Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83754
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor顏瑞泓(Jui-Hung Yen)
dc.contributor.authorJun-Hao Liuen
dc.contributor.author劉濬豪zh_TW
dc.date.accessioned2023-03-19T21:16:45Z-
dc.date.copyright2022-08-15
dc.date.issued2022
dc.date.submitted2022-08-08
dc.identifier.citation王一雄。(1997)。土壤環境污染與農藥 (283頁)。文明書局股份有限公司。P.283。 田晨光。(2019)。益達胺、陶斯松和亞托敏對兩種環境底棲指標生物 (端足蟲和搖蚊)之影響。國立臺灣大學農業化學系碩士論文。 江佩津。(2014)。混合施用農藥對水中非目標生物之毒性效應。國立臺灣大學農業化學系碩士論文。 李敏郎。(2009)。植物殺菌劑之使用介紹。作物診斷與農藥安全使用手冊 (71-72頁)。行政院農業委員會藥物毒物試驗所。 初建、林浩潭、陳素文、許得美、沈季蓉。(2017)。農業環境中三唑類農藥之監測及安全評估。臺灣農藥科學2:25-40。 吳昀軒。(2015)。環境荷爾蒙殺菌劑免課寧影響端足蟲 (Hyallela azteca) 基因表現差異之研究。國立臺灣大學農業化學系博士論文。 倪郁涵。(2013)。溪流生態系中搖蚊系統發生多樣性與環境之關係。國立中興大學碩士論文。 張文重。(2005)。紅筋蟲培養技術。水產餌料生物學 (193-207頁)。睿煜出版社。 趙怡婷。(2016)。除蟲菊精類殺蟲劑芬化利與其他四種殺菌劑對端足蟲 (Hyallela azteca) 之混合毒性效應。國立臺灣大學農業化學系碩士論文。 蔣永正。(2011)。除草劑毒性及環境安全性。中華民國雜草會刊,32:117-131。 謝季吟與林哲雄。(2012)。底泥生物慢毒性檢測技術最新發展。環境分析評?,4:72-79。 Abass, K., Turpeinen, M., Rautio, A., Hakkola, J., and Pelkonen, O. (2012). In Perveen, F., (Ed.), Insecticides - Advances in Integrated Pest Management. (pp. 166-194). IntechOpen. Abdollahi, M., Ranjbar, A., Shadnia, S., Nikfar, S., and Rezaie, A. (2004). Pesticides and oxidative stress: a review. Medical Science Monitor, 10(6), RA141-147. Andersen, T. H., Tjornhoj, R., Wollenberger, L., Slothuus, T., and Baun, A. (2006). Acute and chronic effects of pulse exposure of Daphnia magna to dimethoate and pirimicarb. Environmental Toxicology and Chemistry, 25(5), 1187-1195. Azevedo-Pereira, H. M. and Soares, A. M. (2010). Effects of mercury on growth, emergence, and behavior of Chironomus riparius Meigen (Diptera: Chironomidae). Archives of Environmental Contamination and Toxicology, 59(2), 216-224. Bolshakov, V. V., Prokin, A. A., and Artemenko, S. V. (2021). Karyotype and COI gene sequence of Chironomus heteropilicornis W?lker, 1996 (Diptera, Chironomidae) from the Gydan Peninsula, Russia. Comparative cytogenetics, 15(4), 447-458. Chaitanya, R. K., Shashank, K., and Sridevi, P. (2016). Oxidative stress in invertebrate systems. In Ahmad, R., (Ed.), Free Radicals and Diseases (pp. 166-194). IntechOpen. Choi, J. H., Roche, H., and Caquet, T. (1999). Characterization of superoxide dismutase activity in Chironomus riparius Mg. (Diptera, Chironomidae) larvae - a potential biomarker. Comparative Biochemistry and Physiology C-Pharmacology Toxicology & Endocrinology, 124(1), 73-81. Cranston, P. S. (2000). Electronic identification guide to the Australian Chironomidae. Retrieved August 30, 2010 from http://entomology.ucdavis.edu/chiropage/index. Cui, F., Chai, T., Qian, L., and Wang, C. (2017). Effects of three diamides (chlorantraniliprole, cyantraniliprole and flubendiamide) on life history, embryonic development and oxidative stress biomarkers of Daphnia magna. Chemosphere, 169, 107-116. Devai, G. (1990)。