請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83795
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳鑫昌(Hsin-Chang Chen) | |
dc.contributor.author | Yi-Chieh Lin | en |
dc.contributor.author | 林怡傑 | zh_TW |
dc.date.accessioned | 2023-03-19T21:18:22Z | - |
dc.date.copyright | 2022-10-04 | |
dc.date.issued | 2022 | |
dc.date.submitted | 2022-08-02 | |
dc.identifier.citation | [1] E. Riboli, T. Norat, Epidemiologic evidence of the protective effect of fruit and vegetables on cancer risk, The American journal of clinical nutrition 78(3) (2003) 559S-569S. [2] H.M. Macdonald, S.A. New, M.H. Golden, M.K. Campbell, D.M. Reid, Nutritional associations with bone loss during the menopausal transition: evidence of a beneficial effect of calcium, alcohol, and fruit and vegetable nutrients and of a detrimental effect of fatty acids, The American journal of clinical nutrition 79(1) (2004) 155-165. [3] L.A. Bazzano, M.K. Serdula, S. Liu, Dietary intake of fruits and vegetables and risk of cardiovascular disease, Current atherosclerosis reports 5(6) (2003) 492-499. [4] L.J. Su, L. Arab, Salad and raw vegetable consumption and nutritional status in the adult US population: results from the Third National Health and Nutrition Examination Survey, Journal of the American Dietetic Association 106(9) (2006) 1394-1404. [5] K. Matsuda, M. Shimomura, M. Ihara, M. Akamatsu, D.B. Sattelle, Neonicotinoids show selective and diverse actions on their nicotinic receptor targets: electrophysiology, molecular biology, and receptor modeling studies, Bioscience, biotechnology, and biochemistry 69(8) (2005) 1442-1452. [6] C. Bass, L.M. Field, Neonicotinoids, Current Biology 28(14) (2018) R772-R773. [7] P. Jeschke, R. Nauen, M. Schindler, A. Elbert, Overview of the status and global strategy for neonicotinoids, Journal of agricultural and food chemistry 59(7) (2011) 2897-2908. [8] Z. Chen, X. Yao, F. Dong, H. Duan, X. Shao, X. Chen, T. Yang, G. Wang, Y. Zheng, Ecological toxicity reduction of dinotefuran to honeybee: New perspective from an enantiomeric level, Environment international 130 (2019) 104854. [9] D. Bai, S.C. Lummis, W. Leicht, H. Breer, D.B. Sattelle, Actions of imidacloprid and a related nitromethylene on cholinergic receptors of an identified insect motor neurone, Pesticide science 33(2) (1991) 197-204. [10] S. Lee Chao, T.J. Dennehy, J.E. Casida, Whitefly (Hemiptera: Aleyrodidae) Binding Site for lmidacloprid and Related Insecticides: A Putative Nicotinic Acetylcholine Receptor, Journal of economic entomology 90(4) (1997) 879-882. [11] A. Zhang, H. Kaiser, P. Maienfisch, J.E. Casida, Insect Nicotinic Acetylcholine Receptor: Conserved Neonicotinoid Specificity of [3H] Imidacloprid Binding Site: Conserved Neonicotinoid Specificity of [3H] Imidacloprid Binding Site, Journal of neurochemistry 75(3) (2000) 1294-1303. [12] A. Stara, M. Pagano, G. Capillo, J. Fabrello, M. Sandova, M. Albano, E. Zuskova, J. Velisek, V. Matozzo, C. Faggio, Acute effects of neonicotinoid insecticides on Mytilus galloprovincialis: A case study with the active compound thiacloprid and the commercial formulation calypso 480 SC, Ecotoxicology and environmental safety 203 (2020) 110980. [13] J.-M. Bonmatin, C. Giorio, V. Girolami, D. Goulson, D. Kreutzweiser, C. Krupke, M. Liess, E. Long, M. Marzaro, E.A. Mitchell, Environmental fate and exposure; neonicotinoids and fipronil, Environmental Science and Pollution Research 22(1) (2015) 35-67. [14] X. Yi, C. Zhang, H. Liu, R. Wu, D. Tian, J. Ruan, T. Zhang, M. Huang, G. Ying, Occurrence and distribution of neonicotinoid insecticides in surface water and sediment of the Guangzhou section of the Pearl River, South China, Environmental Pollution 251 (2019) 892-900. [15] P. Jeschke, R. Nauen, Neonicotinoids—from zero to hero in insecticide chemistry, Pest Management Science: formerly Pesticide Science 64(11) (2008) 1084-1098. [16] E.J. Hoffmann, C. Vandervoort, J.C. Wise, Plum curculio (Coleoptera: Curculionidae) adult mortality and associated fruit injury after exposure to field-aged insecticides on tart cherry branches, Journal of economic entomology 103(4) (2010) 1196-1205. [17] L.C. Magalhaes, T.E. Hunt, B.D. Siegfried, Efficacy of neonicotinoid seed treatments to reduce soybean aphid populations under field and controlled conditions in Nebraska, Journal of economic entomology 102(1) (2009) 187-195. [18] H. Siviter, J. Koricheva, M.J. Brown, E. Leadbeater, Quantifying the impact of pesticides on learning and memory in bees, Journal of Applied Ecology 55(6) (2018) 2812-2821. [19] M.J. Palmer, C. Moffat, N. Saranzewa, J. Harvey, G.A. Wright, C.N. Connolly, Cholinergic pesticides cause mushroom body neuronal inactivation in honeybees, Nat Commun 4(1) (2013) 1-8. [20] E. Commission, Conclusion on the peer review of the pesticide risk assessment for bees for the active substance clothianidin, EFSA Journal 11(1) (2013). [21] 衛生福利部食品藥物管理署, 農藥殘留容許量標準-農藥殘留容許量標準附表一至附表五, (2021). [22] 行政院農業委員會農業藥物毒物試驗所, 108年度蔬菜農產品農藥殘留監測研究成果報告, (2021). [23] C. Bass, I. Denholm, M.S. Williamson, R. Nauen, The global status of insect resistance to neonicotinoid insecticides, Pesticide Biochemistry and Physiology 121 (2015) 78-87. [24] K. Matsuda, S.D. Buckingham, D. Kleier, J.J. Rauh, M. Grauso, D.B. Sattelle, Neonicotinoids: insecticides acting on insect nicotinic acetylcholine receptors, Trends in pharmacological sciences 22(11) (2001) 573-580. [25] M. Ihara, S. D Buckingham, K. Matsuda, D. B Sattelle, Modes of action, resistance and toxicity of insecticides targeting nicotinic acetylcholine receptors, Current medicinal chemistry 24(27) (2017) 2925-2934. [26] P. Jeschke, R. Nauen, M.E. Beck, Nicotinic acetylcholine receptor agonists: a milestone for modern crop protection, Angewandte Chemie International Edition 52(36) (2013) 9464-9485. [27] M. Tomizawa, J.E. Casida, Neonicotinoid insecticide toxicology: mechanisms of selective action, Annu. Rev. Pharmacol. Toxicol. 45 (2005) 247-268. [28] I. Yamamoto, M. Tomizawa, T. Saito, T. Miyamoto, E.C. Walcott, K. Sumikawa, Structural factors contributing to insecticidal and selective actions of neonicotinoids, Archives of Insect Biochemistry and Physiology: Published in Collaboration with the Entomological Society of America 37(1) (1998) 24-32. [29] L.P. Sheets, The neonicotinoid insecticides, Handbook of neurotoxicology, Springer2002, pp. 79-87. [30] S.L. Chao, J.E. Casida, Interaction of imidacloprid metabolites and analogs with the nicotinic acetylcholine receptor of mouse brain in relation to toxicity, Pesticide Biochemistry and Physiology 58(1) (1997) 77-88. [31] J. Anderson, C. Dubetz, V. Palace, Neonicotinoids in the Canadian aquatic environment: a literature review on current use products with a focus on fate, exposure, and biological effects, Science of the Total Environment 505 (2015) 409-422. [32] A. Kati?, V. Ka?uba, N. Kopjar, B.T. Lovakovi?, A.M.M. ?ermak, G. Menda?, V. Micek, M. Mili?, I. Pavi?i?, A. Pizent, Effects of low-level imidacloprid oral exposure on cholinesterase activity, oxidative stress responses, and primary DNA damage in the blood and brain of male Wistar rats, Chemico-Biological Interactions 338 (2021) 109287. [33] M. Chen, L. Tao, J. McLean, C. Lu, Quantitative analysis of neonicotinoid insecticide residues in foods: implication for dietary exposures, Journal of agricultural and food chemistry 62(26) (2014) 6082-6090. [34] L.P. Sheets, A.A. Li, D.J. Minnema, R.H. Collier, M.R. Creek, R.C. Peffer, A critical review of neonicotinoid insecticides for developmental neurotoxicity, Critical reviews in toxicology 46(2) (2016) 153-190. [35] A.M. Cimino, A.L. Boyles, K.A. Thayer, M.J. Perry, Effects of neonicotinoid pesticide exposure on human health: a systematic review, Environmental health perspectives 125(2) (2017) 155-162. [36] C. Costas-Ferreira, L.R. Faro, Neurotoxic Effects of Neonicotinoids on Mammals: What Is There beyond the Activation of Nicotinic Acetylcholine Receptors?—A Systematic Review, International Journal of Molecular Sciences 22(16) (2021) 8413. [37] R. Iyyadurai, I.A. George, J.V. Peter, Imidacloprid poisoning—newer insecticide and fatal toxicity, Journal of medical toxicology 6(1) (2010) 77-78. [38] S. Shadnia, H.H. Moghaddam, Fatal intoxication with imidacloprid insecticide, The American journal of emergency medicine 26(5) (2008) 634. e1-634. e4. [39] Y.-h. Gu, Y. Li, X.-f. Huang, J.-f. Zheng, J. Yang, H. Diao, Y. Yuan, Y. Xu, M. Liu, H.-j. Shi, Reproductive effects of two neonicotinoid insecticides on mouse sperm function and early embryonic development in vitro, PloS one 8(7) (2013) e70112. [40] U. Kapoor, M.K. Srivastava, S. Bhardwaj, L.P. Srivastava, Effect of imidacloprid on antioxidant enzymes and lipid peroxidation in female rats to derive its No Observed Effect Level (NOEL), The Journal of toxicological sciences 35(4) (2010) 577-581. [41] U. Kapoor, M. Srivastava, L. Srivastava, Toxicological impact of technical imidacloprid on ovarian morphology, hormones and antioxidant enzymes in female rats, Food and chemical toxicology 49(12) (2011) 3086-3089. [42] R. Bal, M. Naziro?lu, G. T?rk, ?. Yilmaz, T. Kulo?lu, E. Etem, G. Baydas, Insecticide imidacloprid induces morphological and DNA damage through oxidative toxicity on the reproductive organs of developing male rats, Cell biochemistry and function 30(6) (2012) 492-499. [43] R. Bal, G. T?rk, ?. Y?lmaz, E. Etem, T. Kulo?lu, G. Bayda?, M. Naziro?lu, Effects of clothianidin exposure on sperm quality, testicular apoptosis and fatty acid composition in developing male rats, Cell biology and toxicology 28(3) (2012) 187-200. [44] T. Pastoor, P. Rose, S. Lloyd, R. Peffer, T. Green, Case study: weight of evidence evaluation of the human health relevance of thiamethoxam-related mouse liver tumors, Toxicological Sciences 86(1) (2005) 56-60. [45] T.L. Swenson, J.E. Casida, Neonicotinoid formaldehyde generators: possible mechanism of mouse-specific hepatotoxicity/hepatocarcinogenicity of thiamethoxam, Toxicology letters 216(2-3) (2013) 139-145. [46] T. Green, A. Toghill, R. Lee, F. Waechter, E. Weber, J. Noakes, Thiamethoxam induced mouse liver tumors and their relevance to humans: part 1: mode of action studies in the mouse, Toxicological sciences 86(1) (2005) 36-47. [47] O. El Okle, M. Lebda, H. Tohamy, Thiamethoxam-induced biochemical, hormonal and histological alterations in rats, Int J Toxicol Pharmacol Res 8 (2016) 320-325. [48] R. Singh, Pathobiological and immunological studies on thiacloprid toxicity and its interaction with salmonella gallinarum infection in broiler chickens, LUVAS, 2017. [49] A.F. Fransway, The problem of preservation in the 1990s: III. Agents with preservative function independent of formaldehyde release, Dermatitis 2(3) (1991) 145-174. [50] D. Sasseville, Hypersensitivity to preservatives, Dermatologic therapy 17(3) (2004) 251-263. [51] J.M. Madden, Microbial pathogens in fresh produce--The regulatory perspective, Journal of Food Protection 55(10) (1992) 821-823. [52] A.F. Fransway, P.J. Fransway, D.V. Belsito, E.M. Warshaw, D. Sasseville, J.F. Fowler Jr, J.G. DeKoven, M.D. Pratt, H.I. Maibach, J.S. Taylor, Parabens, Dermatitis 30(1) (2019) 3-31. [53] M. Soni, I. Carabin, G. Burdock, Safety assessment of esters of p-hydroxybenzoic acid (parabens), Food and chemical toxicology 43(7) (2005) 985-1015. [54] 衛生福利部食品藥物管理署, 食品添加物使用範圍及限量暨規格標準, (2021). [55] C. Liao, L. Chen, K. Kannan, Occurrence of parabens in foodstuffs from China and its implications for human dietary exposure, Environment international 57 (2013) 68-74. [56] H.M. Maher, N.Z. Alzoman, M.A. Almeshal, H.A. Alotaibi, N.N. Alotaibi, H. Al-Showiman, Quantitative screening of parabens in Ready-to-eat foodstuffs available in the Saudi market using high performance liquid chromatography with photodiode array detection, Arabian Journal of Chemistry 13(1) (2020) 2897-2911. [57] H.-T. Zhou, H.-C. Chen, W.-H. Ding, Accurate analysis of parabens in human urine using isotope-dilution ultrahigh-performance liquid chromatography-high resolution mass spectrometry, Journal of pharmaceutical and biomedical analysis 150 (2018) 469-473. [58] J. Lv, L. Wang, X. Hu, Z. Tai, Y. Yang, Rapid determination of 10 parabens in spices by high performance liquid chromatography-mass spectrometry, Analytical letters 45(14) (2012) 1960-1970. [59] J.A. Oca?a-Gonz?lez, M. Villar-Navarro, M. Ramos-Pay?n, R. Fern?ndez-Torres, M.A. Bello-L?pez, New developments in the extraction and determination of parabens in cosmetics and environmental samples. A review, Analytica Chimica Acta 858 (2015) 1-15. [60] N. Cabaleiro, I. De La Calle, C. Bendicho, I. Lavilla, An overview of sample preparation for the determination of parabens in cosmetics, TrAC Trends in Analytical Chemistry 57 (2014) 34-46. [61] J.B. Claver, M. Valencia, L. Capitan-Vallvey, Analysis of parabens in cosmetics by low pressure liquid chromatography with monolithic column and chemiluminescent detection, Talanta 79(2) (2009) 499-506. [62] N. Matwiejczuk, A. Galicka, M.M. Brz?ska, Review of the safety of application of cosmetic products containing parabens, Journal of Applied Toxicology 40(1) (2020) 176-210. [63] M. Honda, M. Robinson, K. Kannan, Parabens in human urine from several Asian countries, Greece, and the United States, Chemosphere 201 (2018) 13-19. [64] H. Zhao, J. Li, X. Ma, W. Huo, S. Xu, Z. Cai, Simultaneous determination of bisphenols, benzophenones and parabens in human urine by using UHPLC-TQMS, Chinese Chemical Letters 29(1) (2018) 102-106. [65] H. Frederiksen, N. J?rgensen, A.-M. Andersson, Parabens in urine, serum and seminal plasma from healthy Danish men determined by liquid chromatography–tandem mass spectrometry (LC–MS/MS), Journal of exposure science & environmental epidemiology 21(3) (2011) 262-271. [66] 衛生福利部食品藥物管理署, 食品中防腐劑之檢驗方法, (2020). [67] R. Djatmika, C.-C. Hsieh, J.-M. Chen, W.-H. Ding, Determination of paraben preservatives in seafood using matrix solid-phase dispersion and on-line acetylation gas chromatography? mass spectrometry, Journal of Chromatography B 1036 (2016) 93-99. [68] L.E. Dodge, K.E. Kelley, P.L. Williams, M.A. Williams, S. Hern?ndez-D?az, S.A. Missmer, R. Hauser, Medications as a source of paraben exposure, Reproductive Toxicology 52 (2015) 93-100. [69] A.F. Fransway, P.J. Fransway, D.V. Belsito, J.A. Yiannias, Paraben toxicology, Dermatitis 30(1) (2019) 32-45. [70] G. Shanmugam, B.R. Ramaswamy, V. Radhakrishnan, H. Tao, GC–MS method for the determination of paraben preservatives in the human breast cancerous tissue, Microchemical Journal 96(2) (2010) 391-396. [71] S. De Coster, N. Van Larebeke, Endocrine-disrupting chemicals: associated disorders and mechanisms of action, Journal of environmental and public health 2012 (2012). [72] H. Ozaki, K. Sugihara, Y. Watanabe, S. Ohta, S. Kitamura, Cytochrome P450-inhibitory activity of parabens and phthalates used in consumer products, The Journal of toxicological sciences 41(4) (2016) 551-560. [73] J. Boberg, C. Taxvig, S. Christiansen, U. Hass, Possible endocrine disrupting effects of parabens and their metabolites, Reproductive Toxicology 30(2) (2010) 301-312. [74] S. Oishi, Effects of propyl paraben on the male reproductive system, Food and Chemical Toxicology 40(12) (2002) 1807-1813. [75] P.D. Darbre, P.W. Harvey, Paraben esters: review of recent studies of endocrine toxicity, absorption, esterase and human exposure, and discussion of potential human health risks, Journal of applied toxicology 28(5) (2008) 561-578. [76] R.T. Engeli, S.R. Rohrer, A. Vuorinen, S. Herdlinger, T. Kaserer, S. Leugger, D. Schuster, A. Odermatt, Interference of paraben compounds with estrogen metabolism by inhibition of 17β-hydroxysteroid dehydrogenases, International journal of molecular sciences 18(9) (2017) 2007. [77] P. Darbre, J. Byford, L. Shaw, S. Hall, N. Coldham, G. Pope, M. Sauer, Oestrogenic activity of benzylparaben, Journal of Applied Toxicology: An International Journal 23(1) (2003) 43-51. [78] S. Oishi, Effects of butyl paraben on the male reproductive system in mice, Archives of toxicology 76(7) (2002) 423-429. [79] R. Golden, J. Gandy, G. Vollmer, A review of the endocrine activity of parabens and implications for potential risks to human health, Critical reviews in toxicology 35(5) (2005) 435-458. [80] R.S. Tavares, F.C. Martins, P.J. Oliveira, J. Ramalho-Santos, F.P. Peixoto, Parabens in male infertility—Is there a mitochondrial connection?, Reproductive Toxicology 27(1) (2009) 1-7. [81] P.D. Darbre, A. Aljarrah, W.R. Miller, N.G. Coldham, M.J. Sauer, G. Pope, Concentrations of parabens in human breast tumours, Journal of Applied Toxicology: An International Journal 24(1) (2004) 5-13. [82] M. Anastassiades, S.J. Lehotay, D. ?tajnbaher, F.J. Schenck, Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce, Journal of AOAC international 86(2) (2003) 412-431. [83] M. Gonz?lez-Curbelo, B. Socas-Rodr?guez, A. Herrera-Herrera, J. Gonz?lez-S?lamo, J. Hern?ndez-Borges, M. Rodr?guez-Delgado, Evolution and applications of the QuEChERS method, TrAC Trends in Analytical Chemistry 71 (2015) 169-185. [84] 衛生福利部食品藥物管理署, 食品化學檢驗方法之確效規範, (2013). [85] W.-C. Chuang, J.-W. Chen, C.-H. Huang, T.-H. Shyu, S.-K. Lin, FaPEx? Multipesticide Residues Extraction Kit for Minimizing Sample Preparation Time in Agricultural Produce, Journal of AOAC International 102(6) (2019) 1864-1876. [86] H. Obana, M. Okihashi, K. Akutsu, Y. Kitagawa, S. Hori, Determination of neonicotinoid pesticide residues in vegetables and fruits with solid phase extraction and liquid chromatography mass spectrometry, Journal of agricultural and food chemistry 51(9) (2003) 2501-2505. [87] A. Di Muccio, P. Fidente, D.A. Barbini, R. Dommarco, S. Seccia, P. Morrica, Application of solid-phase extraction and liquid chromatography–mass spectrometry to the determination of neonicotinoid pesticide residues in fruit and vegetables, Journal of Chromatography a 1108(1) (2006) 1-6. [88] S. Liu, Z. Zheng, F. Wei, Y. Ren, W. Gui, H. Wu, G. Zhu, Simultaneous determination of seven neonicotinoid pesticide residues in food by ultraperformance liquid chromatography tandem mass spectrometry, Journal of agricultural and food chemistry 58(6) (2010) 3271-3278. [89] A. Wilkowska, M. Biziuk, Determination of pesticide residues in food matrices using the QuEChERS methodology, Food chemistry 125(3) (2011) 803-812. [90] P. Wang, X. Yang, J. Wang, J. Cui, A. Dong, H. Zhao, L. Zhang, Z. Wang, R. Xu, W. Li, Multi-residue method for determination of seven neonicotinoid insecticides in grains using dispersive solid-phase extraction and dispersive liquid–liquid micro-extraction by high performance liquid chromatography, Food Chemistry 134(3) (2012) 1691-1698. [91] J. Vichapong, R. Burakham, S. Srijaranai, Vortex-assisted surfactant-enhanced-emulsification liquid–liquid microextraction with solidification of floating organic droplet combined with HPLC for the determination of neonicotinoid pesticides, Talanta 117 (2013) 221-228. [92] F. Zhang, Y. Li, C. Yu, C. Pan, Determination of six neonicotinoid insecticides residues in spinach, cucumber, apple and pomelo by QuEChERS method and LC–MS/MS, Bulletin of environmental contamination and toxicology 88(6) (2012) 885-890. [93] S. Seccia, P. Fidente, D. Montesano, P. Morrica, Determination of neonicotinoid insecticides residues in bovine milk samples by solid-phase extraction clean-up and liquid chromatography with diode-array detection, Journal of Chromatography a 1214(1-2) (2008) 115-120. [94] M.M. Rahman, A. Abd El-Aty, M.H. Kabir, H.S. Chung, H.S. Lee, F. Hac?m?ft?o?lu, J.H. Jeong, B.-J. Chang, H.-C. Shin, J.-H. Shim, A quick and effective methodology for analyzing dinotefuran and its highly polar metabolites in plum using liquid chromatography-tandem mass spectrometry, Food chemistry 239 (2018) 1235-1243. [95] C. Piao, L. Chen, Y. Wang, A review of the extraction and chromatographic determination methods for the analysis of parabens, Journal of Chromatography B 969 (2014) 139-148. [96] S. Cao, Z. Liu, L. Zhang, C. Xi, X. Li, G. Wang, R. Yuan, Z. Mu, Development of an HPLC–MS/MS method for the simultaneous analysis of six kinds of parabens in food, Analytical Methods 5(4) (2013) 1016-1023. [97] S. Song, Z. Zhang, N. Zou, R. Chen, L. Han, C. Pan, Y. Sapozhnikova, Determination of six paraben residues in fresh-cut vegetables using QuEChERS with multi-walled carbon nanotubes and high-performance liquid chromatography–tandem mass spectrometry, Food Analytical Methods 10(12) (2017) 3972-3979. [98] J.G. Gardner, R.F. Nehring, C.H. Nelson, Genetically modified crops and household labor savings in US crop production, (2009). [99] K.A. Lewis, J. Tzilivakis, D.J. Warner, A. Green, An international database for pesticide risk assessments and management, Human and Ecological Risk Assessment: An International Journal 22(4) (2016) 1050-1064. [100] U.S.E.P. Agency, Human Health Risk Assessment Protocol for Hazardous Waste Combustion Facilities, (2005). [101] T.F.a.D. Administration, National Food Consumption Database in Taiwan (in Chinese), (2019). [102] 衛生福利部食品藥物管理署, 食品中殘留農藥檢驗方法-快速萃取方法, (2018). [103] A. Kloepfer, J.B. Quintana, T. Reemtsma, Operational options to reduce matrix effects in liquid chromatography–electrospray ionisation-mass spectrometry analysis of aqueous environmental samples, Journal of chromatography A 1067(1-2) (2005) 153-160. [104] C. Wu, F. Dong, X. Mei, J. Ning, D. She, Isotope-labeled internal standards and grouping scheme for determination of neonicotinoid insecticides and their metabolites in fruits, vegetables and cereals–A compensation of matrix effects, Food chemistry 311 (2020) 125871. [105] Y. Zhou, X. Lu, X. Fu, B. Yu, D. Wang, C. Zhao, Q. Zhang, Y. Tan, X. Wang, Development of a fast and sensitive method for measuring multiple neonicotinoid insecticide residues in soil and the application in parks and residential areas, Analytica chimica acta 1016 (2018) 19-28. [106] 張宏康, 王中瑗, 楊啟津, 邵丹丹, 李笑顏, 同位素稀釋質譜法在食品分析中的應用研究進展, 食品科學 23 (2018). [107] E. Commission, Analytical Quality Control and Method Validation Procedures for Pesticide Residues Analysis in Food and Feed, (2020). [108] K.G. Heumann, Isotope dilution mass spectrometry, International Journal of Mass Spectrometry and Ion Processes 118 (1992) 575-592. [109] 衛生福利部食品藥物管理署, 實驗室品質管理規範-化學領域測試結果之品質管制, (2018). [110] 陳家揚, 液相層析/質譜儀的基質效應與因應之道, Chemistry 65(2) (2007) 151-155. [111] F. Gosetti, E. Mazzucco, D. Zampieri, M.C. Gennaro, Signal suppression/enhancement in high-performance liquid chromatography tandem mass spectrometry, Journal of Chromatography A 1217(25) (2010) 3929-3937. [112] B. Matuszewski, M. Constanzer, C. Chavez-Eng, Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC? MS/MS, Analytical chemistry 75(13) (2003) 3019-3030. [113] W. Zhou, S. Yang, P.G. Wang, Matrix effects and application of matrix effect factor, Future Science, 2017. [114] H. Trufelli, P. Palma, G. Famiglini, A. Cappiello, An overview of matrix effects in liquid chromatography–mass spectrometry, Mass spectrometry reviews 30(3) (2011) 491-509. [115] A. Suganthi, K. Bhuvaneswari, M. Ramya, Determination of neonicotinoid insecticide residues in sugarcane juice using LCMSMS, Food Chemistry 241 (2018) 275-280. [116] M.F. Abdel-Ghany, L.A. Hussein, N.F. El Azab, A.H. El-Khatib, M.W. Linscheid, Simultaneous determination of eight neonicotinoid insecticide residues and two primary metabolites in cucumbers and soil by liquid chromatography–tandem mass spectrometry coupled with QuEChERS, Journal of Chromatography B 1031 (2016) 15-28. [117] 李仁傑, 王培成, 李茂榮, 新前處理技術-QuEChERS 之簡介, 科儀新知 (183) (2011) 67-74. [118] W. Naidong, Y.-L. Chen, W. Shou, X. Jiang, Importance of injection solution composition for LC–MS–MS methods, Journal of pharmaceutical and biomedical analysis 26(5-6) (2001) 753-767. [119] K.P. Y??ez, J.L. Bernal, M.J. Nozal, M.T. Mart?n, J. Bernal, Determination of seven neonicotinoid insecticides in beeswax by liquid chromatography coupled to electrospray-mass spectrometry using a fused-core column, Journal of chromatography A 1285 (2013) 110-117. [120] Y.V. Kazakevich, R. Lobrutto, HPLC for pharmaceutical scientists, John Wiley & Sons2007. [121] T.H. Walter, B.A. Alden, J.A. Field, N.L. Lawrence, D.L. Osterman, A.V. Patel, M.A. DeLoffi, Characterization of a highly stable mixed?mode reversed?phase/weak anion?exchange stationary phase based on hybrid organic/inorganic particles, Journal of Separation Science 44(5) (2021) 1005-1014. [122] J.A. Broekaert, Daniel C. Harris: Quantitative chemical analysis, Springer, 2015. [123] B.J. Troczka, R.A. Homem, R. Reid, K. Beadle, M. Kohler, M. Zaworra, L.M. Field, M.S. Williamson, R. Nauen, C. Bass, Identification and functional characterisation of a novel N-cyanoamidine neonicotinoid metabolising cytochrome P450, CYP9Q6, from the buff-tailed bumblebee Bombus terrestris, Insect biochemistry and molecular biology 111 (2019) 103171. [124] K. Taira, K. Fujioka, Y. Aoyama, Qualitative profiling and quantification of neonicotinoid metabolites in human urine by liquid chromatography coupled with mass spectrometry, PloS one 8(11) (2013) e80332. [125] M. Mincea, I. Lup?a, I. Talpo?, V. Ostafe, UPLC analysis of common parabens in cosmetic products, Acta Chromatographica 21(4) (2009) 591-602. [126] E.A. Mitchell, B. Mulhauser, M. Mulot, A. Mutabazi, G. Glauser, A. Aebi, A worldwide survey of neonicotinoids in honey, Science 358(6359) (2017) 109-111. [127] V.F. McNeill, Kinetics of Alkaline Hydrolysis of Synthetic Organic Esters, (2021). [128] G. Ichikawa, R. Kuribayashi, Y. Ikenaka, T. Ichise, S.M. Nakayama, M. Ishizuka, K. Taira, K. Fujioka, T. Sairenchi, G. Kobashi, LC-ESI/MS/MS analysis of neonicotinoids in urine of very low birth weight infants at birth, PLoS One 14(7) (2019) e0219208. [129] M. Allgaier, J.M. Halder, J. Kittelberger, B. Hauer, B.A. Nebel, A simple and robust LC-ESI single quadrupole MS-based method to analyze neonicotinoids in honey bee extracts, MethodsX 6 (2019) 2484-2491. [130] G.-B. Park, S.-G. Lee, Simultaneous determination of parabens in cosmetics by LC/MS, Analytical Science and Technology 23(1) (2010) 54-59. [131] I. Gonz?lez?Mari?o, J.B. Quintana, I. Rodr?guez, R. Cela, Simultaneous determination of parabens, triclosan and triclocarban in water by liquid chromatography/electrospray ionisation tandem mass spectrometry, Rapid Communications in Mass Spectrometry: An International Journal Devoted to the Rapid Dissemination of Up?to?the?Minute Research in Mass Spectrometry 23(12) (2009) 1756-1766. [132] S. Lu, S. Gong, S. Ma, X. Zeng, Z. Yu, G. Sheng, J. Fu, Determination of parabens in human urine by liquid chromatography coupled with electrospray ionization tandem mass spectrometry, Analytical Methods 6(15) (2014) 5566-5572. [133] J.H.Y. Galani, M. Houbraken, M. Van Hulle, P. Spanoghe, Comparison of electrospray and UniSpray, a novel atmospheric pressure ionization interface, for LC-MS/MS analysis of 81 pesticide residues in food and water matrices, Analytical and bioanalytical chemistry 411(20) (2019) 5099-5113. [134] D.V. McCalley, Influence of sample mass on the performance of reversed-phase columns in the analysis of strongly basic compounds by high-performance liquid chromatography, Journal of chromatography A 793(1) (1998) 31-46. [135] D.V. McCalley, Effect of temperature and flow-rate on analysis of basic compounds in high-performance liquid chromatography using a reversed-phase column, Journal of Chromatography a 902(2) (2000) 311-321. [136] W. Xie, C. Han, Y. Qian, H. Ding, X. Chen, J. Xi, Determination of neonicotinoid pesticides residues in agricultural samples by solid-phase extraction combined with liquid chromatography–tandem mass spectrometry, Journal of Chromatography A 1218(28) (2011) 4426-4433. [137] Y. Shen, B. Hu, X. Chen, Q. Miao, C. Wang, Z. Zhu, C. Han, Determination of four flavorings in infant formula by solid-phase extraction and gas chromatography–tandem mass spectrometry, Journal of agricultural and food chemistry 62(45) (2014) 10881-10888. [138] J. Yang, Y. Li, W. Gong, C. Wang, B. Liu, C. Sun, Simultaneous determination of six parabens in foods by matrix liquid-phase dispersion extraction combined with high-performance liquid chromatography, Food analytical methods 7(8) (2014) 1693-1702. [139] J. Hou, W. Xie, D. Hong, W. Zhang, F. Li, Y. Qian, C. Han, Simultaneous determination of ten neonicotinoid insecticides and two metabolites in honey and Royal-jelly by solid? phase extraction and liquid chromatography? tandem mass spectrometry, Food chemistry 270 (2019) 204-213. [140] C. Lu, C.-H. Chang, C. Palmer, M. Zhao, Q. Zhang, Neonicotinoid residues in fruits and vegetables: an integrated dietary exposure assessment approach, Environmental science & technology 52(5) (2018) 3175-3184. [141] 衛生福利部食品藥物管理署, 107年度市售蔬果農產品殘留農藥監測, 食品藥物研究年報. [142] Q. Zhang, Z. Lu, C.-H. Chang, C. Yu, X. Wang, C. Lu, Dietary risk of neonicotinoid insecticides through fruit and vegetable consumption in school-age children, Environment international 126 (2019) 672-681. [143] A. Osaka, J. Ueyama, T. Kondo, H. Nomura, Y. Sugiura, I. Saito, K. Nakane, A. Takaishi, H. Ogi, S. Wakusawa, Exposure characterization of three major insecticide lines in urine of young children in Japan—neonicotinoids, organophosphates, and pyrethroids, Environmental research 147 (2016) 89-96. [144] 衛生福利部食品藥物管理署, 食品中防腐劑之檢驗方法, (2019). [145] H.M. Thompson, The use of the Hazard Quotient approach to assess the potential risk to honeybees (Apis mellifera) posed by pesticide residues detected in bee?relevant matrices is not appropriate, Pest Management Science (2021). [146] K.B. Woodburn, R.M. Seston, J. Kim, D.E. Powell, Benthic invertebrate exposure and chronic toxicity risk analysis for cyclic volatile methylsiloxanes: Comparison of hazard quotient and probabilistic risk assessment approaches, Chemosphere 192 (2018) 337-347. [147] Y.-F. Huang, J.-P. Chang, H.-C. Chen, Y.-M. Huang, Simultaneous trace analysis of 10 benzophenone-type ultraviolet filters in fish through liquid chromatography–tandem mass spectrometry, Environmental Pollution 286 (2021) 117306. [148] R.K. Moos, P. Apel, C. Schr?ter-Kermani, M. Kolossa-Gehring, T. Br?ning, H.M. Koch, Daily intake and hazard index of parabens based upon 24 h urine samples of the German Environmental Specimen Bank from 1995 to 2012, Journal of exposure science & environmental epidemiology 27(6) (2017) 591-600. [149] C.-H. Chang, D. MacIntosh, B. Lemos, Q. Zhang, C. Lu, Characterization of daily dietary intake and the health risk of neonicotinoid insecticides for the US population, Journal of agricultural and food chemistry 66(38) (2018) 10097-10105. [150] 衛生福利部食品藥物管理署, 國家攝食資料庫-108年食物小類攝食量計算結果(19-65歲所有受訪者), (2019). [151] C. Han, B. Xia, X. Chen, J. Shen, Q. Miao, Y. Shen, Determination of four paraben-type preservatives and three benzophenone-type ultraviolet light filters in seafoods by LC-QqLIT-MS/MS, Food chemistry 194 (2016) 1199-1207. [152] Q. Zhang, M. Lian, L. Liu, H. Cui, High-performance liquid chromatographic assay of parabens in wash-off cosmetic products and foods using chemiluminescence detection, Analytica Chimica Acta 537(1-2) (2005) 31-39. [153] A. Myridakis, E. Balaska, C. Gkaitatzi, A. Kouvarakis, E.G. Stephanou, Determination and separation of bisphenol A, phthalate metabolites and structural isomers of parabens in human urine with conventional high-pressure liquid chromatography combined with electrospray ionisation tandem mass spectrometry, Analytical and bioanalytical chemistry 407(9) (2015) 2509-2518. [154] T. Liu, X. Wang, J. Xu, X. You, D. Chen, F. Wang, Y. Li, Biochemical and genetic toxicity of dinotefuran on earthworms (Eisenia fetida), Chemosphere 176 (2017) 156-164. [155] X. Ma, H. Li, J. Xiong, W.T. Mehler, J. You, Developmental toxicity of a neonicotinoid insecticide, acetamiprid to zebrafish embryos, Journal of agricultural and food chemistry 67(9) (2019) 2429-2436. [156] S. Mondal, R. Ghosh, M. Mate, D. Karmakar, Effects of acetamiprid on immune system in female Wistar rats, Proceedings of the Zoological Society, Springer, 2009, pp. 109-117. [157] N. Hoshi, T. Hirano, T. Omotehara, J. Tokumoto, Y. Umemura, Y. Mantani, T. Tanida, K. Warita, Y. Tabuchi, T. Yokoyama, Insight into the mechanism of reproductive dysfunction caused by neonicotinoid pesticides, Biological and Pharmaceutical Bulletin 37(9) (2014) 1439-1443. [158] P.C. Badgujar, S. Jain, A. Singh, J. Punia, R. Gupta, G.A. Chandratre, Immunotoxic effects of imidacloprid following 28 days of oral exposure in BALB/c mice, Environmental toxicology and pharmacology 35(3) (2013) 408-418. [159] A. Decourtye, C. Armengaud, M. Renou, J. Devillers, S. Cluzeau, M. Gauthier, M.-H. Pham-Del?gue, Imidacloprid impairs memory and brain metabo | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83795 | - |
dc.description.abstract | 近年隨著消費者健康意識提升及飲食西化,市場發展出生鮮蔬果等即食產品,例如便利超商販售之即食生菜沙拉,因利於消費者攝取營養素而日漸受到青睞。然而這類產品除種植過程中可能產生農藥如新菸鹼類農藥(neonicotinoids, NEOs)殘留問題外,也可能因部分業者為延長產品保存期限,選擇添加防腐劑如對羥基苯甲酸酯類(esters of para-hydroxybenzoic acid, parabens),亦或是在加工製造過程環境污染導致物質殘留,進而對人體健康造成潛在風險。 NEOs為目前廣泛使用的系統性殺蟲劑之一,於農藥噴灑使用後可透過植株吸收並擴散至所有組織,在環境中穩定存在且不易降解。近年研究指出NEOs對哺乳動物可能影響腦部發展及生殖發育,且因NEOs屬系統性殺蟲劑,無法透過去皮或洗淨的方式去除殘留,可能經由食物鏈對生物多樣性及生態環境造成影響;而Parabens為一類可從植物中萃取的天然防腐劑,亦可由人工化學方式合成,因具低成本、高水溶性和廣效性抗菌之優勢,常應用於食品及個人護理產品,但文獻顯示Parabens可能對人體健康產生不良影響。為了解國人經食用即食生菜沙拉同時暴露NEOs及Parabens之可能性及劑量,本研究擬建立一套同時測定即食生菜沙拉中NEOs及Parabens之定量分析方法,並實際應用於市售即食生菜沙拉檢測。 本研究參考食品藥物管理署公告標準方法之農藥檢驗快速萃取前處理技術 (Fast Pesticide Extraction, FaPEx)並改良之,搭配同位素稀釋極致液相層析串聯質譜法 (isotope dilution ultra-performance tandem mass spectrometry, ID-UPLC-MS/MS),針對即食生菜沙拉中7種NEOs及9種parabens進行同時定量分析方法開發。實驗方法參數最佳化包含樣品前處理、管柱選擇、管柱及游離源溫度,以得到最佳分析結果。最終優化後方法之確效結果顯示,16種目標分析物之檢量線線性範圍為0.1 250.0 ng/g,呈現良好線性關係 (R2 > 0.990),其定量極限為0.003 0.968 ng/g;同日間(intra-day)與異日間(inter-day)實驗中,16 種分析物均有良好之準確度(以回收率表示)與精密度(以相對標準偏差relative standard deviation, %RSD表示),回收率範圍分別為94.58% 111.90%與 96.27% 109.70%,%RSD分別為 0.89% 10.63%與 2.49% 7.81%,符合國際食品法典委員會(Codex Alimentarius Commission)之確效規範。實際應用於2020年12月至2021年7月間採集之111件市售即食生菜沙拉分析,結果顯示,NEOs均檢出微量濃度,其範圍為未檢出(not detected, N.D.) 439.958 ng/g;parabens部分,僅PePB皆低於偵測極限外,其餘物質以MePB檢出濃度最高,介於N.D. – 8.546 ng/g。整體而言,16種代測物檢出濃度皆低於我國法規訂定之最大殘留容許量標準(maximum residue limits),故雖有檢出但仍在可接受範圍內。本研究建立之FaPEx搭配ID-UPLC-MS/MS食品微量分析方法除可定期檢測即食生菜沙拉中NEOs及parabens之濃度,亦可結合國家攝食資料庫及相關毒理數據,應用於食品風險評估中,以更全面性的方式了解消費者飲食上可能存在的危害及風險。 | zh_TW |
dc.description.abstract | In recent years, as consumers’ health awareness and diet westernization have increased, the market has developed ready-to-eat (RTE) products such as RTE salads sold by convenience stores, which have become increasingly popular due to the convenience of consumers' intake of nutrients. However, the residual problems of pesticides such as neonicotinoids (NEOs) during the planting process, some suppliers may also add preservatives like esters of para-hydroxybenzoic acid (parabens) in order to extend the shelf life of the products, which may increase the potential risks to human health. Therefore, the study hopes to establish a set of methods to simultaneously analyze Neonicotinoids and parabens. This study developed and validated an isotope dilution-liquid chromatography-tandem mass spectrometry (ID-UPLC-MS/MS) followed by the Fast Pesticide Extraction (FaPEx) pretreatment method announced by the Taiwan Food and Drug Administration with minor modification to simultaneously determine seven NEOs and nine parabens in ready-to-eat (RTE) salads. The optimization of experimental parameters included the condition of the sample pretreatment, temperatures of column oven and the ionization source, and the flow rate of UPLC to obtain the optimal analysis results. The validation results of the optimized analytical method indicated that the linear ranges of 16 target analytes were 0.1 250.0 ng/g, showing a good linearity (R2 > 0.990), and their limits of quantification (LOQ) were 0.003 0.968 ng/g. Regarding the intra-day and inter-day assays, good accuracy (expressed by recovery) and precision (expressed by relative standard deviation, %RSD) of 16 target analytes were observed by using FaPEx coupled with ID-UPLC-MS/MS, and were in line with the acceptable criteria of Codex Alimentarius Commission. Their recoveries were 94.58% 111.90% and 96.27% 109.70%, respectively, in the intra-day and inter-day assays; the %RSD were 0.89% 10.63% and 2.49% 7.81%, respectively, in the intra-day and inter-day assays. After the method was validated, it was applied to the analysis of 111 RTE collected from December 2020 to July 2021. The results showed that the detection rate of acetamiprid, one of NEOs, was as high as 87%, and pentyl paraben were all below its limit of detection. Moreover, the detection concentration of neonicotinoid ranged from not detected (N.D.) to 439.958 ng/g, and parabens ranged from N.D. to 8.546 ng/g. Both of them were lower than the maximum residue limits of pesticides and parabens in the regulation of Taiwan. This study developed and validated an ID-UPLC-MS/MS followed by FaPEx to quantitatively analyze 111 real samples to realize the distribution and occurrence of seven NEOs and nice parabens in RTE salads. In addition, this method and its application data can also apply to assess the risk of exposure to NEOs and parabens via intake of RTE salads, which can provide a more comprehensive understanding of the relevant risks that consumers might be exposed. | en |
dc.description.provenance | Made available in DSpace on 2023-03-19T21:18:22Z (GMT). No. of bitstreams: 1 U0001-3107202216292900.pdf: 9622928 bytes, checksum: 8627fc68f43a5b06c6a5ec459c4e95c9 (MD5) Previous issue date: 2022 | en |
dc.description.tableofcontents | 致謝-----------------------------i 中文摘要--------------------------ii Abstract-------------------------iv Content--------------------------vi List of Figures------------------x List of Tables-------------------xi Chapter 1 Introduction-----------------------------------1 1.1 Neonicotinoids (NEOs)----------------------------2 1.1.1. Distribution of NEOs-----------------------------3 1.1.2. Toxicological studies----------------------------4 1.2 Esters of Para-hydroxybenzoic acid (Parabens)----7 1.2.1. Distribution of Parabens-------------------------8 1.2.2. Toxicological studies----------------------------9 1.3 Literature reviews of analysis methods-----------11 1.3.1. Sample Pretreatment------------------------------11 1.3.2. Analytical methods to measure NEOs---------------13 1.3.3. Analytical methods to measure parabens-----------14 1.3.4. Risk assessment----------------------------------14 1.4 Research motivation------------------------------15 Chapter 2 Materials and methods--------------------------17 2.1 Chemicals and reagents---------------------------17 2.2 Sample collection--------------------------------19 2.2.1. Convenience stores-------------------------------19 2.2.2. Supermarkets-------------------------------------19 2.2.3. Fast-food restaurants----------------------------20 2.3 Sample pretreatment------------------------------20 2.3.1. Sample preservation method-----------------------20 2.3.2. FaPEx pretreatment procedure---------------------20 2.4 UPLC-ESI-MS/MS analysis--------------------------21 2.4.1. UPLC-ESI-MS/MS condition-------------------------21 2.4.2. Isotope dilution method--------------------------22 2.5 Method validation--------------------------------23 2.5.1. Calibration curves-------------------------------23 2.5.2. Matrix effects (MEs)-----------------------------23 2.5.3. LODs and LOQs------------------------------------24 2.5.4. Accuracy and precision---------------------------25 2.6 Software-----------------------------------------25 2.7 Risk assessment----------------------------------25 Chapter 3 Results and discussion-------------------------27 3.1 Optimization of sample pretreatment--------------27 3.1.1. QuEChERS and FaPEx methods-----------------------27 3.1.2. Sample amounts-----------------------------------29 3.1.3. Extraction solvents types and solvent volumes----29 3.2 Optimization of the UPLC column------------------30 3.3 Optimization of UPLC-ESI-MS/MS parameters--------32 3.3.1. Selection of the ionization mode-----------------32 3.3.2. Ion source temperature---------------------------32 3.3.3. Column temperature-------------------------------33 3.3.4. Flow rate----------------------------------------33 3.3.5. Gradient elution---------------------------------34 3.4 Validation of the method-------------------------34 3.4.1. Calibration curves-------------------------------34 3.4.2. LODs and LOQs------------------------------------35 3.4.3. Accuracy and precision---------------------------35 3.5 Application to real samples----------------------37 3.5.1. Detection of NEOs--------------------------------37 3.5.2. Detection of parabens----------------------------39 3.6 Risk assessment results--------------------------41 Chapter 4 Research limitations---------------------------43 4.1 Sampling-----------------------------------------43 4.2 Unable to completely separate isomers------------44 4.3 Risk assessment may lead to overestimation-------44 Chapter 5 Conclusions------------------------------------46 5.1 Experimental results-----------------------------46 5.2 Future goals-------------------------------------46 References-----------------------------------------------48 Tables---------------------------------------------------70 Figures--------------------------------------------------107 | |
dc.language.iso | en | |
dc.title | 以FaPEx搭配同位素稀釋極致效能液相層析串聯質譜法同時測定即食生菜沙拉中新菸鹼類農藥及對羥基苯甲酸酯類 | zh_TW |
dc.title | Simultaneous Determination Neonicotinoids and Parabens in Ready-to-eat Salads by FaPEx-ID-UPLC-MS/MS | en |
dc.type | Thesis | |
dc.date.schoolyear | 110-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 黃鈺芳(Yu-Fang Huang),黃柏菁(Po-Chin Huang) | |
dc.subject.keyword | 生菜沙拉,新菸鹼類農藥,對羥基苯甲酸酯類,同位素稀釋液相層析串聯質譜法, | zh_TW |
dc.subject.keyword | Ready-to-eat salads,Neonicotinoids,Paraben,FaPEx,ID-UPLC-MS/MS, | en |
dc.relation.page | 118 | |
dc.identifier.doi | 10.6342/NTU202201911 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2022-08-02 | |
dc.contributor.author-college | 公共衛生學院 | zh_TW |
dc.contributor.author-dept | 食品安全與健康研究所 | zh_TW |
顯示於系所單位: | 食品安全與健康研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-3107202216292900.pdf 目前未授權公開取用 | 9.4 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。