請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8378完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 謝馬利歐(Mario Hofmann) | |
| dc.contributor.author | Szu-Hua Chen | en |
| dc.contributor.author | 陳思樺 | zh_TW |
| dc.date.accessioned | 2021-05-20T00:53:06Z | - |
| dc.date.available | 2025-08-01 | |
| dc.date.available | 2021-05-20T00:53:06Z | - |
| dc.date.copyright | 2020-08-25 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-06 | |
| dc.identifier.citation | [1] C. Tan, X. Cao, X.-J. Wu, Q. He, J. Yang, X. Zhang, J. Chen, W. Zhao, S. Han, G.-H. Nam, Recent advances in ultrathin two-dimensional nanomaterials, Chemical Reviews, 117 (2017) 6225-6331. [2] M. Long, P. Wang, H. Fang, W. Hu, Progress, challenges, and opportunities for 2D material based photodetectors, Advanced Functional Materials, 29 (2019) 1803807. [3] C. Anichini, W. Czepa, D. Pakulski, A. Aliprandi, A. Ciesielski, P. Samorì, Chemical sensing with 2D materials, Chemical Society Reviews, 47 (2018) 4860-4908. [4] G.S. Duesberg, Heterojunctions in 2D semiconductors: A perfect match, Nature Materials, 13 (2014) 1075-1076. [5] X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R.D. Piner, L. Colombo, R.S. Ruoff, Transfer of large-area graphene films for high-performance transparent conductive electrodes, Nano Letters, 9 (2009) 4359-4363. [6] K. Kato, F.N. Sayed, G. Babu, P.M. Ajayan, All 2D materials as electrodes for high power hybrid energy storage applications, 2D Materials, 5 (2018) 025016. [7] M.Z. Rahman, C.W. Kwong, K. Davey, S.Z. Qiao, 2D phosphorene as a water splitting photocatalyst: fundamentals to applications, Energy Environmental Science, 9 (2016) 709-728. [8] W. Chen, B. Bottoms, R. Mahajan, Heterogeneous Integration Roadmap (HIR) Workshop. [9] T. Rueckes, K. Kim, E. Joselevich, G.Y. Tseng, C.-L. Cheung, C.M. Lieber, Carbon nanotube-based nonvolatile random access memory for molecular computing, Science, 289 (2000) 94-97. [10] P. Avouris, Molecular electronics with carbon nanotubes, Accounts of Chemical Research, 35 (2002) 1026-1034. [11] J. Stevenson, A. Gundlach, The application of photolithography to the fabrication of microcircuits, Journal of Physics E: Scientific Instruments, 19 (1986) 654. [12] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films, Science, 306 (2004) 666-669. [13] R. Sengupta, M. Bhattacharya, S. Bandyopadhyay, A.K. Bhowmick, A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites, Progress in Polymer Science, 36 (2011) 638-670. [14] A.K. Geim, K.S. Novoselov, The rise of graphene, in: Nanoscience and technology: a collection of reviews from nature journals, World Scientific, (2010) 11-19. [15] G.-H. Lee, R.C. Cooper, S.J. An, S. Lee, A. Van Der Zande, N. Petrone, A.G. Hammerberg, C. Lee, B. Crawford, W. Oliver, High-strength chemical-vapor–deposited graphene and grain boundaries, Science, 340 (2013) 1073-1076. [16] T. Zhu, J. Li, Ultra-strength materials, Progress in Materials Science, 55 (2010) 710-757. [17] G. Xin, T. Yao, H. Sun, S.M. Scott, D. Shao, G. Wang, J. Lian, Highly thermally conductive and mechanically strong graphene fibers, Science, 349 (2015) 1083-1087. [18] I. Meric, M.Y. Han, A.F. Young, B. Ozyilmaz, P. Kim, K.L. Shepard, Current saturation in zero-bandgap, top-gated graphene field-effect transistors, Nature Nanotechnology, 3 (2008) 654-659. [19] R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M. Peres, A.K. Geim, Fine structure constant defines visual transparency of graphene, Science, 320 (2008) 1308-1308. [20] T. Low, P. Avouris, Graphene plasmonics for terahertz to mid-infrared applications, ACS Nano, 8 (2014) 1086-1101. [21] L. Zhang, L. Zhou, M. Yang, Z. Liu, Q. Xie, H. Peng, Z. Liu, Photo‐induced free radical modification of graphene, Small, 9 (2013) 1134-1143. [22] X. Gao, Z. Wei, V. Meunier, Y. Sun, S.B. Zhang, Opening a large band gap for graphene by covalent addition, Chemical Physics Letters, 555 (2013) 1-6. [23] L. Liao, H. Peng, Z. Liu, Chemistry makes graphene beyond graphene, Journal of the American Chemical Society, 136 (2014) 12194-12200. [24] R. Balog, B. Jørgensen, L. Nilsson, M. Andersen, E. Rienks, M. Bianchi, M. Fanetti, E. Lægsgaard, A. Baraldi, S. Lizzit, Bandgap opening in graphene induced by patterned hydrogen adsorption, Nature Materials, 9 (2010) 315-319. [25] G. Eda, Y.-Y. Lin, S. Miller, C.-W. Chen, W.-F. Su, M. Chhowalla, Transparent and conducting electrodes for organic electronics from reduced graphene oxide, Applied Physics Letters, 92 (2008) 209. [26] Z. Luo, P.M. Vora, E.J. Mele, A.C. Johnson, J.M. Kikkawa, Photoluminescence and band gap modulation in graphene oxide, Applied Physics Letters, 94 (2009) 111909. [27] M. Pumera, C.H.A. Wong, Graphane and hydrogenated graphene, Chemical Society Reviews, 42 (2013) 5987-5995. [28] B. Li, L. Zhou, D. Wu, H. Peng, K. Yan, Y. Zhou, Z. Liu, Photochemical chlorination of graphene, ACS Nano, 5 (2011) 5957-5961. [29] H. Touhara, F. Okino, Property control of carbon materials by fluorination, Carbon, 38 (2000) 241-267. [30] F. Withers, S. Russo, M. Dubois, M.F. Craciun, Tuning the electronic transport properties of graphene through functionalisation with fluorine, Nanoscale Research Letters, 6 (2011) 526. [31] R. Zbořil, F. Karlický, A.B. Bourlinos, T.A. Steriotis, A.K. Stubos, V. Georgakilas, K. Šafářová, D. Jančík, C. Trapalis, M. Otyepka, Graphene fluoride: a stable stoichiometric graphene derivative and its chemical conversion to graphene, Small, 6 (2010) 2885-2891. [32] P. Gong, Z. Wang, J. Wang, H. Wang, Z. Li, Z. Fan, Y. Xu, X. Han, S. Yang, One-pot sonochemical preparation of fluorographene and selective tuning of its fluorine coverage, Journal of Materials Chemistry, 22 (2012) 16950-16956. [33] L. Zhan, S. Yang, Y. Wang, Y. Wang, L. Ling, X. Feng, Fabrication of Fully Fluorinated Graphene Nanosheets Towards High‐Performance Lithium Storage, Advanced Materials Interfaces, 1 (2014) 1300149. [34] M. Zhu, X. Xie, Y. Guo, P. Chen, X. Ou, G. Yu, M. Liu, Fluorographene nanosheets with broad solvent dispersibility and their applications as a modified layer in organic field-effect transistors, Physical Chemistry Chemical Physics, 15 (2013) 20992-21000. [35] H. Tao, Y. Zhang, Y. Gao, Z. Sun, C. Yan, J. Texter, Scalable exfoliation and dispersion of two-dimensional materials–an update, Physical Chemistry Chemical Physics, 19 (2017) 921-960. [36] R.R. Nair, W. Ren, R. Jalil, I. Riaz, V.G. Kravets, L. Britnell, P. Blake, F. Schedin, A.S. Mayorov, S. Yuan, Fluorographene: a two‐dimensional counterpart of Teflon, Small, 6 (2010) 2877-2884. [37] J.T. Robinson, J.S. Burgess, C.E. Junkermeier, S.C. Badescu, T.L. Reinecke, F.K. Perkins, M.K. Zalalutdniov, J.W. Baldwin, J.C. Culbertson, P.E. Sheehan, Properties of fluorinated graphene films, Nano Letters, 10 (2010) 3001-3005. [38] K.-I. Ho, J.-H. Liao, C.-H. Huang, C.-L. Hsu, W. Zhang, A.-Y. Lu, L.-J. Li, C.-S. Lai, C.-Y. Su, One-Step Formation of a Single Atomic-Layer Transistor by the Selective Fluorination of a Graphene Film, Small, 10 (2014) 989-997. [39] B. Wang, J. Wang, J. Zhu, Fluorination of Graphene: A Spectroscopic and Microscopic Study, ACS Nano, 8 (2014) 1862-1870. [40] S. Du, W. Lu, A. Ali, P. Zhao, K. Shehzad, H. Guo, L. Ma, X. Liu, X. Pi, P. Wang, H. Fang, Z. Xu, C. Gao, Y. Dan, P. Tan, H. Wang, C.-T. Lin, J. Yang, S. Dong, Z. Cheng, E. Li, W. Yin, J. Luo, B. Yu, T. Hasan, Y. Xu, W. Hu, X. Duan, A Broadband Fluorographene Photodetector, Advanced Materials, 29 (2017) 1700463. [41] H.Y. Liu, Z.F. Hou, C.H. Hu, Y. Yang, Z.Z. Zhu, Electronic and Magnetic Properties of Fluorinated Graphene with Different Coverage of Fluorine, The Journal of Physical Chemistry C, 116 (2012) 18193-18201. [42] M.Y. Han, Electronic transport in graphene nanoribbons, in, Columbia University, 2010. [43] L. Jiao, X. Wang, G. Diankov, H. Wang, H. Dai, Facile synthesis of high-quality graphene nanoribbons, Nature Nanotechnology, 5 (2010) 321-325. [44] J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A.P. Seitsonen, M. Saleh, X. Feng, K. Müllen, R. Fasel, Atomically precise bottom-up fabrication of graphene nanoribbons, Nature, 466 (2010) 470-473. [45] Y.-C. Chen, D.G. de Oteyza, Z. Pedramrazi, C. Chen, F.R. Fischer, M.F. Crommie, Tuning the Band Gap of Graphene Nanoribbons Synthesized from Molecular Precursors, ACS Nano, 7 (2013) 6123-6128. [46] G. Yazdi, T. Iakimov, R. Yakimova, Epitaxial Graphene on SiC: A Review of Growth and Characterization, Crystals, 6 (2016) 53. [47] B.-Y. Wu, Y. Yang, A.F. Rigosi, J. Hu, H.-Y. Lee, G. Cheng, V. Panchal, M. Kruskopf, H. Jin, K. Watanabe, T. Taniguchi, D.B. Newell, R.E. Elmquist, C.-T. Liang, A Self-Assembled Graphene Ribbon Device on SiC, ACS Applied Electronic Materials, 2 (2020) 204-212. [48] E. McCann, M. Koshino, The electronic properties of bilayer graphene, Reports on Progress in Physics, 76 (2013) 056503. [49] W. Fang, A.L. Hsu, Y. Song, A.G. Birdwell, M. Amani, M. Dubey, M.S. Dresselhaus, T. Palacios, J. Kong, Asymmetric Growth of Bilayer Graphene on Copper Enclosures Using Low-Pressure Chemical Vapor Deposition, ACS Nano, 8 (2014) 6491-6499. [50] Q. Li, H. Chou, J.-H. Zhong, J.-Y. Liu, A. Dolocan, J. Zhang, Y. Zhou, R.S. Ruoff, S. Chen, W. Cai, Growth of Adlayer Graphene on Cu Studied by Carbon Isotope Labeling, Nano Letters, 13 (2013) 486-490. [51] S. Nie, W. Wu, S. Xing, Q. Yu, J. Bao, S.-s. Pei, K.F. McCarty, Growth from below: bilayer graphene on copper by chemical vapor deposition, New Journal of Physics, 14 (2012) 093028. [52] J.W. Suk, A. Kitt, C.W. Magnuson, Y. Hao, S. Ahmed, J. An, A.K. Swan, B.B. Goldberg, R.S. Ruoff, Transfer of CVD-grown monolayer graphene onto arbitrary substrates, ACS Nano, 5 (2011) 6916-6924. [53] M. Wang, E.H. Yang, R. Vajtai, J. Kono, P.M. Ajayan, Effects of etchants in the transfer of chemical vapor deposited graphene, Journal of Applied Physics, 123 (2018) 195103. [54] A. Pirkle, J. Chan, A. Venugopal, D. Hinojos, C.W. Magnuson, S. McDonnell, L. Colombo, E.M. Vogel, R.S. Ruoff, R.M. Wallace, The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to SiO2, Applied Physics Letters, 99 (2011) 122108. [55] Y.-C. Lin, C.-C. Lu, C.-H. Yeh, C. Jin, K. Suenaga, P.-W. Chiu, Graphene Annealing: How Clean Can It Be?, Nano Letters, 12 (2012) 414-419. [56] S. Masubuchi, T. Machida, Classifying optical microscope images of exfoliated graphene flakes by data-driven machine learning, npj 2D Materials and Applications, 3 (2019) 4. [57] P. Gaskell, H. Skulason, C. Rodenchuk, T. Szkopek, Counting graphene layers on glass via optical reflection microscopy, Applied Physics Letters, 94 (2009) 143101-143101. [58] K. Yan, H. Peng, Y. Zhou, H. Li, Z. Liu, Formation of Bilayer Bernal Graphene: Layer-by-Layer Epitaxy via Chemical Vapor Deposition, Nano Letters, 11 (2011) 1106-1110. [59] A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Raman Spectrum of Graphene and Graphene Layers, Physical Review Letters, 97 (2006) 187401. [60] S.H. Sung, N. Schnitzer, L. Brown, J. Park, R. Hovden, Stacking, strain, and twist in 2D materials quantified by 3D electron diffraction, Physical Review Materials, 3 (2019) 064003. [61] J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, D. Obergfell, S. Roth, C. Girit, A. Zettl, On the roughness of single- and bi-layer graphene membranes, Solid State Communications, 143 (2007) 101-109. [62] N. Liu, Z. Pan, L. Fu, C. Zhang, B. Dai, Z. Liu, The origin of wrinkles on transferred graphene, Nano Research, 4 (2011) 996. [63] A.N. Obraztsov, E.A. Obraztsova, A.V. Tyurnina, A.A. Zolotukhin, Chemical vapor deposition of thin graphite films of nanometer thickness, Carbon, 45 (2007) 2017-2021. [64] S. Deng, V. Berry, Wrinkled, rippled and crumpled graphene: an overview of formation mechanism, electronic properties, and applications, Materials Today, 19 (2016) 197-212. [65] A. Allan, D. Edenfeld, W.H. Joyner, A.B. Kahng, M. Rodgers, Y. Zorian, 2001 technology roadmap for semiconductors, Computer, 35 (2002) 42-53. [66] M.C. Roco, R.S. Williams, P. Alivisatos, Nanotechnology Research Directions: IWGN Workshop Report. Vision for Nanotechnology R D in the Next Decade, in, National Science and Technology Councilarlington VA, 1999. [67] M.C. Roco, C.A. Mirkin, M.C. Hersam, Nanotechnology research directions for societal needs in 2020: retrospective and outlook, Springer Science Business Media, 2011. [68] P.E. Batson, N. Dellby, O.L. Krivanek, Sub-ångstrom resolution using aberration corrected electron optics, Nature, 418 (2002) 617-620. [69] V.R. Manfrinato, A. Stein, L. Zhang, C.-Y. Nam, K.G. Yager, E.A. Stach, C.T. Black, Aberration-corrected electron beam lithography at the one nanometer length scale, Nano Letters, 17 (2017) 4562-4567. [70] J.W. Lyding, R.T. Brockenbrough, P.J. Fay, J.R. Tucker, K. Hess, T.K. Higman, Scanning tunneling microscope-based nanolithography for electronic device fabrication, in: Proceedings of SPIE-The International Society for Optical Engineering, SPIE, (1993) 111-126. [71] H. Yaegashi, Pattern fidelity control in Multi-patterning towards 7nm node, in: 2016 IEEE 16th International Conference on Nanotechnology (IEEE-NANO), IEEE, (2016) 452-455. [72] K. Oyama, Patterning technology options for future scaling, in: 2018 China Semiconductor Technology International Conference (CSTIC), IEEE, (2018) 1-2. [73] V.R. Manfrinato, L. Zhang, D. Su, H. Duan, R.G. Hobbs, E.A. Stach, K.K. Berggren, Resolution limits of electron-beam lithography toward the atomic scale, Nano letters, 13 (2013) 1555-1558. [74] Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nature Nanotechnology, 7 (2012) 699. [75] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, Large-area synthesis of high-quality and uniform graphene films on copper foils, Science, 324 (2009) 1312-1314. [76] A. Castellanos-Gomez, M. Buscema, R. Molenaar, V. Singh, L. Janssen, H.S. Van Der Zant, G.A. Steele, Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping, 2D Materials, 1 (2014) 011002. [77] R. Frisenda, E. Navarro-Moratalla, P. Gant, D.P. De Lara, P. Jarillo-Herrero, R.V. Gorbachev, A. Castellanos-Gomez, Recent progress in the assembly of nanodevices and van der Waals heterostructures by deterministic placement of 2D materials, Chemical Society Reviews, 47 (2018) 53-68. [78] Y.-P. Hsieh, C.-H. Shih, Y.-J. Chiu, M. Hofmann, High-Throughput Graphene Synthesis in Gapless Stacks, Chemistry of Materials, 28 (2015) 40-43. [79] A. Rangarajan, Graphene etch mask for silicon, (2015). [80] H. Kitabayashi, H. Fujii, T. Ooishi, Charging of glass substrate by plasma exposure, Japanese Journal of Applied Physics, 38 (1999) 2964. [81] V.M. Donnelly, D.L. Flamm, W. Dautremont‐Smith, D. Werder, Anisotropic etching of SiO2 in low‐frequency CF4/O2 and NF3/Ar plasmas, Journal of Applied Physics, 55 (1984) 242-252. [82] H. Lehmann, R. Widmer, Profile control by reactive sputter etching, Journal of Vacuum Science and Technology, 15 (1978) 319-326. [83] S. Bhandary, G. Penazzi, J. Fransson, T. Frauenheim, O. Eriksson, B. Sanyal, Controlling electronic structure and transport properties of zigzag graphene nanoribbons by edge functionalization with fluorine, The Journal of Physical Chemistry C, 119 (2015) 21227-21233. [84] K. Takahashi, K. Ono, Selective etching of high-k HfO2 films over Si in hydrogen-added fluorocarbon (CF4∕Ar∕H2 and C4F8∕Ar∕H2) plasmas, Journal of Vacuum Science Technology A, 24 (2006) 437-443. [85] T. Maeda, H. Ito, R. Mitsuhashi, A. Horiuchi, T. Kawahara, A. Muto, T. Sasaki, K. Torii, H. Kitajima, Selective Dry Etching of HfO2 in CF4, Cl2 and HBr Based Chemistry, 2003. [86] F. Gaboriau, G. Cartry, M.C. Peignon, C. Cardinaud, Etching mechanisms of Si and SiO2in fluorocarbon ICP plasmas: analysis of the plasma by mass spectrometry, Langmuir probe and optical emission spectroscopy, Journal of Physics D: Applied Physics, 39 (2006) 1830-1845. [87] M.D. Henry, ICP etching of silicon for micro and nanoscale devices, in, California Institute of Technology, 2010. [88] S.D. Park, Y.J. Lee, N.G. Cho, S.G. Kim, H.H. Choe, M.P. Hong, G.Y. Yeom, Effect of additive gases on the selective etching of tungsten films using inductively coupled halogen-based plasmas, Thin Solid Films, 447-448 (2004) 586-591. [89] Y. Kataoka, M. Kanoh, N. Makino, K. Suzuki, S. Saitoh, H. Miyajima, Y. Mori, Dry Etching Characteristics of Si-based Materials Using CF4/O2Atmospheric-Pressure Glow Discharge Plasma, Japanese Journal of Applied Physics, 39 (2000) 294-298. [90] H. Yang, M. Chen, H. Zhou, C. Qiu, L. Hu, F. Yu, W. Chu, S. Sun, L. Sun, Preferential and reversible fluorination of monolayer graphene, The Journal of Physical Chemistry C, 115 (2011) 16844-16848. [91] H. Santos, L. Henrard, Fluorine adsorption on single and bilayer graphene: role of sublattice and layer decoupling, The Journal of Physical Chemistry C, 118 (2014) 27074-27080. [92] D. Devilliers, M. Vogler, F. Lantelme, M. Chemla, Mass spectrometric analysis of thermal decomposition products of graphite fluorides and electrogenerated carbon—fluorine compounds, Analytica Chimica Acta, 153 (1983) 69-82. [93] A. Sadeghi, M. Neek-Amal, G. Berdiyorov, F. Peeters, Diffusion of fluorine on and between graphene layers, Physical Review B, 91 (2015) 014304. [94] W. Wang, S. Yang, A. Wang, Observation of the unexpected morphology of graphene wrinkle on copper substrate, Scientific Reports, 7 (2017) 8244. [95] L. Meng, Y. Su, D. Geng, G. Yu, Y. Liu, R.-F. Dou, J.-C. Nie, L. He, Hierarchy of graphene wrinkles induced by thermal strain engineering, Applied Physics Letters, 103 (2013) 251610. [96] S.-H. Chen, Y. Nguyen, T.-W. Chen, Z.-L. Yen, M. Hofmann, Y.-P. Hsieh, Neutral scatterers dominate carrier transport in CVD graphene with ionic impurities, Carbon, 165 (2020) 163-168. [97] G.S. Oehrlein, H.L. Williams, Silicon etching mechanisms in a CF4/H2 glow discharge, Journal of Applied Physics, 62 (1987) 662-672. [98] A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M.S. Dresselhaus, J. Kong, Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition, Nano Letters, 9 (2009) 30-35. [99] C. Backes, A.M. Abdelkader, C. Alonso, A. Andrieux-Ledier, R. Arenal, J. Azpeitia, N. Balakrishnan, L. Banszerus, J. Barjon, R. Bartali, Production and processing of graphene and related materials, 2D Materials, 7 (2020) 022001. [100] A.J. Fleming, K.K. Leang, Design, modeling and control of nanopositioning systems, Springer, 2014. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8378 | - |
| dc.description.abstract | 本論文的重點主要分為兩個部分,第一部分是發展穩定的製程方法合成氟化石墨烯,我們利用四氟化碳電漿作用於 經由化學氣相沈積生長而成的石墨烯, 使石墨烯藉由與多種四氟化碳電漿產物結合而形成氟化雙層石墨烯,並研究該結構的特性。第二部分則展示了兩種應用,包括將氟化雙層石墨烯應用於抵抗乾蝕刻之蝕刻光罩以及使用第一部分的氟化製程製作出石墨烯奈米帶結構,並將其做為T型側閘極場效電晶體。我們觀察到石墨烯的特性在經過氟化後會有所變化,當石墨烯暴露於低密度輝光放電 四氟化碳電漿時,單層石墨烯及其下方的半導體 基板會被四氟化碳電漿所蝕刻,然而雙層石墨烯的區域卻可完整保留,且可以抵擋長時間的電漿作用。在發現這個選擇性蝕刻現象後,我們進而將其應用於大面積圖案化矽基板,且其圖案解析度可達奈米等級。該製程也可應用在製作一維石墨烯帶結構,其所形成的石墨烯帶結構可達奈米級寬度與微米級長度的程度。最後,我們利用生長或轉印石墨烯時自然形成的T型皺摺,將其利用相同製程製作成側閘極場效電晶體,該側閘極場效電晶體在施加很小的伏特數時,即可達成 57.5%的調控率 。 | zh_TW |
| dc.description.abstract | The aim of this dissertation is two-fold: the first is to develop a reliable method for synthesizing fluorinated bilayer graphene by using CF4 plasma treatment and to examine the characteristics of this structure. The second part shows two applications involving treating fluorinated bilayer graphene as etch mask and producing graphene ribbon side-gate field-effect transistor. We here observe an abrupt change in chemical inertness of graphene, an atomically thin 2D material. Exposure to a low-density glow-discharge CF4 plasma efficiently removes single-layer graphene and the underlying semiconductor while leaving bilayer graphene intact for several hours. Our advances are applied to the multi-patterning of silicon using graphene bilayer masks. The produced arrays of semiconductor features exhibit nanometer-scale and their dimensions are independent of the lithographical patterning resolution. This approach also yields one-dimensional graphene ribbon with a width of 20nm and macroscopic lengths. Finally, graphene ribbons with naturally formed T-brand configuration was made up to side-gate FET, which is demonstrated side-gating below 2V with conductance modulation of 57.5%. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-20T00:53:06Z (GMT). No. of bitstreams: 1 U0001-2807202010443300.pdf: 3910531 bytes, checksum: 45e794032cdce4942ea79aa2e2acfebe (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 摘要 I Abstract II Content III List of figures VI Chapter 1. Introduction 1 1.1 Two-dimensional (2D) materials 1 1.2 Thesis overview 3 Chapter 2. Background 5 2.1 Graphene 5 2.2 Fluorinated Graphene 8 2.2.1. Methods for Synthesizing Fluorinated Graphene 9 2.2.2. Properties of fluorinated graphene 15 2.3 Graphene Ribbon 17 Chapter 3. Experiments 22 3.1 Synthesis of bilayer graphene 22 3.1.1. CVD bilayer graphene 23 3.1.2. Artificial bilayer graphene 24 3.1.3. Characterization methods for bilayer graphene 28 3.2 CF4 Plasma treatment 33 3.3 Photolithography 34 3.3.1. Shadow mask and fluorescent lamp 35 3.3.2. Microscope projection lithography system 36 3.4 Graphene ribbon fabrication 37 3.5 Field-effect devices 39 3.5.1. Field-effect transistor (FET) 40 3.5.2. Side gate field-effect transistor 41 Chapter 4. 2D Material Enabled Offset-Patterning with Atomic Resolution 43 4.1 Introduction 43 4.2 Experiment 47 4.3 Results and discussion 48 4.3.1. Etch mask 63 4.3.2. T-branch side-gate FET 65 4.4 Summary 67 Chapter 5. Conclusion 68 Reference 70 Publication List 80 | |
| dc.language.iso | en | |
| dc.title | 氟化石墨烯之量測與應用 | zh_TW |
| dc.title | Characterization and Applications of Fluorinated Graphene | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.coadvisor | 謝雅萍(Ya-Ping Hsieh) | |
| dc.contributor.oralexamcommittee | 陳永芳(Yang-Fang Chen),張顏暉(Yuan-Huei Chang),藍彥文(Yann-Wen Lan) | |
| dc.subject.keyword | 二維材料,雙層石墨烯,氟化石墨烯,曝光顯影,原子級蝕刻, | zh_TW |
| dc.subject.keyword | 2D material,bilayer,fluorinated graphene,lithography,atomic etch, | en |
| dc.relation.page | 80 | |
| dc.identifier.doi | 10.6342/NTU202001949 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2020-08-06 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理學研究所 | zh_TW |
| dc.date.embargo-lift | 2025-08-01 | - |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2807202010443300.pdf | 3.82 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
