請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83787完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉建豪 | zh_TW |
| dc.contributor.advisor | Chien-Hao Liu | en |
| dc.contributor.author | 林威志 | zh_TW |
| dc.contributor.author | Wei-Zhi Lin | en |
| dc.date.accessioned | 2023-03-19T21:18:04Z | - |
| dc.date.available | 2023-12-26 | - |
| dc.date.copyright | 2022-08-05 | - |
| dc.date.issued | 2022 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | [1] W. Du et al., “An ultrathin MoSe 2 photodetector with near-perfect absorption,” Nanotech, vol. 31, no. 22, p. 225201, May 2020. [2] J. S. Ross et al., “Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p–n junctions,” Nature Nanotech, vol. 9, no. 4, pp. 268–272, Apr. 2014. [3] N. T. Shelke, S. C. Karle, and B. R. Karche, “Photoresponse properties of CdSe thin film photodetector,” J Mater Sci: Mater Electron, vol. 31, no. 18, pp. 15061–15069, Sep. 2020. [4] H. Jing et al., “Flexible ultrathin single-crystalline perovskite photodetector,” Nano Lett., vol. 20, no. 10, pp. 7144–7151, Oct. 2020. [5] Z. Yang et al., “High-performance single-crystalline perovskite thin-film photodetector,” Adv. Mater., vol. 30, no. 8, p. 1704333, Feb. 2018. [6] X. Jiang, T. Wang, S. Xiao, X. Yan, and L. Cheng, “Tunable ultra-high-efficiency light absorption of monolayer graphene using critical coupling with guided resonance,” Opt. Express, vol. 25, no. 22, p. 27028, Oct. 2017. [7] S. M. Sze and K. K. Ng, “Physics of semiconductor devices.” 2006. [8] L. Zhang, Y.-C. Liang, and D. Niyato, “6G visions: mobile ultra-broadband, super internet-of-things, and artificial intelligence,” China Commun., vol. 16, no. 8, pp. 1–14, Aug. 2019. [9] M. Z. Chowdhury, Md. Shahjalal, S. Ahmed, and Y. M. Jang, “6G wireless communication systems: applications, requirements, technologies, challenges, and research directions,” IEEE Open J. Commun. Soc., vol. 1, pp. 957–975, 2020. [10] Z. Zhang et al., “6G wireless networks: vision, requirements, architecture, and key technologies,” IEEE Veh. Technol. Mag., vol. 14, no. 3, pp. 28–41, Sep. 2019. [11] T. Huang, W. Yang, J. Wu, J. Ma, X. Zhang, and D. Zhang, “A survey on green 6g network: architecture and technologies,” IEEE Access, vol. 7, pp. 175758–175768, 2019. [12] W. Saad, M. Bennis, and M. Chen, “A vision of 6G wireless systems: applications, trends, technologies, and open research problems,” IEEE Network, vol. 34, no. 3, pp. 134–142, May 2020. [13] F. Ciampa, P. Mahmoodi, F. Pinto, and M. Meo, “Recent advances in active infrared thermography for non-destructive testing of aerospace components,” Sensors, vol. 18, no. 2, p. 609, Feb. 2018. [14] C. Liang et al., “Chinese military evaluation of a portable near-infrared detector of traumatic intracranial hematomas,” Mil. Med., vol. 183, no. 7–8, pp. e318–e323, Jul. 2018. [15] Y. He et al., “Infrared machine vision and infrared thermography with deep learning: A review,” Infrared Phys & Technol, vol. 116, p. 103754, Aug. 2021. [16] D. P. Hutchinson and R. K. Richards, “All-weather long-wavelength infrared free space optical communications,” Free-Space Laser Commun., New York, NY: Springer New York, 2007. [17] D. B. Rensch and R. K. Long, “Comparative studies of extinction and backscattering by aerosols, fog, and rain at 106 μ and 063 μ,” Appl. Opt., vol. 9, no. 7, p. 1563, Jul. 1970. [18] J. J. Liu, B. L. Stann, K. K. Klett, P. S. Cho, and P. M. Pellegrino, “Mid and long-wave infrared free-space optical communication,” in Laser Communication and Propagation through the Atmosphere and Oceans VIII, San Diego, United States, Sep. 2019, p. 1. doi: 10.1117/12.2530969. [19] V. W. S. Chan, “Free-space optical communications,” J. Light. Technol., vol. 24, no. 12, pp. 4750–4762, Dec. 2006. [20] A. Pavelchek, R. G. Trissel, J. Plante, and S. Umbrasas, “Long-wave infrared (10-μm) free-space optical communication system,” Optical Science and Technology SPIE's 48th Annual Meeting, San Diego, California, USA, Jan. 2004, p. 247. doi: 10.1117/12.504940. [21] F. Nadeem, V. Kvicera, M. Awan, E. Leitgeb, S. Muhammad, and G. Kandus, “Weather effects on hybrid FSO/RF communication link,” IEEE J. Sel. Area. Comm., vol. 27, no. 9, pp. 1687–1697, Dec. 2009. [22] H. Singh and D. P. Chechi, “Performance evaluation of free space optical (fso) communication link: effects of rain, snow and fog,” 2019 6th International Conference on Signal Processing and Integrated Networks (SPIN), Noida, India, Mar. 2019. [23] M. Usman, Hong-Chuan Yang, and M.-S. Alouini, “Practical switching-based hybrid fso/rf transmission and its performance analysis,” IEEE Photon J., vol. 6, no. 5, pp. 1–13, Oct. 2014. [24] H. Samimi and M. Uysal, “End-to-end performance of mixed rf/fso transmission systems,” J. Opt. Commun. Netw., vol. 5, no. 11, p. 1139, Nov. 2013. [25] I. I. Kim and E. J. Korevaar, “Availability of free-space optics (FSO) and hybrid FSO/RF systems,” ITCom 2001, Denver, CO, Nov. 2001, p. 84. doi: 10.1117/12.449800. [26] E. Soleimani-Nasab and M. Uysal, “Generalized performance analysis of mixed RF/FSO cooperative systems,” IEEE Trans. Wirel. Commun., vol. 15, no. 1, pp. 714–727, Jan. 2016. [27] E. Mohammadi and N. Behdad, “A wide dynamic range polarization sensing long wave infrared detector,” Sci Rep, vol. 7, no. 1, p. 17475, Dec. 2017. [28] P. L. Richards, “Bolometers for infrared and millimeter waves,” J. Appl. Phys., vol. 76, no. 1, pp. 1–24, Jul. 1994. [29] M. Abdel-Rahman, N. F. Al-Khalli, A. H. Kusuma, and N. A. Debbar, “A slot antenna-coupled microbolometer for detection at 94 GHz,” PIER Letters, vol. 32, pp. 137–143, 2012. [30] K. Son, N. Kislov, and J. Wang, “Development of infrared detector with slot antenna-coupled microbolometer,” SPIE Defense, Security, and Sensing, Orlando, Florida, Apr. 2010. [31] M. R. Abdel-Rahman, F. J. González, and G. D. Boreman, “Antenna-coupled metal-oxide-metal diodes for dual-band detection at 92.5 GHz and 28 THz,” Electron. Lett., vol. 40, no. 2, p. 116, 2004. [32] J. Zmuidzinas and H. G. LeDuc, “Quasi-optical slot antenna SIS mixers,” IEEE Trans Microw Theory Tech., vol. 40, no. 9, pp. 1797–1804, Sep. 1992. [33] E. Mohammadi, B. Behzadnezhad, and N. Behdad, “An angle-sensing infrared detector using a two-element biomimetic antenna array,” IEEE Trans. Antennas Propagat., vol. 66, no. 11, pp. 5818–5826, Nov. 2018. [34] N. Behdad, M. A. Al-Joumayly, and Meng Li, “Biologically inspired electrically small antenna arrays with enhanced directional sensitivity,” Antennas Wirel. Propag. Lett., vol. 10, pp. 361–364, 2011. [35] N. Behdad and M. A. Al-Joumayly, “Biomimetic electrically small antennas,” IEEE Wirel Commun, Honolulu, HI, USA, Aug. 2010. [36] A. R. Masoumi and N. Behdad, “An improved architecture for two-element biomimetic antenna arrays,” IEEE Trans. Antennas Propagat., vol. 61, no. 12, pp. 6224–6228, Dec. 2013. [37] N. Behdad, Meng Li, and M. Al-Joumayly, “Biologically-inspired antenna arrays based on the hearing mechanism of the parasitoid fly Ormia Ochracea,” in 2011 IEEE International Symposium on Antennas and Propagation (APSURSI), Spokane, WA, Jul. 2011. [38] S. Yi et al., “Subwavelength angle-sensing photodetectors inspired by directional hearing in small animals,” Nat. Nanotech, vol. 13, no. 12, pp. 1143–1147, Dec. 2018. [39] B. Grothe, M. Pecka, and D. McAlpine, “Mechanisms of sound localization in mammals,” Physiol. Rev., vol. 90, no. 3, pp. 983–1012, Jul. 2010. [40] S.-H. Chung, A. Pettigrew, and M. Anson, “Dynamics of the amphibian middle ear,” Nature, vol. 272, no. 5649, pp. 142–147, Mar. 1978. [41] R. N. Miles, D. Robert, and R. R. Hoy, “Mechanically coupled ears for directional hearing in the parasitoid fly Ormia ochracea,” J. Acoust. Soc. Am., vol. 98, no. 6, pp. 3059–3070, Dec. 1995. [42] H. Römer and A. K. D. Schmidt, “Directional hearing in insects with internally coupled ears,” Biol Cybern, vol. 110, no. 4–5, pp. 247–254, Oct. 2016. [43] R. Ng, M. Levoy, M. Brèdif, G. Duval, M. Horowitz, and P. Hanrahan,“Light field photography with a hand-held plenoptic camera,” Stanford Univ., Stanford, CA, USA, Tech. Rep. CTSR 2005-02, 2005. [44] A. Wang, P. Gill, and A. Molnar, “Light field image sensors based on the Talbot effect,” Appl. Opt., vol. 48, no. 31, p. 5897, Nov. 2009. [45] A. Wang and A. Molnar, “A light-field image sensor in 180 nm CMOS,” IEEE J. Solid-State Circuits, vol. 47, no. 1, pp. 257–271, Jan. 2012. [46] G. Mie, “Beiträge zur optik trüber medien, speziell kolloidaler metallösungen,” Ann. Phys., vol. 330, no. 3, pp. 377–445, 1908. [47] L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater, vol. 8, no. 8, pp. 643–647, Aug. 2009. [48] A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science, vol. 354, no. 6314, p. aag2472, Nov. 2016. [49] S. Zhang et al., “Anti-hermitian plasmon coupling of an array of gold thin-film antennas for controlling light at the nanoscale,” Phys. Rev. Lett., vol. 109, no. 19, p. 193902, Nov. 2012. [50] V. L. Lyuboshitz, “Resonance interaction between two identical dipole emitters,” Soviet physics, JETP, vol. 26, p. 937, May 1968. [51] G. Brönstrup, N. Jahr, C. Leiterer, A. Csáki, W. Fritzsche, and S. Christiansen, “Optical properties of individual silicon nanowires for photonic devices,” ACS Nano, vol. 4, no. 12, pp. 7113–7122, Dec. 2010. [52] A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science, vol. 354, no. 6314, p. aag2472, Nov. 2016. [53] S. Uda, “High angle radiation of short electric waves,” Proc. IRE, vol. 15, no. 5, pp. 377–385, May 1927. [54] G. Lerosey, “Yagi–Uda antenna shines bright,” Nature Photon, vol. 4, no. 5, pp. 267–268, May 2010. [55] G. Sato, “A secret story about the Yagi antenna,” IEEE Antennas Propag. Mag., vol. 33, no. 3, pp. 7–18, Jun. 1991. [56] I. S. Maksymov, I. Staude, A. E. Miroshnichenko, and Y. S. Kivshar, “Optical Yagi-Uda nanoantennas,” Nanophotonics, vol. 1, no. 1, pp. 65–81, Jul. 2012. [57] P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B, vol. 6, no. 12, pp. 4370–4379, Dec. 1972. [58] E. Mohammadi, M. Ghaffari, and N. Behdad, “Wide dynamic range, angle-sensing, long-wave infrared detector using nano-antenna arrays,” Sci Rep, vol. 10, no. 1, p. 2488, Dec. 2020. [59] C. Chen and D. Cheng, “Optimum element lengths for Yagi-Uda arrays,” IEEE Trans. Antennas Propagat., vol. 23, no. 1, pp. 8–15, Jan. 1975. [60] B. Wang et al., “Boosting perovskite photodetector performance in NIR using plasmonic bowtie nanoantenna arrays,” Small, vol. 16, no. 24, p. 2001417, Jun. 2020. [61] P. K. Ghosh, D. T. Debu, D. A. French, and J. B. Herzog, “Calculated thickness dependent plasmonic properties of gold nanobars in the visible to near-infrared light regime,” PLoS ONE, vol. 12, no. 5, p. e0177463, May 2017. [62] S. Ogawa, D. Fujisawa, M. Shimatani, and K. Matsumoto, “Effect of insulator layer in graphene plasmonic metamaterials for infrared detection,” Anaheim, California, United States, p. 101772E, Feb. 2017. [63] I.-H. Lee, D. Yoo, P. Avouris, T. Low, and S.-H. Oh, “Graphene acoustic plasmon resonator for ultrasensitive infrared spectroscopy,” Nat. Nanotechnol., vol. 14, no. 4, pp. 313–319, Apr. 2019. [64] S. Ogawa, D. Fujisawa, M. Shimatani, and K. Matsumoto, “Graphene on plasmonic metamaterials for infrared detection,” Baltimore, Maryland, United States, p. 98191S, May 2016. [65] Q. Pan, J. Hong, G. Zhang, Y. Shuai, and H. Tan, “Graphene plasmonics for surface enhancement near-infrared absorptivity,” Opt. Express, vol. 25, no. 14, p. 16400, Jul. 2017. [66] J. Tong et al., “High order magnetic and electric resonant modes of split ring resonator metasurface arrays for strong enhancement of mid-infrared photodetection,” ACS Appl. Mater. Interfaces, vol. 12, no. 7, pp. 8835–8844, Feb. 2020. [67] N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett., vol. 10, no. 7, pp. 2342–2348, Jul. 2010. [68] V. R. Shrestha, B. Craig, J. Meng, J. Bullock, A. Javey, and K. B. Crozier, “Mid- to long-wave infrared computational spectroscopy with a graphene metasurface modulator,” Sci Rep, vol. 10, no. 1, p. 5377, Dec. 2020. [69] W. Wei et al., “Cavity-enhanced continuous graphene plasmonic resonator for infrared sensing,” Optics Commun., vol. 395, pp. 147–153, Jul. 2017. [70] M. R. S. Dias, C. Gong, Z. A. Benson, and M. S. Leite, “Lithography‐free, omnidirectional, cmos‐compatible alcu alloys for thin‐film superabsorbers,” Adv. Opt. Mater., vol. 6, no. 2, p. 1700830, Jan. 2018. [71] M. Furchi et al., “Microcavity-integrated graphene photodetector,” Nano Lett., vol. 12, no. 6, pp. 2773–2777, Jun. 2012. [72] J. Zhu, S. Yan, N. Feng, L. Ye, J.-Y. Ou, and Q. H. Liu, “Near unity ultraviolet absorption in graphene without patterning,” Appl. Phys. Lett., vol. 112, no. 15, p. 153106, Apr. 2018. [73] J. Park et al., “Omnidirectional near-unity absorption in an ultrathin planar semiconductor layer on a metal substrate,” ACS Photonics, vol. 1, no. 9, pp. 812–821, Sep. 2014. [74] S. A. Maier, Plasmonics: Fundamentals and Applications. New York, NY: Springer US, 2007. [75] M. E. Stewart et al., “Nanostructured plasmonic sensors,” Chem. Rev., vol. 108, no. 2, pp. 494–521, Feb. 2008. [76] A. Ahmadivand, M. Karabiyik, and N. Pala, "6 - Plasmonic photodetectors," in Photodetectors, B. Nabet Ed.: Woodhead Publishing, 2016, pp. 157-193. [77] B. Wang et al., “Boosting perovskite photodetector performance in nir using plasmonic bowtie nanoantenna arrays,” Small, vol. 16, no. 24, p. 2001417, Jun. 2020. [78] M. A. Kats et al., “Enhancement of absorption and color contrast in ultra-thin highly absorbing optical coatings,” Appl. Phys. Lett., vol. 103, no. 10, p. 101104, Sep. 2013. [79] H. Song et al., “Nanocavity enhancement for ultra-thin film optical absorber,” Adv. Mater., vol. 26, no. 17, pp. 2737–2743, May 2014. [80] A. Rogalski, “Infrared detectors: status and trends,” Prog. Quantum. Electron., vol. 27, no. 2–3, pp. 59–210, Jan. 2003. [81] S. Gupta, B. Magyari-Köpe, Y. Nishi, and K. C. Saraswat, “Achieving direct band gap in germanium through integration of Sn alloying and external strain,” J. Appl. Phys., vol. 113, no. 7, p. 073707, Feb. 2013. [82] T. D. Eales et al., “Ge1-xSnx alloys: consequences of band mixing effects for the evolution of the band gap Γ-character with Sn concentration.” Zenodo, Aug. 16, 2019. [83] W.-J. Yin, X.-G. Gong, and S.-H. Wei, “Origin of the unusually large band-gap bowing and the breakdown of the band-edge distribution rule in the Sn x Ge 1 − x alloys,” Phys. Rev. B, vol. 78, no. 16, p. 161203, Oct. 2008. [84] S. Zaima, O. Nakatsuka, N. Taoka, M. Kurosawa, W. Takeuchi, and M. Sakashita, “Growth and applications of GeSn-related group-IV semiconductor materials,” Sci Technol Adv Mater, vol. 16, no. 4, p. 043502, Jul. 2015. [85] H. P. Ladrón de Guevara, A. G. Rodrı́guez, H. Navarro-Contreras, and M. A. Vidal, “Determination of the optical energy gap of Ge1−xSnx alloys with 0<x<0.14,” Appl. Phys. Lett., vol. 84, no. 22, pp. 4532–4534, May 2004. [86] K. Lu Low, Y. Yang, G. Han, W. Fan, and Y.-C. Yeo, “Electronic band structure and effective mass parameters of Ge 1-x Sn x alloys,” J. Appl. Phys., vol. 112, no. 10, p. 103715, Nov. 2012. [87] Y.-F. Wang, "Bandgap engineering on large area flip transferred gesn nanomembrane," Master, Graduate Institute of Electronics Engineering, National Taiwan University, 2021. [88] J.-Y. Wu, " Membrane transfer technique for gesn thin film and its optical application," Master, Graduate Institute of Electronics Engineering, National Taiwan University, 2022. [89] T. Amotchkina, M. Trubetskov, D. Hahner, and V. Pervak, “Characterization of e-beam evaporated Ge, YbF3 , ZnS, and LaF3 thin films for laser-oriented coatings,” Appl. Opt., vol. 59, no. 5, p. A40, Feb. 2020. [90] R. Boidin, T. Halenkovič, V. Nazabal, L. Beneš, and P. Němec, “Pulsed laser deposited alumina thin films,” Ceram. Int., vol. 42, no. 1, pp. 1177–1182, Jan. 2016. [91] S. Babar and J. H. Weaver, “Optical constants of Cu, Ag, and Au revisited,” Appl. Opt., vol. 54, no. 3, p. 477, Jan. 2015. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83787 | - |
| dc.description.abstract | 隨著行動通訊系統提升到第六代,代表所訊號傳遞也提升到紅外光波段,更高的訊號傳輸速度近一步使得研究團隊都積極開發紅外光元件,無論是應用在民生日常通訊、軍事陸海空之間的資料傳遞及醫療紅外光成像都是熱門的研究領域。在本研究中,我們提出一個動態範圍的紅外光入射角感測器設計,材料採用新型四族化合物──鍺錫合金,在結構的部份我們則結合八木天線其高指向性及高增益性,能夠對於入射到元件的紅外光入射角,進行即時感測,而此結構設計利用CST電磁模擬軟體進行分析。 在常見的紅外光吸收材料,我們選擇鍺錫合金,藉由在鍺中加入少量的錫,使其能隙變小實現可調變能隙,更將原本的鍺由間接能隙材料變為直接能隙材料,而低能隙及高載子移動也反映在紅外光波段的鍺錫合金反射係數上。而在結構部分,我們將原先的薄膜結構改為奈米線,並且結合八木天線中各天線元件的相互作用的概念,應用到鍺錫合金奈米線,以提升對於不同入射角度射時的判定性。而本研究所設計的紅外光八木天線入射角感測器依照工作波段的不同分為兩個,近紅外光感測器及中紅外光感測器。首先是近紅外光八木天線結構感測器,在工作波長為1.31 μm下,其感測器的兩驅動器能量吸收比值在 的範圍內,展現26 dB的動態範圍;而在工作波長為4 μm下,其感測器的兩驅動器能量吸收比值在 的範圍內,展現30.6 dB的動態範圍。 本研究提出的紅外光入射角感測器,在模擬的結果中展現高動態範圍,兒也期望後續能將此結構設計藉由半導體製程致備出實際元件,並藉由對應波段之紅外線光源以驗證模擬結果,同時也可以藉由調整結構尺寸,可以使此感測器結構應用在更長波長波段,或是展現更高的動態範圍。 | zh_TW |
| dc.description.abstract | As the mobile communication system reaches to the sixth generation, this means the working wavelength of signal transmission has also fallen in infrared radiation. The higher signal transmission speed has prompted the research team to actively develop infrared components. Popular research fields include civilian communications, the military data transfer between Terrestrial network, Undersea network and Aerial network, and medical infrared imaging. In this research, we propose an infrared incidence angle detector. About the material we use is a novel group IV material, GeSn. In the structural design we took inspiration from the Yagi-Uda antenna because of its high directivity and high gain. This detector can sense the incidence angle in real time. The detector was analyzed with CST(Computer Simulation Technology). Among the common infrared absorbing materials, we choose GeSn. By adjusting the Sn concentration in GeSn, the band gap of GeSn can be reduced and be tunable. Moreover, the low bandgap and high carrier mobility are also reflected in the reflectance of GeSn. In order to improve the sensitivity when changing the angle of incident, we change the thin-film to nanowires due to the interaction of each element in the Yagi-Uda antenna. The infrared incidence angle detector in this research can be divided according to the different working wavelength, the NIR incidence angle detector and the MIR incidence angle detector. First, when infrared light incident on the NIR incidence angle detector and working wavelength is 1.31 μm, the energy absorption ratio of the two driver elements shows the angle sensing dynamic range of 26 dB within the field of view of ;when infrared light incident on the FIR incidence angle detector and working wavelength is 4 μm, the energy absorption ratio of the two driver elements shows the angle sensing dynamic range of 30.6 dB within the field of view of . The infrared incidence angle detector proposed in this thesis shows a high dynamic range in the simulation results. It is also expected that the structure design can be used in the semiconductor process to prepare actual components, and the infrared light source of the corresponding wavelength band can be used to obtain the actual device. The simulation results are verified, and the sensor structure can be applied to longer wavelength bands or exhibit higher dynamic range by adjusting the structure size. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T21:18:04Z (GMT). No. of bitstreams: 1 U0001-2807202216564600.pdf: 7947913 bytes, checksum: 8072fa4757ec68093a1297e42c799957 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 口試委員會審定書 i 誌謝 i 中文摘要 ii ABSTRACT iii CONTENTS v LIST OF FIGURES vii LIST OF TABLES xiii Chapter 1 緒論 1 1.1 前言 1 1.2 文獻回顧 4 1.2.1 光學方向判定 4 1.2.2 Yagi-Uda天線陣列應用 8 1.2.3 薄膜增強吸收機制 11 1.3 研究動機 14 Chapter 2 新型四族材料──鍺錫合金 15 2.1 直接能隙特性 15 2.2 光學特性 18 Chapter 3 理論基礎 20 3.1 電磁波理論 21 3.1.1 司乃耳定律 21 3.1.2 平面波斜向入射至多層損耗介質 23 3.2 八木(Yagi-Uda)天線原理 27 Chapter 4 設計及模擬結果 29 4.1 模擬軟體簡介及設定說明 30 4.2 近紅外光(NIR)入射角感測 34 4.2.1 薄膜結構入射角感測 34 4.2.2 奈米線陣列結構入射角感測 40 4.2.3 八木天線結構入射角感測 46 4.3 中紅外光(MIR)入射角感測 52 4.3.1 薄膜結構入射角感測 52 4.3.2 奈米線陣列結構入射角感測 58 4.3.3 八木天線結構入射角感測 63 Chapter 5 結果與討論 68 5.1 結果比較及討論 68 5.2 結論 72 Chapter 6 未來展望 74 REFERENCE 75 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 八木天線 | zh_TW |
| dc.subject | 鍺錫合金 | zh_TW |
| dc.subject | 八木天線 | zh_TW |
| dc.subject | 紅外光感測器 | zh_TW |
| dc.subject | 鍺錫合金 | zh_TW |
| dc.subject | 紅外光感測器 | zh_TW |
| dc.subject | Yagi-Uda antenna | en |
| dc.subject | GeSn | en |
| dc.subject | Infrared Detector | en |
| dc.subject | Yagi-Uda antenna | en |
| dc.subject | GeSn | en |
| dc.subject | Infrared Detector | en |
| dc.title | 四族薄膜半導體應用於近中紅外光源方向判定 | zh_TW |
| dc.title | Group IV Semiconductor Thin Film for NIR and MIR Source Direction Finding | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 110-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 黃琴雅;張俊傑;張子璿 | zh_TW |
| dc.contributor.oralexamcommittee | Chin-Ya Huang;Chun-Chieh Chang;Tzu-Hsuan Chang | en |
| dc.subject.keyword | 鍺錫合金,紅外光感測器,八木天線, | zh_TW |
| dc.subject.keyword | GeSn,Infrared Detector,Yagi-Uda antenna, | en |
| dc.relation.page | 82 | - |
| dc.identifier.doi | 10.6342/NTU202201843 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2022-08-03 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-110-2.pdf 未授權公開取用 | 7.76 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
