehensive Assessments ......................... 68 Chapter 4 Conclusions and Prospects 73 References 77 Appendix A — BGT Model Parameters 88 Appendix B — RL Model Parameters 93 | |
| dc.language.iso | en | |
| dc.subject | 獎勵塑造 | zh_TW |
| dc.subject | 基底核-丘腦網路 | zh_TW |
| dc.subject | 閉迴路深腦電刺激 | zh_TW |
| dc.subject | 帕金森氏症 | zh_TW |
| dc.subject | 強化學習 | zh_TW |
| dc.subject | Parkinson’s disease (PD) | en |
| dc.subject | reward shaping | en |
| dc.subject | reinforcement learning (RL) | en |
| dc.subject | closed-loop deep brain stimulation (cl-DBS) | en |
| dc.subject | basal ganglia-thalamic (BGT) network | en |
| dc.title | 基於強化學習和基底核-丘腦動態網路之帕金森氏症閉迴路深腦電刺激演算法 | zh_TW |
| dc.title | Closed-loop Deep Brain Stimulation Algorithm for Parkinson's Disease based on Reinforcement Learning and Basal Ganglia-Thalamus Network Dynamics | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.author-orcid | 0000-0001-5301-587X | |
| dc.contributor.oralexamcommittee | 劉宏輝(Horng-Huei Liou),鄭士康(Shyh-Kang Jeng),黃博浩(Po-Hao Huang) | |
| dc.subject.keyword | 基底核-丘腦網路,閉迴路深腦電刺激,帕金森氏症,強化學習,獎勵塑造, | zh_TW |
| dc.subject.keyword | basal ganglia-thalamic (BGT) network,closed-loop deep brain stimulation (cl-DBS),Parkinson’s disease (PD),reinforcement learning (RL),reward shaping, | en |
| dc.relation.page | 94 | |
| dc.identifier.doi | 10.6342/NTU202200118 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2022-08-02 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2001202216034000.pdf 未授權公開取用 | 24.3 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