Ecological background and importance of the change of chironomid fauna (Diptera : Chironomidae) in shallow Lake Balaton. Hydrobiologia, 191, 189-198. Di Nica, V., Gonzalez, A. B. M., Lencioni, V., and Villa, S. (2020). Behavioural and biochemical alterations by chlorpyrifos in aquatic insects: an emerging environmental concern for pristine Alpine habitats. Environmental Science and Pollution Research, 27(25), 30918-30926. Domingues, I., Guilhermino, L., Soares, A., and Nogueira, A. J. A. (2007). Assessing dimethoate contamination in temperate and tropical climates: potential use of biomarkers in bioassays with two chironomid species. Chemosphere, 69(1), 145-154. European Food Safety Authority. (2011). Conclusion on the peer review of the pesticide risk assessment of the active substance difenoconazole. EFSA Journal, 9(1). European Food Safety Authority. (2016). Peer review of the pesticide risk assessment of the active substance pendimethalin. EFSA Journal, 14(3). United States Environmental Protection Agency. (1997). EPA R.E.D. Facts Pendi-methalin. Prevention, Pesticides And Toxic Substances. Retrieved June 16, 2022 from https://www3.epa.gov/pesticides/chem_search/reg_actions/reregistration/fs_PC-108501_1-Jun-97.pdf Felicio, A. A., Freitas, J. S., Scarin, J. B., de Souza Ondei, L., Teresa, F. B., Schlenk, D., and de Almeida, E. A. (2018). Isolated and mixed effects of diuron and its metabolites on biotransformation enzymes and oxidative stress response of Nile tilapia (Oreochromis niloticus). Ecotoxicology and Environmental Safety, 149, 248-256. Franco, P. J., Daniels, K. L., Cushman, R. M., and Kazlow, G. A. (1984). Acute toxicity of a synthetic oil, aniline and phenol to laboratory and natural-populations of chironomid (Diptera) larvae. Environmental Pollution Series a-Ecological and Biological, 34(4), 321-331. Gebken, R. J. (2008). Pesticide Fact Sheet-flubendiamide. Office of Prevention, Pesticides and Toxic Substances. United States Environmental Protection A-gency. Retrieved June 16, 2022 from https://www3.epa.gov/pesticides/chem_search/reg_actions/registration/fs_PC-027602_01-Aug-08.pdf Gegotek, A., and Skrzydlewska, E. (2019). Biological effect of protein modifications by lipid peroxidation products. Chemistry and Physics of Lipids, 221, 46-52. Geoffroy, L., Teisseire, H., Couderchet, M., and Vernet, G. (2002). Effect of oxyfluorfen and diuron alone and in mixture on antioxidative enzymes of Scenedesmus obliquus. Pesticide Biochemistry and Physiology, 72(3), 178-185. Guo, R., Ren, X. and Ren, H. (2012). Assessment the toxic effects of dimethoate to rotifer using swimming behavior. Bulletin of Environmental Contamination and Toxicology, 89(3), 568-571. Hasenbein, S., Peralta, J., Lawler, S. P., and Connon, R. E. (2017). Environmentally relevant concentrations of herbicides impact non-target species at multiple sublethal endpoints. Science of The Total Environment, 607-608, 733-743. Hui, L. L., Hedley, A. J., Kypke, K., Cowling, B. J., Nelson, E. A., Wong, T. W., van Leeuwen, F. X., and Malisch, R. (2008). DDT levels in human milk in Hong Kong, 2001-02. Chemosphere, 73(1), 50-55. Hutchinson, T. H., Shillabeer, N., Winter, M. J., and Pickford, D. B. (2006). Acute and chronic effects of carrier solvents in aquatic organisms: a critical review. Aquatic Toxicology, 76(1), 69-92. Kaur, M., Chadha, P., Kaur, S., and Kaur, A. (2020). Effect of Aspergillus flavus on lipid peroxidation and activity of antioxidant enzymes in midgut tissue of Spodoptera litura larvae. Archives of Phytopathology and Plant Protection, 54(3-4), 177-190. Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B. A., Thiessen, P. A., Yu, B., Zaslavsky, L., Zhang, J., and Bolton, E. E. (2019). PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Research, 49(D1), D1388–D1395. Lalouette, L., Williams, C. M., Hervant, F., Sinclair, B. J., and Renault, D. (2011). Metabolic rate and oxidative stress in insects exposed to low temperature thermal fluctuations. Comparative Biochemistry and Physiology - Part A: Molecular & Integrative Physiology, 158(2), 229-234. LeBlanc, H. M., Culp, J. M., Baird, D. J., Alexander, A. C., and Cessna, A. J. (2012). Single versus combined lethal effects of three agricultural insecticides on larvae of the freshwater insect Chironomus dilutus. Archives of Environmental Contamination and Toxicology, 63(3), 378-390. Lewis, K. A., Tzilivakis, J., Warner, D., and Green, A. (2016). An international database for pesticide risk assessments and management. Human and Ecological Risk Assessment, 22(4), 1050. Li, C., Yuan, S., Zhou, Y., Li, X., Duan, L., Huang, L., Zhou, X., Ma, Y., and Pang, S. (2022). Microplastics reduce the bioaccumulation and oxidative stress damage of triazole fungicides in fish. Science of The Total Environment, 806(Pt 4), 151475. Lowit, M. (2017). OPP pesticide ecotoxicity database. Retrieved June 16, 2022 from https://ecotox.ipmcenters.org/index.cfm?menuid=1 Lukaszewicz-Hussain, A. (2010). Role of oxidative stress in organophosphate insecticide toxicity - short review. Pesticide Biochemistry and Physiology, 98(2), 145-150. Luo, Z. W., Wang, L. L., Lv, X. W., Zhang, Y. H., and Zou, H. F. (2019). Influence of residue concentrations of butachlor-based herbicide factor on dong-sheng wetland rivulet fresh-water planktonic algae communities. Fresenius Environmental Bulletin, 28(11A), 8919-8928. Maloney, E. M., Sykes, H., Morrissey, C., Peru, K. M., Headley, J. V., and Liber, K. (2020). Comparing the acute toxicity of imidacloprid with alternative systemic insecticides in the aquatic insect Chironomus dilutus. Environmental Toxicology and Chemistry, 39(3), 587-594. Man, Y. L., Stenrod, M., Wu, C., Almvik, M., Holten, R., Clarke, J. L., Yuan, S. K., Wu, X. H., Xu, J., Dong, F. S., Zheng, Y. Q., and Liu, X. G. (2021). Degradation of difenoconazole in water and soil: Kinetics, degradation pathways, transformation products identification and ecotoxicity assessment. Journal of Hazardous Materials, 418. Medithi, S., Jonnalagadda, P. R., and Jee, B. (2021). Predominant role of antioxidants in ameliorating the oxidative stress induced by pesticides. Archives of Environmental & Occupational Health, 76(2), 61-74. Meng, Z. Y., Wang, Z. C., Chen, X. J., Song, Y. Y., Teng, M. M., Fan, T. L., Zheng, Y., Cui, J. J., and Xu, W. J. (2022). Bioaccumulation and toxicity effects of flubendiamide in zebrafish (Danio rerio). Environmental Science and Pollution Research, 29(18), 26900-26909. Mermana, J., Sutthivaiyakit, P., Blaise, C., and Gagne, F. (2012). Photo-catalysis of propanil under simulated solar light: formation of degradation products and toxicity implications. Fresenius Environmental Bulletin, 21(12), 3618-3625. Monteiro, H. R., Pestana, J. L. T., Novais, S. C., Leston, S., Ramos, F., Soares, A. M. V. M., Devreese, B., and Lemos, M. F. L. (2019). Assessment of fipronil toxicity to the freshwater midge Chironomus riparius: molecular, biochemical, and organismal responses. Aquatic Toxicology, 216, 105292. Nath, B. B. (2018). Extracellular hemoglobin and environmental stress tolerance in Chironomus larvae. Journal of Limnology, 77, 104-112. National Center for Biotechnology Information (2022). PubChem compound sum-mary for CID 31677, butachlor. Retrieved June 16, 2022 from https://pubchem.ncbi.nlm.nih.gov/compound/Butachlor Nebeker, A. V. and Schuytema, G. S. (1998). Chronic effects of the herbicide diuron on freshwater cladocerans, amphipods, midges, minnows, worms, and snails. Archives of Environmental Contamination and Toxicology, 35(3), 441-446. Nielsen, A. (2007). Dimethoate: HED’s Recommendations for risk mitigation for handlers U.S. Environmental Protection Agency. Retrieved June 16, 2022 from https://archive.epa.gov/pesticides/reregistration/web/pdf/revised_dimethoate_ired.pdf Organisation for Economic Cooperation and Development. (2004). Sediment-water chironomid toxicity using spiked sediment TG 218 1-21. Organisation for Economic Cooperation and Development. (2010). Sediment-water chironomid life-cycle toxicity Test Using spiked water or spiked sediment TG 233. Organisation for Economic Cooperation and Development. (2011). Chironomus sp., acute immobilisation Test TG 235. Onwona-Kwakye, M., Hogarh, J. N. and Van den Brink, P. J. (2020). Environmental risk assessment of pesticides currently applied in Ghana. Chemosphere, 254, 126845. Park, J.-e., Hwang, E.-J., and Chang, H.-R. (2017). Sediment toxicity assessment of pesticides using Chironomus riparius acute and chronic effect. Korean Journal of Environmental Agriculture, 36(2), 80-86. Phillips, B. M., Anderson, B. S., Hunt, J. W., Huntley, S. A., Tjeerdema, R. S., Kapellas, N., and Worcester, K. (2006). Solid-phase sediment toxicity identification evaluation in an agricultural stream. Environmental Toxicology and Chemistry, 25(6), 1671-1676. Rebechi, D., Richardi, V. S., Vicentini, M., Guiloski, I. C., Assis, H. C. S. d., and Navarro-Silva, M. A. (2014). Low malathion concentrations influence metabolism in Chironomus sancticaroli (Diptera, Chironomidae) in acute and chronic toxicity tests. Revista Brasileira de Entomologia, 58(3), 296-301. Richard, L., Ibrahim, A.-S., and James, B.. (2001). Environmental risk assessment for the registration of diuron. Office of Prevention, Pesticide and toxic substances. Retrieved June 16, 2022 from https://www3.epa.gov/pesticides/chem_search/cleared_reviews/csr_PC035505_27-Aug-01_043.pdf Rodrigues, A. C., Gravato, C., Quintaneiro, C., Golovko, O., Zlabek, V., Barata, C., Soares, A. M., and Pestana, J. L. (2015). Life history and biochemical effects of chlorantraniliprole on Chironomus riparius. Science of The Total Environment, 508, 506-513. Rosenberg, D.M. and Resh, V.H. (1993) Introduction to freshwater biomonitoring and benthic macroinvertebrates. In: Rosenberg, D.M. and Resh, V.H., Eds., Freshwater Biomonitoring and Benthic Macroinvertebrates, Chapman/Hall, New York, 1-9. Shen, C., Pan, X., Wu, X., Xu, J., Dong, F., and Zheng, Y. (2022). Ecological risk assessment for difenoconazole in aquatic ecosystems using a web-based interspecies correlation estimation (ICE)-species sensitivity distribution (SSD) model. Chemosphere, 289, 133236. Soin, T. and Smagghe, G. (2007). Endocrine disruption in aquatic insects: a review. Ecotoxicology, 16(1), 83-93. Sthijns, M., den Hartog, G. J. M., Scasso, C., Haenen, J. P., Bast, A., and Haenen, G. (2017). Activation versus inhibition of microsomal glutathione S-transferase activity by acrolein. Dependence on the concentration and time of acrolein exposure. Chemico-Biological Interactions, 275, 116-120. Sun, Y., Takemon, Y., and Yamashiki, Y. (2020). Freshwater spring indicator taxa of benthic invertebrates. Ecohydrology & Hydrobiology, 20(4), 622-631. Lewis, S. T., and Housenger, J. E. (2016). EPA recommendation to cancel all currently registered flubendiamide products. Retrived June 16, 2022 from https://www.epa.gov/sites/default/files/2016-03/documents/decision-memo.pdf Tabassum, H., Afjal, M. A., Khan, J., Raisuddin, S., and Parvez, S. (2015). Neurotoxicological assessment of pendimethalin in freshwater fish Channa punctata Bloch. Ecological Indicators, 58, 411-417. Taenzler, V., Bruns, E., Dorgerloh, M., Pfeifle, V., and Weltje, L. (2007). Chironomids: suitable test organisms for risk assessment investigations on the potential endocrine disrupting properties of pesticides. Ecotoxicology, 16(1), 221-230. Tramboo, S. M., Yousuf, A. R., and Akbar, S. (2011). Oxidative stress-inducing potential of butachlor in a freshwater fish, Cyprinus carpio (L). Toxicological & Environmental Chemistry, 93(2), 285-295. Tu, W. Q., Niu, L. L., Liu, W. P., and Xu, C. (2013). Embryonic exposure to butachlor in zebrafish (Danio rerio): endocrine disruption, developmental toxicity and immunotoxicity. Ecotoxicology and Environmental Safety, 89, 189-195. United Sates Environmental Protection Agency. (2001). Implementation of the determination of a common mechanism of toxicity for N-methyl carbamate pesticides and for certain chloroacetanilide pesticides. Office of prevention, pesticides and toxic substances. Retrived June 16, 2022 from http://www.epa.gov/oppfead1/cb/csb_page/updates/carbamate.pdf Van Praet, N., De Jonge, M., Stoks, R., and Bervoets, L. (2014). Additive effects of predator cues and dimethoate on different levels of biological organisation in the non-biting midge Chironomus riparius. Aquatic Toxicology, 155, 236-243. Vighi, M., Matthies, M., and Solomon, K. R. (2017). Critical assessment of pendimethalin in terms of persistence, bioaccumulation, toxicity, and potential for long-range transport. Journal of Toxicology and Environmental Health, Part B, 20(1), 1-21. Vimalkumar, K., Nikhil, N. P., Arun, E., Mayilsamy, M., and Babu-Rajendran, R. (2021). Synthetic musks in surface water and fish from the rivers in India: seasonal distribution and toxicological risk assessment. Journal of Hazardous Materials, 414. Wang, L., Yang, Y., Chen, S., Ge, M., He, J., Yang, Z., Lin, P., and Wu, X. (2018). White matter integrity correlates with residual consciousness in patients with severe brain injury. Brain Imaging and Behavior, 12(6), 1669-1677. Wu, H. H., Zhang, R., Liu, J. Y., Guo, Y. P., and Ma, E. B. (2011). Effects of malathion and chlorpyrifos on acetylcholinesterase and antioxidant defense system in Oxya chinensis (Thunberg) (Orthoptera: Acrididae). Chemosphere, 83(4), 599-604. Yeon-Ki, P., Chul-Han, B., Byung, K., Jea-Bong, L., Are-Sun, Y., Soon-sung, H., Kyung-Hoon, P., Jin-Sup, S., Moo-Ki, H., Kyu, L., and Jung-Ho, L.. (2009). The risk assessment of butachlor for the freshwater aquatic organisms. The Korean Journal of Pesticide Science, 13. Zhang, Q., Chu, D., Sun, L., and Cao, C. (2018). Cytochrome P450 CYP6EV11 in Chironomus kiiensis larvae involved in phenol stress. International Journal of Molecular Sciences, 19(4). Zhu, J., Liu, C., Wang, J., Liang, Y., Gong, X., You, L., Ji, C., Wang, S. L., Wang, C., and Chi, X. (2021). Difenoconazole induces cardiovascular toxicity through oxidative stress-mediated apoptosis in early life stages of zebrafish (Danio rerio). Ecotoxicology and Environmental Safety, 216, 112227. Zitka, O., Skalickova, S., Gumulec, J., Masarik, M., Adam, V., Hubalek, J., Trnkova, L., Kruseova, J., Eckschlager, T., and Kizek, R. (2012). Redox status expressed as GSH:GSSG ratio as a marker for oxidative stress in paediatric tumour patients. Oncology Letters, 4(6), 1247-1253.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83754-
dc.description.abstract  農藥施用後,會藉由淋洗或地表逕流的方式進入水域環境,這些農藥可能藉由吸附或重力作用沉積於底泥當中,底泥匯集了多種的毒物,使得底棲生物長期暴露到毒物,受到較大的風險。為了評估農藥對於底棲生態之影響,選擇搖蚊作為試驗生物,其具有較短的生命週期、易在實驗室馴養及環境重要性等特點,適合作為環境毒理評估的底棲指標生物。而藉由建立臺灣本土搖蚊之毒理系統,可評估農藥對當地環境之影響,試驗藥劑則挑選河川中較常檢出、臺灣用量較高或對搖蚊較高毒性之農藥,如氟大滅、施得圃、大滅松、待克利、丁基拉草及達有龍,以搖蚊死亡率、羽化率、雌雄比及羽化時間作為試驗終點觀察藥劑對搖蚊全生命週期之影響,且藉由抗氧化酵素測定進一步探討搖蚊的氧化逆境。   由48小時搖蚊急毒性的結果,農藥對搖蚊毒性大小依序為氟大滅>施得圃>大滅松>待克利>丁基拉草>達有龍,半數致死劑量 (Median lethal concentration, LC50) 按毒性大小分別為0.101, 0.853, 0.917, 1.474, 2.227及2.302 mg L-1,前三者依水生物急毒性分類屬於劇毒,後三者則為中等毒。根據搖蚊慢毒性試驗之試驗結果顯示,氟大滅和待克利在羽化率評估有較低的最低可觀察影響濃度 (Lowest observed effect concentration, LOEC),分別為12.5及50 μg L-1;施得圃與達有龍在發育速率有較明顯抑制的效果,LOEC值分別為 50及150 μg L-1。六種藥劑之LOEC值皆高出環境濃度一個數量級以上,這代表環境的農藥殘留濃度尚不足以對搖蚊族群造成影響。   於抗氧化酵素測試,在施得圃和大滅松的暴露中皆可觀察到超氧化物岐化? (Superoxide dismutase, SOD) 及過氧化物? (Catalase, CAT) 活性的上升,達有龍則造成CAT活性上升。與施得圃與大滅松的結果相反,待克利會抑制SOD及CAT活性,這導致超氧自由基無法被有效分解,造成氧化逆境。於脂質過氧化 (Lipid peroxidation, LPO) 的測試得知氟大滅、大滅松、施得圃、丁基拉草及待克利在低於LC50濃度下皆會產生過量的丙二醛 (Malondialdehyde, MDA),代表藥劑的暴露可能已造成氧化損傷,進而造成搖蚊發育遲緩,甚至死亡的情形。   綜合上述,搖蚊C. crassiforceps於多種試驗終點都具有敏感,為合適的指標生物,由研究結果得知六種農藥於急性和慢性評估中對於搖蚊皆不會造成風險。zh_TW
dc.description.abstractAfter pesticide application, the pesticides may flow into the groundwater by leaching or runoff, and these pesticides may be deposited in the sediment by gravity or adsorption. The sediment collects a variety of toxic substances, putting benthic organisms at greater risk. In order to evaluate the effects of pesticides on benthic ecology, chironomid were selected as the test organisms. Chironomid has a relatively short life cycle, is easily domesticated in the laboratory, and has environmental importance, making it a suitable indicator organism for environmental toxicological assessment. By establishing the toxicological system of chironomid in Taiwan, the impact of pesticides on the local environment can be evaluated. The pesticides that are more frequently detected in rivers and have higher usage in Taiwan or are more toxic to chironomid were selected, such as flubendiamide, pendimethalin, dimethoate, difenoconazole, butachlor, and diuron. In addition, antioxidant enzyme assays were used to further investigate the oxidative stress of chironomid. The 48-hour acute toxicity results showed that the toxicity of the six pesticides was in the order of flubendiamide > pendimethalin > dimethoate > difenoconazole > butachlor > diuron, with LC50s of 0. 01, 0.853, 0.917, 1.474, 2.227, and 2.302 mg L-1. The first three pesticides were classified as high toxicity, while the last three were moderate toxicity. According to the chronic toxicity test, the emergence rate had lower lowest observed effect concentration (LOEC) of 12.5, 62.5, and 50 μg L-1, exposure to flubendiamide and difenoconazole, respectively. In contrast, the development rate had more significant inhibitory effects with LOEC of 50 and 150 μg L-1, exposure to pendimethalin and diuron, respectively. The LOEC for all six pesticides was more than one order of magnitude higher than the environmental concentration, which means that the environmental pesticide residues were not sufficient to affect the chironomid population. In the antioxidant enzyme test, the activity of superoxide dismutase (SOD) and catalase (CAT) can be observed in the exposure of pendimethalin and dimethoate, while diuron only caused the increase in CAT activity. However, it was found that the SOD and CAT activities were inhibited by difenoconazole, which accumulated superoxide radicals and caused oxidative stress. In the lipid peroxidation test, it was found that flubendiamide, dimethoate, pendimethalin, butachlor, and difenoconazole caused the excessive accumulation of malondialdehyde at concentrations below LC50, representing that the exposure to pesticides may have caused oxidative damage, which also caused retarded development and even death of chironomid. Overall, chironomid has the sensitivity for many endpoints and was a suitable ecological benthic indicator species. In the result, the acute and chronic assessments revealed that six pesticides posed no risk for chironomid.en
dc.description.provenanceMade available in DSpace on 2023-03-19T21:16:45Z (GMT). No. of bitstreams: 1
U0001-0108202210551200.pdf: 2756352 bytes, checksum: 834faaf41d95e9b941db02b43f537dcf (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents壹、 前言 1 一、 農藥文獻回顧 1 二、 試驗生物介紹 5 三、 氧化壓力 9 四、 本研究用藥簡介 12 (一) 殺菌劑待克利 12 (二) 除草劑施得圃 13 (三) 除草劑丁基拉草 13 (四) 除草劑達有龍 14 (五) 殺蟲劑氟大滅 15 (六) 殺蟲劑大滅松 16 貳、 研究目的 24 參、 材料與方法 25 一、 試驗流程 25 二、 藥品與設備 26 三、 搖蚊之馴養 28 四、 搖蚊之急毒性試驗 28 五、 搖蚊之慢毒性試驗 29 六、 介質中穩定性試驗 31 七、 抗氧化酵素試驗 33 八、 統計方法 37 肆、 結果與討論 38 一、 介質中穩定性試驗 38 二、 搖蚊之急毒性試驗 42 (一) 殺菌劑待克利急毒性試驗 42 (二) 除草劑施得圃急毒性試驗 44 (三) 除草劑丁基拉草急毒性試驗 45 (四) 除草劑達有龍急毒性試驗 46 (五) 殺蟲劑氟大滅急毒性試驗 47 (六) 殺蟲劑大滅松急毒性試驗 49 (七) 急毒性試驗小結論 50 三、 搖蚊之慢毒性試驗 53 (一) 殺菌劑待克利慢毒性試驗 53 (二) 除草劑施得圃慢毒性試驗 56 (三) 除草劑丁基拉草慢毒性試驗 59 (四) 除草劑達有龍慢毒性試驗 62 (五) 殺蟲劑氟大滅慢毒性試驗 65 (六) 殺蟲劑大滅松慢毒性試驗 68 (七) 慢毒性試驗小結論 68 四、 抗氧化酵素試驗 74 (一) 殺菌劑待克利 74 (二) 除草劑施得圃 76 (三) 除草劑丁基拉草 78 (四) 除草劑達有龍 80 (五) 殺蟲劑氟大滅 82 (六) 殺蟲劑大滅松 84 (七) 抗氧化酵素小結論 86 伍、 結論 87 陸、 參考文獻 88
dc.language.isozh-TW
dc.title六種農藥對環境底棲指標生物—搖蚊—之毒性效應zh_TW
dc.titleToxic effects of six pesticides on chironomid, an ecological benthic indicator speciesen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee徐慈鴻(Tsyr-Horng Shyu),何素鵬(Shu-Peng Ho),陳玟瑾(Wen-Ching Chen),林乃君(Nai-Chun Lin)
dc.subject.keyword搖蚊,環境毒理,指標生物,水生無脊椎動物,氧化壓力,zh_TW
dc.subject.keywordChironomid,Ecotoxicity,Indicator species,Freshwater invetebrate,Oxidative stress,en
dc.relation.page98
dc.identifier.doi10.6342/NTU202201924
dc.rights.note未授權
dc.date.accepted2022-08-08
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農業化學研究所zh_TW
顯示於系所單位:農業化學系

文件中的檔案:
檔案 大小格式 
U0001-0108202210551200.pdf
  目前未授權公開取用
2.69 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved