Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83789
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor許輔zh_TW
dc.contributor.advisorFUU SHEUen
dc.contributor.author陳冠宏zh_TW
dc.contributor.authorKUAN-HONG CHENen
dc.date.accessioned2023-03-19T21:18:08Z-
dc.date.available2025-12-31-
dc.date.copyright2022-08-24-
dc.date.issued2022-
dc.date.submitted2002-01-01-
dc.identifier.citation王清玲。(2003)。 柑橘薊馬類。植物保護圖鑑系列 9-柑橘保護,第65頁。防檢局。 台北。378頁。
安寶貞。(2003)。 檬果炭疽病。 植物保護圖鑑系列10-檬果保護,第78-79頁。防檢局。台北。195頁。
李仁傑,王培成,李茂榮。 (2011)。 新前處理技術-QuEChERS 之簡介。科儀新知, 33-1:68-74。
周志強,黃明宗, 謝建台。(2012)。利用大氣壓力游離質譜法進行快速化學分析。 科儀新知。187:4-10。
林哲瑋。(2016)。創新線微流體電泳電化學系統結合電噴灑游離質譜偵測於生醫及食品安全之應用。機械與機電工程學系研究所 (頁1-71)。中山大學。
翁琳凱。(2017)。常壓電漿與電噴灑同軸雙游離源流場優化分析及其於農藥檢測之應用。機械與機電工程學系研究所 (頁 1-90)。中山大學。
Agilent Technologies. 1999-2022. Agilent Technologies Incorporation. [Accessed on 2022 Jun 08]. https://www.agilent.com/.
Albert, A., and Engelhard, C. (2012). Characteristics of low-temperature plasma ionization for ambient mass spectrometry compared to electrospray ionization and atmospheric pressure chemical ionization. Analytical Chemistry. 84:10657-10664.
Audouze, K., Taboureau, O., and Grandjean, P. (2018). A systems biology approach to predictive developmental neurotoxicity of a larvicide used in the prevention of Zika virus transmission. Toxicology and Applied Pharmacology. 354:56-63.
Anastassiades, M., L., S. J., and Stajnbaher, D. (2002). European pesticide residues workshop. EPRW Rom.
Banerjee, S., and Mazumdar, S. (2012). Electrospray ionization mass spectrometry: a technique to access the information beyond the molecular weight of the analyte. International Journal of Analytical Chemistry. 2012;2012:282574.
Banks, J. F. (1997). Recent advances in capillary electrophoresis/electrospray/massspectrometry. Electrophoresis. 18:2255-2266.
Cha, E., Kim, S., Kim, H. J., Lee, K. M., Kim, K. H., Kwon, O. S., and Lee, J. (2015). Sensitivity of GC-EI/MS, GC-EI/MS/MS, LC-ESI/MS/MS, LC-Ag+CIS/MS/MS, and GC-ESI/MS/MS for analysis of anabolic steroids in doping control. Drug Testing and Analysis. 7:1040-1049.
Chen, Y. R., Wen, K. C., and Her, G. R. (2000). Analysis of coptisine, berberine and palmatine in adulterated Chinese medicine by capillary electrophoresis–electrospray ion trap mass spectrometry. Journal of Chromatography A. 866:273-280.
Cheng, S. C., Lee, R. H., Jeng, J. Y., Lee, C. W., and Shiea, J. (2020). Fast screening of trace multiresidue pesticides on fruit and vegetable surfaces using ambient ionization tandem mass spectrometry. Analytica Chimica Acta. 1102:63-71.
Cooks, R. G., Manicke, N. E., Dill, A. L., Ifa, D. R., Eberlin, L. S., Costa, A. B., and Ouyang, Z. (2011). New ionization methods and miniature mass spectrometers for biomedicine: DESI imaging for cancer diagnostics and paper spray ionization for therapeutic drug monitoring. Faraday Discussions. 149:247-267.
Crawford, E. A., Esen, C., and Volmer, D. A. (2016). Real time monitoring of containerless microreactions in acoustically levitated droplets via ambient ionization mass spectrometry. Analytical Chemistry. 88:8396-8403.
Dole, M., Mack, L., Hines, R., Mobley, R., Ferguson, L., and Alice, M. d. (1968). Molecular beams of macroions. The Journal of Chemical Physics. 49:2240-2249.
Domingues, P., García, A., and Skrzydlewska, E. (2018). Advanced Analytical Chemistry for Life Sciences. Aveiro University Mass Spectrometry Centre.
Ferguson, P. L., Iden, C. R., McElroy, A. E., and Brownawell, B. J. (2001). Determination of steroid estrogens in wastewater by immunoaffinity extraction coupled with HPLC-electrospray-MS. Analytical Chemistry. 73:3890-3895.
Fritz, J. S. (1999). Analytical Solid-phase extraction. In Analytical solid-phase extraction (pp. 209-209).
Gilbert-Lopez, B., Schilling, M., Ahlmann, N., Michels, A., Hayen, H., Molina-Diaz, A., and Franzke, J. (2013). Ambient diode laser desorption dielectric barrier discharge ionization mass spectrometry of nonvolatile chemicals. Analytical Chemistry. 85:3174-3182.
Guo, X. Y., Huang, X. M., Zhai, J. F., Bai, H., Li, X. X., Ma, X. X., and Ma, Q. (2019). Research advances in ambient ionization and miniature mass spectrometry. Chinese Journal of Analytical Chemistry. 47: 335-346.
Hail, M. E., and Mylchreest, I. C. (Feb. 28, 1995). Electrospray ion source and interface apparatus and method. U.S. Patent 5,393,975.
Hong, C.M., Tsai, F.C., and Shiea, J. (2000). A multiple channel electrospray source used to detect highly reactive ketenes from a flow pyrolyzer. Analytical Chemistry. 72:1175-1178.
Hong, C. M., Lee, C. T., Lee, Y. M., Kuo, C. P., Yuan, C. H., and Shiea, J. (1999). Generating electrospray from solutions predeposited on a copper wire. Rapid Communications in Mass Spectrometry. 13:21-25.
Hsu, H. J., Kuo, T. L., Wu, S. H., Oung, J. N., and Shiea, J. (2005). Characterization of synthetic polymers by electrospray-assisted pyrolysis ionization-mass spectrometry. Analytical Chemistry. 77:7744-7749.
Hsu, H. J., Oung, J. N., Kuo, T. L., Wu, S. H., and Shiea, J. (2007). Using electrospray-assisted pyrolysis ionization/mass spectrometry for the rapid characterization of trace polar components in crude oil, amber, humic substances, and rubber samples. Rapid Communications in Mass Spectrometry. 21:375-384.
Hu, B., Zhang, X. L., Li, M., Peng, X. J., Han, J., Yang, S. P., Chen, H. W. (2011). Coupling corona discharge for ambient extractive ionization mass spectrometry. Analyst. 136:4977-4985.
Huang, M. Z., Cheng, S. C., Cho, Y. T., and Shiea, J. (2011). Ambient ionization mass spectrometry: a tutorial. Analytica Chimica Acta. 702:1-15.
Huang, M. Z., Zhou, C. C., Liu, D. L., Jhang, S. S., Cheng, S. C., and Shiea, J. (2013). Rapid characterization of chemical compounds in liquid and solid states using thermal desorption electrospray ionization mass spectrometry. Analytical Chemistry. 85:8956-8963.
Jaworek, A., Sobczyk, A., Czech, T., and Krupa, A. (2014). Corona discharge in electrospraying. Journal of Electrostatics. 72(2):166-178.
Jeng, J., Lin, C. H., and Shiea, J. (2005). Electrospray from nanostructured tungsten oxide surfaces with ultralow sample volume. Analytical Chemistry. 77:8170-8173.
Jiang, Y. B., Zhong, M., and Ma, Y. Y. (2014). The rapid selecting of precursor ions and product ions of thirty-four kinds of pesticide for content determination by GC-EI/MS/MS. Food Control. 43:110-114.
Kuo, C. P., and Shiea, J. (1999). Application of direct electrospray probe to analyze biological compounds and to couple to solid-phase microextraction to detect trace surfactants in aqueous solution. Analytical Chemistry. 71:4413-4417.
Kuo, T. H., Dutkiewicz, E. P., Pei, J. Y., and Hsu, C. C. (2020). Ambient ionization mass spectrometry today and tomorrow: embracing challenges and opportunities. Analytical Chemistry. 92:2353-2363.
Li, Y., Zhang, H., Hu, J. T., Xue, F., Li, Y. X., and Sun, C. J. (2012). A GC-EI-MS-MS method for simultaneous determination of seven adulterants in slimming functional foods. Journal of Chromatographic Science. 50:928-933.
Liu, J., Wang, H., Manicke, N. E., Lin, J. M., Cooks, R. G., and Ouyang, Z. (2010). Development, characterization, and application of paper spray ionization. Analytical Chemistry. 82:2463-2471.
Lloyd, J. R., and Hess, S. (2009). A corona discharge initiated electrochemical electrospray ionization technique. Journal of the American Society for Mass Spectrometry. 20:1988-1996.
Ly, T. K., Ho, T. D., Behra, P., and Nhu-Trang, T. T. (2020). Determination of 400 pesticide residues in green tea leaves by UPLC-MS/MS and GC-MS/MS combined with QuEChERS extraction and mixed-mode SPE clean-up method. Food Chemistry. 326:126928.
Manicke, N. E., Abu Rabie, P., Spooner, N., Ouyang, Z., and Cooks, R. G. (2011a). Quantitative analysis of therapeutic drugs in dried blood spot samples by paper spray mass spectrometry: an avenue to therapeutic drug monitoring. Journal of the American Society for Mass Spectrometry. 22:1501-1507.
Manicke, N. E., Yang, Q., Wang, H., Oradu, S., Ouyang, Z., and Cooks, R. G. (2011b). Assessment of paper spray ionization for quantitation of pharmaceuticals in blood spots. International Journal of Mass Spectrometry. 300:123-129.
Moricz, A. M., Lapat, V., Morlock, G. E., and Ott, P. G. (2020). High-performance thin-layer chromatography hyphenated to high-performance liquid chromatography-diode array detection-mass spectrometry for characterization of coeluting isomers. Talanta. 219:121306.
Pei, J. Y., Yu, K. F., and Wang, Y. H. (2016). Thermal bursting ionization for ambient mass spectrometry. Rsc Advances. 6:2496-2499.
Prabakaran, M., Chung, I. M., Son, N. Y., Chi, H. Y., Kim, S. Y., Yang, Y. J., and Kim, S. H. (2019). Analysis of selected phenolic compounds in organic, pesticide-free, conventional rice (Oryza sativa) using LC-ESI-MS/MS. Molecules. 24:67.
Reichert, B., de Kok, A., Pizzutti, I. R., Scholten, J., Cardoso, C. D., and Spanjer, M. (2018). Simultaneous determination of 117 pesticides and 30 mycotoxins in raw coffee, without clean-up, by LC-ESI-MS/MS analysis. Analytica Chimica Acta. 1004:40-50.
Reiss, R., Ehlert, S., Heide, J., Putz, M., Forster, T., and Zimmermann, R. (2018). Ambient pressure laser desorption-chemical ionization Mass spectrometry for fast and reliable detection of explosives, Drugs, and their precursors. Applied Sciences-Basel. 8:933.
Shelley, J. T., Wiley, J. S., Chan, G. C. Y., Schilling, G. D., Ray, S. J., and Hieftje, G. M. (2009). Characterization of direct-current atmospheric-pressure discharges useful for ambient desorption/ionization mass spectrometry. Journal of the American Society for Mass Spectrometry. 20:837-844.
Shimadzu. 1875-2022. Shimadzu Corporation. [accessed 2022 Jun 08]. https://www.shimadzu.com/
Stephanou, E. (1984). Identification of nonionic detergents by GC CI-MS a complementary method or an attractive alternative to GC-EI-MS and other methods. Chemosphere. 13:43-51.
Tsai, C. H., Hung, T. H., & Su, H. J. (2008). Strain identification and distribution of citrus Huangiongbing bacteria in Taiwan. Botanical Studies, 49(1), 49–56.
Tang, K., and Gomez, A. (1995). Generation of monodisperse water droplets from electrosprays in a corona-assisted cone-jet mode. Journal of Colloid and Interface Science. 175:326-332.
Thermo Fisher Scientific. 1956-2022. Thermor Fisher Scientific Incorporation. [Accessed on 2022 Jun 08] https://www.thermofisher.com/.
Venter, A., Nefliu, M., and Cooks, R. G. (2008). Ambient desorption ionization mass spectrometry. Trac-Trends in Analytical Chemistry. 27:284-290.
Wang, B., Ding, X. L., Zhao, Z. J., and Duan, Y. X. (2015). Method development for directly screening pesticide residues in foodstuffs using ambient microfabricated glow discharge plasma (MFGDP) desorption/ionization mass spectrometry. International Journal of Mass Spectrometry. 377:507-514.
Wang, H., Liu, J., Cooks, R. G., and Ouyang, Z. (2010). Paper spray for direct analysis of complex mixtures using mass spectrometry. Angewandte Chemie International Edition. 122:889-892.
Wiki. 1995-2022. Wikipedia. [accessed on 2022 Jun 08]. https://zh.wikipedia.org/.
Yamashita, M., and Fenn, J. B. (1984). Electrospray ion source. Another variation on the free-jet theme. The Journal of Physical Chemistry. 88:4451-4459.
Zaitsu, K., Miyagawa, H., Sakamoto, Y., Matsuta, S., Tsuboi, K., Nishioka, H., and Ishii, A. (2013). Mass spectrometric differentiation of the isomers of mono-methoxyethylamphetamines and mono-methoxy-dimethylamphetamines by GC-EI-MS-MS. Forensic Toxicology. 31:292-300.
Zhang, H., Bayen, S., and Kelly, B. C. (2015). Co-extraction and simultaneous determination of multi-class hydrophobic organic contaminants in marine sediments and biota using GC-EI-MS/MS and LC-ESI-MS/MS. Talanta. 143:7-18.
Zhang, Z., Cooks, R. G., and Ouyang, Z. (2012). Paper spray: a simple and efficient means of analysis of different contaminants in foodstuffs. Analyst. 137:2556-2558.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83789-
dc.description.abstract食品農藥殘留檢驗常耗工耗時,因此本研究開發了一種創新的快速質譜檢驗方式,可省去傳統萃取濃縮之前處理步驟,應用於蔬果中農藥之檢驗。此方法是基於一種獨創的熱脫附裝置,將不銹鋼接種針與電烙鐵結合,成為快速取樣的探針,直接用接種環被測物刮擦蔬菜、水果等農產品的表面,通過電烙鐵對樣品進行快速熱脫附後,待測農藥可以快速揮發,然後利用紙噴霧裝置產生電噴霧離子和電暈放電的特性,使樣品及待測物農藥解離,進入質譜檢測。
本研究之第一部分先探討電暈放電結合紙電噴霧游離方式之可行性,結果發現對紙張施加介於6.0 kV/cm 與 8.3 kV/cm 之間高電場,確實可觀察得到電噴霧和電暈放電之現象,後續在高於7.0 kV/cm的電場下可以同時產生電噴霧與電暈放電,透過電噴霧以游離極性物質,電暈放電所產生之電漿則可使非極性物質帶電。因此利用質譜儀同時檢測出極性之乙醇、中極性之丙酮、以及非極性之苯的質譜訊號,證明此法適於游離噴霧極性及非極性化合物,可用於替代傳統電灑法與電漿放電獨立系統之游離介面。
第二部分開發結合不銹鋼接種針與瞬熱式電烙鐵之熱脫附裝置,此裝置可在25秒內由室溫升溫至250℃,亦可使含10 ppm 咖啡因的模擬樣品中的咖啡因受熱而脫附,是一種簡便的採樣與脫附系統整合之裝置。配合紙電噴霧之游離方式,可成功於質譜取得液態咖啡因之質譜訊號,顯示以此探針作為熱脫附裝置可應用於樣品直接分析。
第三部分則以標準實驗室收樣之檸檬為材料,透過離子阱質譜儀可同時追蹤多種不同分子量樣本之特性,探討本研究開發的快速熱脫附質譜法,應用於快速蔬果農藥之質譜檢測可行性。並以標準實驗室採用公訂之 QuEChERS 標準檢測流程與 GC-MS/MS 以及 LC-MS/MS 檢測進行驗證。結果發現本研究之快速熱脫附法於離子阱式質譜儀檢出之農藥為克凡派、百利普芬、賽洛寧、亞拖敏、亞滅培以及畢達本。而以台灣標準方法所檢測之農藥殘留及其濃度為克凡派0.225 ppm、百利普芬0.185 ppm、賽洛寧0.110 ppm、亞拖敏0.12 ppm、亞滅培0.31 ppm以及畢達本0.11 ppm。上述結果顯示本研究所開發之快速熱脫附質譜法,於單一次採樣與游離脫附操作中,可在質譜儀同時偵測到蔬果表面之極性及非極性農藥,並且其結果與公告方法是一致的。此結果也證明了本研究中所研發的新式紙電噴霧游離結合瞬熱烙鐵熱脫附探針作為農藥殘留檢驗是具體可行的。
然而本方法的設計是為應用於快速篩選檢驗,無法定量採樣、進樣而進一步得知待測物的實際濃度,在實際應用上仍須搭配其他定量方式。
本研究所開發之技術,具有方便、快速、準確之優點,未來可應用於其他食品安全項目之檢驗,以及醫學檢體、藥物分析、環境科學等其他領域。
zh_TW
dc.description.abstractDetecting the pesticide residues in food is often described as a labor-intensive and time-consuming event. In this study, we aimed to resolve this issue by developing an innovative method using rapid mass spectrometry. This approach is applicable to pesticides inspection in fruits and vegetables, and is able to eliminate the preliminary treatment step of extraction that is traditionally performed by laboratory.
The concept behind this novelty was based on using a thermal desorption device, which connecting a stainless-steel inoculating needle into a commercial instant-heat iron to form a ready-to-use probe for quick sampling. The probe then could be used directly to scrape the surfaces of vegetables, fruits and other agricultural products. When a sample was collected, it was thermally desorbed rapidly by the instant-heat iron enabling the analytes to be quickly volatilized. Moreover, a paper spray device is used to generate electrospray ions and corona discharge, and such characteristics made the analytes in the sample dissociate and enter the mass spectrometry for detection.
The first part of this study investigated the feasibility of corona discharge combined with paper electrospray dissociation. The results showed that the phenomenon of electrospray and corona discharge could indeed be observed by applying high electric fields of 6.0 and 8.3 kV/cm to paper. Electrospray and corona discharge could be generated at the same time under the electric field higher than 7.0 kV/cm. Polar analytes are then dissociated by electrospray, and the plasma generated by corona discharge can charge non-polar analytes. As the result, the simultaneously detected mass spectrum signals of polar ethanol, moderately polar acetone, and non-polar benzene could prove that this method is workable for dissociating spraying of polar and non-polar compounds. It could be used to replace the dissociating interface of traditional electrospray method and plasma discharge independent system.
The second part of this study was the development of a thermal desorption device, combining a stainless-steel inoculating needle and an instant heat electric soldering iron. This device was heated from room temperature to 250°C in 25 seconds, and could also desorb caffeine in a simulated sample containing 10 ppm caffeine. Desorbed by heat, it was a simple device integrating sampling and desorption systems. Combined with the dissociation method of paper electrospray, the mass spectrometry signal of liquid caffeine was successfully obtained with mass spectrometry.
The third part of this study uses lemons collected in a commercial laboratory as materials, and combined rapid thermal desorption method to detect the residues of pesticides. Six pesticides composed of polar acetamiprid, azoxystobin, pyridaben and low polar chlorfenapyr, pyriproxyden, -cyhalothrin were successfully detected in seconds. To verify this novel method, the results were compared with Taiwan official method which uses QuEChERS as pretreatment method and adopts GC-MS/MS and LC-MS/MS as detection instrument. The data showed that the official method detects pesticides at the following concentrations: 0.225 ppm for chlorfenapyr, 0.185 ppm for pyriproxyfen, 0.110 ppm for -cyhalothrin, 0.12 ppm for azoxystrobin, 0.31 ppm for acetamiprid and 0.11 ppm for pyridaben, respectively. The above results were in line with the testing results by using rapid thermal desorption method, and those concluded that the rapid thermal desorption mass spectrometry method developed in this study could simultaneously detect polar and non-polar pesticides on the surface of fruits and vegetables by mass spectrometer in a single sampling and dissociation desorption procedure.
This novel thermal desorption probe integrated with the corona-discharged assisted paper-spray mass spectrometry could be applied to other food safety inspection in the future, as well as medical samples, drug analysis, environmental science and various fields.
en
dc.description.provenanceMade available in DSpace on 2023-03-19T21:18:08Z (GMT). No. of bitstreams: 1
U0001-2507202216054900.pdf: 3259369 bytes, checksum: c7dee2cf9e8aa220a07068b2c8a394e8 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents目錄
摘要 VIII
Abstract X
1.緒論 1
1.1分離進樣技術 8
1.1.1氣相層析 8
1.1.2液相層析 11
1.1.3熱脫附分離 14
1.2大氣壓力游離法 17
1.2.1電噴霧游離法 18
1.2.2大氣壓力化學游離法 21
1.2.3紙電噴霧游離法 23
1.3質量分析器 26
1.3.1四極矩式分析器 26
1.3.2離子阱式分析器 28
1.3.3串聯性質譜儀 30
2研究動機與目的 32
2.1研究動機 32
2.2研究目的 34
3.材料與方法 36
3.1實驗設計 36
3.2實驗裝置 37
3.2.1電暈放電紙電噴霧游離裝置 37
3.2.2熱脫附探針 40
3.2.3質譜檢測器 43
3.3農藥標準檢驗法 45
3.3.1 標準品及溶劑 45
3.3.2 樣品前處理程序 45
3.4.3 GC-MS/MS 儀器條件 49
3.4.3 LC-MS/MS 儀器條件 50
3.5紙電噴霧實驗程序 52
4.結果與討論 54
4.1電暈放電結合紙電噴霧游離 54
4.2熱脫附探針試驗 60
4.3新方法與標準化學分析方法比較 67
5.結論 77
參考文獻 80
圖目錄
圖 1 1氣相層析儀示意圖 10
圖 1 2液相層析儀示意圖 13
圖 1 3熱裂解法結合融合微滴電噴霧游離質譜法裝置示意圖 16
圖 1 4電噴霧游離過程示意圖 20
圖 1 5大氣壓力化學游離法示意圖 22
圖 1 6紙電噴霧游離在血液及藥物分析之應用 25
圖 1 7四極矩式分析器示意圖 27
圖 1 8離子阱式分析器 29
圖 1 9串聯性質譜儀 31
圖 3 1電暈放電輔助電噴霧游離機制 39
圖 3 2電暈放電輔助紙電噴霧游離模式示意圖 39
圖 3 3熱脫附探針裝置 42
圖 3 4離子阱質譜儀 44
圖 3 5 QuEChERS標準操作法流程圖 47
圖 3 6 衛生福利部公告的農藥前處理方法流程 48
圖 3 7 利用電暈放電輔助紙電噴霧游離模式結合熱脫附探針分析之示意圖。 53
圖 4 1紙電噴霧噴霧錐在不同施加電場下之噴霧狀況 56
圖 4 2紙電噴霧與電暈放電輔助紙電噴霧量測混合有機溶液之質譜圖 59
圖 4 3量測之熱脫附探針升溫曲線圖 62
圖 4 4 熱脫附探針檢測 10 ppm 咖啡因質譜離子強度圖 64
圖 4 5 熱脫附探針刮擦柑橘樣本分析質譜圖 66
圖 4 6 使用電暈放電輔助紙電噴霧游離熱脫附探針檢測檸檬表面農藥質譜圖 70
圖 4 7 使用公告方法檢測檸檬樣品之質譜圖 72

表目錄

表 4 1 使用公告方法檢測檸檬樣品之濃度結果 75
-
dc.language.isozh_TW-
dc.subject紙電噴霧zh_TW
dc.subject農藥殘留zh_TW
dc.subject熱脫附zh_TW
dc.subject快速檢驗zh_TW
dc.subject質譜zh_TW
dc.subject電暈放電zh_TW
dc.subjectthermal desorptionen
dc.subjectPesticide residuesen
dc.subjectrapid screeningen
dc.subjectmass spectrometryen
dc.subjectcorona dischargeen
dc.subjectpaper spray ionizationen
dc.title紙電噴霧游離結合瞬熱烙鐵熱脫附探針應用於蔬果表面農藥殘留快速檢測zh_TW
dc.titleRapid Screening of Fruit and Vegetable Surface Pesticides Using Paper-Spray Ionization Mass Spectrometry and Instant-heat Iron as the Thermal Desorption Probeen
dc.typeThesis-
dc.date.schoolyear110-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee蘇南維;傅龍明;周志輝;林哲信;潘敏雄;姜志剛zh_TW
dc.contributor.oralexamcommitteeNan-Wei SU;Lung-Ming Fu;Chi-Fai Chau;Che-Hsin Lin;Min-Hsiung Pan;Chih-Kang Chiangen
dc.subject.keyword農藥殘留,熱脫附,紙電噴霧,電暈放電,質譜,快速檢驗,zh_TW
dc.subject.keywordPesticide residues,thermal desorption,paper spray ionization,corona discharge,mass spectrometry,rapid screening,en
dc.relation.page87-
dc.identifier.doi10.6342/NTU202201704-
dc.rights.note未授權-
dc.date.accepted2022-08-02-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept園藝暨景觀學系-
顯示於系所單位:園藝暨景觀學系

文件中的檔案:
檔案 大小格式 
ntu-110-2.pdf
  未授權公開取用
3.18 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved