Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83752
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭如忠zh_TW
dc.contributor.advisorRu-Jong Jengen
dc.contributor.author陳敏顥zh_TW
dc.contributor.authorMin-Hao Chenen
dc.date.accessioned2023-03-19T21:16:41Z-
dc.date.available2023-12-26-
dc.date.copyright2022-08-10-
dc.date.issued2022-
dc.date.submitted2002-01-01-
dc.identifier.citation1. Hildebrandt, P.; Stockburger, M., Surface-enhanced resonance Raman spectroscopy of Rhodamine 6G adsorbed on colloidal silver. The Journal of Physical Chemistry 1984, 88 (24), 5935-5944.
2. Doering, W. E.; Piotti, M. E.; Natan, M. J.; Freeman, R. G., SERS as a foundation for nanoscale, optically detected biological labels. Advanced Materials 2007, 19 (20), 3100-3108.
3. Bantz, K. C.; Meyer, A. F.; Wittenberg, N. J.; Im, H.; Kurtuluş, Ö.; Lee, S. H.; Lindquist, N. C.; Oh, S.-H.; Haynes, C. L., Recent progress in SERS biosensing. Physical chemistry chemical physics 2011, 13 (24), 11551-11567.
4. Zhao, J.; Pinchuk, A. O.; McMahon, J. M.; Li, S.; Ausman, L. K.; Atkinson, A. L.; Schatz, G. C., Methods for describing the electromagnetic properties of silver and gold nanoparticles. Accounts of chemical research 2008, 41 (12), 1710-1720.
5. Chiang, C.-H.; Ishida, H.; Koenig, J. L., The structure of γ-aminopropyltriethoxysilane on glass surfaces. Journal of Colloid and Interface Science 1980, 74 (2), 396-404.
6. Mosier-Boss, P. A., Review of SERS substrates for chemical sensing. Nanomaterials 2017, 7 (6), 142.
7. He, R. X.; Liang, R.; Peng, P.; Norman Zhou, Y., Effect of the size of silver nanoparticles on SERS signal enhancement. Journal of Nanoparticle Research 2017, 19 (8), 1-10.
8. Freeman, R. G.; Grabar, K. C.; Allison, K. J.; Bright, R. M.; Davis, J. A.; Guthrie, A. P.; Hommer, M. B.; Jackson, M. A.; Smith, P. C.; Walter, D. G., Self-assembled metal colloid monolayers: an approach to SERS substrates. Science 1995, 267 (5204), 1629-1632.
9. Raman, C.; Krishnan, K., hν o hν. Nature 1928, 121, 501.
10. Singh, R., CV Raman and the Discovery of the Raman Effect. Physics in Perspective 2002, 4 (4), 399-420.
11. Butler, H. J.; Ashton, L.; Bird, B.; Cinque, G.; Curtis, K.; Dorney, J.; Esmonde-White, K.; Fullwood, N. J.; Gardner, B.; Martin-Hirsch, P. L., Using Raman spectroscopy to characterize biological materials. Nature protocols 2016, 11 (4), 664-687.
12. Jeanmaire, D. L.; Van Duyne, R. P., Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. Journal of electroanalytical chemistry and interfacial electrochemistry 1977, 84 (1), 1-20.
13. Albrecht, M. G.; Creighton, J. A., Anomalously intense Raman spectra of pyridine at a silver electrode. Journal of the american chemical society 1977, 99 (15), 5215-5217.
14. Campion, A.; Kambhampati, P., Surface-enhanced Raman scattering. Chemical society reviews 1998, 27 (4), 241-250.
15. Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C., The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. ACS Publications: 2003; Vol. 107, pp 668-677.
16. García-Vidal, F. J.; Pendry, J., Collective theory for surface enhanced Raman scattering. Physical Review Letters 1996, 77 (6), 1163.
17. Xie, W.; Schlücker, S., Medical applications of surface-enhanced Raman scattering. Physical Chemistry Chemical Physics 2013, 15 (15), 5329-5344.
18. Li, D.-W.; Zhai, W.-L.; Li, Y.-T.; Long, Y.-T., Recent progress in surface enhanced Raman spectroscopy for the detection of environmental pollutants. Microchimica Acta 2014, 181 (1), 23-43.
19. Shiohara, A.; Wang, Y.; Liz-Marzán, L. M., Recent approaches toward creation of hot spots for SERS detection. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2014, 21, 2-25.
20. Lin, X.-M.; Cui, Y.; Xu, Y.-H.; Ren, B.; Tian, Z.-Q., Surface-enhanced Raman spectroscopy: substrate-related issues. Analytical and bioanalytical chemistry 2009, 394 (7), 1729-1745.
21. Wang, H. H.; Liu, C. Y.; Wu, S. B.; Liu, N. W.; Peng, C. Y.; Chan, T. H.; Hsu, C. F.; Wang, J. K.; Wang, Y. L., Highly raman‐enhancing substrates based on silver nanoparticle arrays with tunable sub‐10 nm gaps. Advanced Materials 2006, 18 (4), 491-495.
22. Bell, S. E.; McCourt, M. R., SERS enhancement by aggregated Au colloids: effect of particle size. Physical Chemistry Chemical Physics 2009, 11 (34), 7455-7462.
23. Kleinman, S. L.; Frontiera, R. R.; Henry, A.-I.; Dieringer, J. A.; Van Duyne, R. P., Creating, characterizing, and controlling chemistry with SERS hot spots. Physical Chemistry Chemical Physics 2013, 15 (1), 21-36.
24. Talley, C. E.; Jackson, J. B.; Oubre, C.; Grady, N. K.; Hollars, C. W.; Lane, S. M.; Huser, T. R.; Nordlander, P.; Halas, N. J., Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates. Nano letters 2005, 5 (8), 1569-1574.
25. Orendorff, C. J.; Gole, A.; Sau, T. K.; Murphy, C. J., Surface-enhanced Raman spectroscopy of self-assembled monolayers: sandwich architecture and nanoparticle shape dependence. Analytical chemistry 2005, 77 (10), 3261-3266.
26. Guerrini, L.; Graham, D., Molecularly-mediated assemblies of plasmonic nanoparticles for Surface-Enhanced Raman Spectroscopy applications. Chemical Society Reviews 2012, 41 (21), 7085-7107.
27. Yang, S.; Lei, Y., Recent progress on surface pattern fabrications based on monolayer colloidal crystal templates and related applications. Nanoscale 2011, 3 (7), 2768-2782.
28. Yang, S.; Lapsley, M. I.; Cao, B.; Zhao, C.; Zhao, Y.; Hao, Q.; Kiraly, B.; Scott, J.; Li, W.; Wang, L., Large‐Scale Fabrication of Three‐Dimensional Surface Patterns Using Template‐Defined Electrochemical Deposition. Advanced functional materials 2013, 23 (6), 720-730.
29. Rao, C.; Kulkarni, G.; Thomas, P. J.; Edwards, P. P., Size-dependent chemistry: properties of nanocrystals. In Advances In Chemistry: A Selection of CNR Rao's Publications (1994–2003), World Scientific: 2003; pp 227-233.
30. An, B.; Li, M.; Wang, J.; Li, C., Shape/size controlling syntheses, properties and applications of two-dimensional noble metal nanocrystals. Frontiers of Chemical Science and Engineering 2016, 10 (3), 360-382.
31. Chiu, C.-W.; Hong, P.-D.; Lin, J.-J., Clay-mediated synthesis of silver nanoparticles exhibiting low-temperature melting. Langmuir 2011, 27 (18), 11690-11696.
32. Loiseau, A.; Asila, V.; Boitel-Aullen, G.; Lam, M.; Salmain, M.; Boujday, S., Silver-based plasmonic nanoparticles for and their use in biosensing. Biosensors 2019, 9 (2), 78.
33. Mitsudome, T.; Matoba, M.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K., Core–shell AgNP@ CeO2 nanocomposite catalyst for highly chemoselective reductions of unsaturated aldehydes. Chemistry–A European Journal 2013, 19 (17), 5255-5258.
34. Wei, J.-C.; Yen, Y.-T.; Wang, Y.-T.; Hsu, S.-h.; Lin, J.-J., Enhancing silver nanoparticle and antimicrobial efficacy by the exfoliated clay nanoplatelets. RSC advances 2013, 3 (20), 7392-7397.
35. Agnihotri, S.; Mukherji, S.; Mukherji, S., Immobilized silver nanoparticles enhance contact killing and show highest efficacy: elucidation of the mechanism of bactericidal action of silver. Nanoscale 2013, 5 (16), 7328-7340.
36. Boca-Farcau, S.; Potara, M.; Simon, T.; Juhem, A.; Baldeck, P.; Astilean, S., Folic acid-conjugated, SERS-labeled silver nanotriangles for multimodal detection and targeted photothermal treatment on human ovarian cancer cells. Molecular pharmaceutics 2014, 11 (2), 391-399.
37. Agnihotri, S.; Mukherji, S.; Mukherji, S., Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. Rsc Advances 2014, 4 (8), 3974-3983.
38. Agnihotri, S.; Mukherji, S.; Mukherji, S., Antimicrobial chitosan–PVA hydrogel as a nanoreactor and immobilizing matrix for silver nanoparticles. Applied Nanoscience 2012, 2 (3), 179-188.
39. Abdullin, T. I.; Bondar, O. V.; Shtyrlin, Y. G.; Kahraman, M.; Culha, M., Pluronic block copolymer-mediated interactions of organic compounds with noble metal nanoparticles for SERS analysis. Langmuir 2010, 26 (7), 5153-5159.
40. Cheng, Y.-W.; Chuang, W.-H.; Wang, K.-S.; Tseng, W.-C.; Chiu, W.-Y.; Wu, C.-H.; Liu, T.-Y.; Jeng, R.-J., Thermoresponsive SERS Nanocapsules Constructed by Linear-Dendritic Poly (urea/malonamide) for Tunable Biomolecule Detection. ACS Applied Polymer Materials 2021.
41. McGrath, F.; Qian, J.; Gwynne, K.; Kumah, C.; Daly, D.; Hrelescu, C.; Zhang, X.; O'Carroll, D. M.; Bradley, A. L., Structural, optical, and electrical properties of silver gratings prepared by nanoimprint lithography of nanoparticle ink. Applied Surface Science 2021, 537, 147892.
42. Taglietti, A.; Arciola, C. R.; D'Agostino, A.; Dacarro, G.; Montanaro, L.; Campoccia, D.; Cucca, L.; Vercellino, M.; Poggi, A.; Pallavicini, P., Antibiofilm activity of a monolayer of silver nanoparticles anchored to an amino-silanized glass surface. Biomaterials 2014, 35 (6), 1779-1788.
43. Xu, L.; Wang, Y.-Y.; Huang, J.; Chen, C.-Y.; Wang, Z.-X.; Xie, H., Silver nanoparticles: Synthesis, medical applications and biosafety. Theranostics 2020, 10 (20), 8996.
44. Radziuk, D.; Skirtach, A.; Sukhorukov, G.; Shchukin, D.; Möhwald, H., Stabilization of silver nanoparticles by polyelectrolytes and poly (ethylene glycol). Macromolecular rapid communications 2007, 28 (7), 848-855.
45. Swensson, B.; Ek, M.; Gray, D. G., In situ preparation of silver nanoparticles in paper by reduction with alkaline glucose solutions. ACS omega 2018, 3 (8), 9449-9452.
46. Luo, C.; Zhang, Y.; Zeng, X.; Zeng, Y.; Wang, Y., The role of poly (ethylene glycol) in the formation of silver nanoparticles. Journal of colloid and interface science 2005, 288 (2), 444-448.
47. Li, W.; Guo, Y.; Zhang, P., SERS-active silver nanoparticles prepared by a simple and green method. The Journal of Physical Chemistry C 2010, 114 (14), 6413-6417.
48. Stiufiuc, R.; Iacovita, C.; Lucaciu, C. M.; Stiufiuc, G.; Dutu, A. G.; Braescu, C.; Leopold, N., SERS-active silver colloids prepared by reduction of silver nitrate with short-chain polyethylene glycol. Nanoscale research letters 2013, 8 (1), 1-5.
49. Gleiter, H., Nanocrystalline materials. In Advanced Structural and Functional Materials, Springer: 1991; pp 1-37.
50. Ciriminna, R.; Fidalgo, A.; Pandarus, V.; Beland, F.; Ilharco, L. M.; Pagliaro, M., The sol–gel route to advanced silica-based materials and recent applications. Chemical reviews 2013, 113 (8), 6592-6620.
51. Ebelmen, J. J., Recherches sur les combinaisons des acides borique et silicique avec les ethers. 1846.
52. Graham, T., XXXV.—On the properties of silicic acid and other analogous colloidal substances. Journal of the Chemical Society 1864, 17, 318-327.
53. Milea, C.; Bogatu, C.; Duta, A., The influence of parameters in silica sol-gel process. Bulletin of the Transilvania University of Brasov. Engineering Sciences. Series I 2011, 4 (1), 59.
54. Iler, K. R., The chemistry of silica. Solubility, polymerization, colloid and surface properties and biochemistry of silica 1979.
55. Kim, K.-S.; Kim, J.-K.; Kim, W.-S., Influence of reaction conditions on sol-precipitation process producing silicon oxide particles. Ceramics international 2002, 28 (2), 187-194.
56. Liu, C.; Tian, Q.; Liao, L., Sol–gel precursor inks and films. In Solution Processed Metal Oxide Thin Films for Electronic Applications, Elsevier: 2020; pp 41-61.
57. Collinson, M. M., Sol-gel strategies for the preparation of selective materials for chemical analysis. Critical Reviews in Analytical Chemistry 1999, 29 (4), 289-311.
58. Salon, M.-C. B.; Abdelmouleh, M.; Boufi, S.; Belgacem, M. N.; Gandini, A., Silane adsorption onto cellulose fibers: Hydrolysis and condensation reactions. Journal of colloid and interface science 2005, 289 (1), 249-261.
59. Zhai, W.-L.; Li, D.-W.; Qu, L.-L.; Fossey, J. S.; Long, Y.-T., Multiple depositions of Ag nanoparticles on chemically modified agarose films for surface-enhanced Raman spectroscopy. Nanoscale 2012, 4 (1), 137-142.
60. Olson, L. G.; Lo, Y.-S.; Beebe Jr, T. P.; Harris, J. M., Characterization of silane-modified immobilized gold colloids as a substrate for surface-enhanced Raman spectroscopy. Analytical chemistry 2001, 73 (17), 4268-4276.
61. Do, P. Q. T.; Huong, V. T.; Phuong, N. T. T.; Nguyen, T.-H.; Ta, H. K. T.; Ju, H.; Phan, T. B.; Phung, V.-D.; Tran, N. H. T., The highly sensitive determination of serotonin by using gold nanoparticles (Au NPs) with a localized surface plasmon resonance (LSPR) absorption wavelength in the visible region. RSC Advances 2020, 10 (51), 30858-30869.
62. Carlmark, A.; Hawker, C.; Hult, A.; Malkoch, M., New methodologies in the construction of dendritic materials. Chemical Society Reviews 2009, 38 (2), 352-362.
63. Onoshima, D.; Imae, T., Dendritic nano- and microhydrogels fabricated by triethoxysilyl focal dendrons. Soft Matter 2006, 2 (2), 141-148.
64. Tomalia, D. A., Fluorine makes a difference. Nature materials 2003, 2 (11), 711-712.
65. Tomalia, D. A.; Baker, H.; Dewald, J.; Hall, M.; Kallos, G.; Martin, S.; Roeck, J.; Ryder, J.; Smith, P., A new class of polymers: starburst-dendritic macromolecules. Polymer journal 1985, 17 (1), 117-132.
66. Newkome, G. R.; Yao, Z.; Baker, G. R.; Gupta, V. K., Micelles. Part 1. Cascade molecules: a new approach to micelles. A [27]-arborol. The Journal of Organic Chemistry 1985, 50 (11), 2003-2004.
67. Lothian-Tomalia, M. K.; Hedstrand, D. M.; Tomalia, D. A.; Padias, A. B.; Hall Jr, H., A contemporary survey of covalent connectivity and complexity. The divergent synthesis of poly (thioether) dendrimers. Amplified, genealogically directed synthesis leading to the de Gennes dense packed state. Tetrahedron 1997, 53 (45), 15495-15513.
68. Padias, A. B.; Hall Jr, H.; Tomalia, D. A.; McConnell, J., Starburst polyether dendrimers. The Journal of Organic Chemistry 1987, 52 (24), 5305-5312.
69. Miller, T. M.; Neenan, T. X., Convergent synthesis of monodisperse dendrimers based upon 1,3,5-trisubstituted benzenes. Chem. Mater. 1990, 2 (4), 346-349.
70. Hawker, C. J.; Frechet, J. M. J., Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules. J. Am. Chem. Soc. 1990, 112 (21), 7638-7647.
71. Cheng, C. X.; Tian, Y.; Shi, Y. Q.; Tang, R. P.; Xi, F., Porous polymer films and honeycomb structures based on amphiphilic dendronized block copolymers. Langmuir 2005, 21 (14), 6576-6581.
72. Schluter, A. D.; Rabe, J. P., Dendronized polymers: synthesis, characterization, assembly at Interfaces, and manipulation. Angew. Chem. Int. Ed. 2000, 39 (5), 864-883.
73. Cheng, C.-X.; Huang, Y.; Tang, R.-P.; Chen, E.-q.; Xi, F., Molecular architecture effect on self-assembled nanostructures of a linear-dendritic rod triblock copolymer in solution. Macromolecules 2005, 38 (8), 3044-3047.
74. Roovers, J.; Comanita, B., Dendrimers and dendrimer-polymer hybrids Adv. Polym. Sci. 1999, 142, 179-228.
75. Zhao, Y.; Shuai, X.; Chen, C.; Xi, F., Synthesis of novel dendrimer-like star block copolymers with definite numbers of arms by combination of ROP and ATRP. Chem. Commun. 2004, 1608-1609.
76. Darcos, V.; Dureault, A.; Taton, D.; Gnanou, Y.; Marchand, P.; Caminade, A.-M.; Majoral, J.-P.; Destarac, M.; Leising, F., Synthesis of hybrid dendrimer-star polymers by the RAFT process. Chem. Commun. 2004, (18), 2110-2111.
77. Chen, C. P.; Dai, S. A.; Chang, H. L.; Su, W. C.; Jeng, R. J., Facile approach to polyurea/malonamide dendrons via a selective ring‐opening addition reaction of azetidine‐2, 4‐dione. J. Polym. Sci., Part A: Polym. Chem. 2005, 43 (3), 682-688.
78. Chang, C.-C.; Juang, T.-Y.; Ting, W.-H.; Lin, M.-S.; Yeh, C.-M.; Dai, S. A.; Suen, S.-Y.; Liu, Y.-L.; Jeng, R.-J., Using a breath-figure method to self-organize honeycomb-like polymeric films from dendritic side-chain polymers. Materials Chemistry and Physics 2011, 128 (1-2), 157-165.
79. Wu, C.-H.; Ting, W.-H.; Lai, Y.-W.; Dai, S. A.; Su, W.-C.; Tung, S.-H.; Jeng, R.-J., Tailored honeycomb-like polymeric films based on amphiphilic poly (urea/malonamide) dendrons. RSC advances 2016, 6 (94), 91981-91990.
80. Chiang, C.-Y.; Liu, T.-Y.; Su, Y.-A.; Wu, C.-H.; Cheng, Y.-W.; Cheng, H.-W.; Jeng, R.-J., Au nanoparticles immobilized on honeycomb-like polymeric films for surface-enhanced Raman scattering (SERS) detection. Polymers 2017, 9 (3), 93.
81. Cheng, Y.-W.; Wu, C.-H.; Chen, W.-T.; Liu, T.-Y.; Jeng, R.-J., Manipulated interparticle gaps of silver nanoparticles by dendron-exfoliated reduced graphene oxide nanohybrids for SERS detection. Applied Surface Science 2019, 469, 887-895.
82. Ben Haddada, M.; Blanchard, J.; Casale, S.; Krafft, J.-M.; Vallée, A.; Méthivier, C.; Boujday, S., Optimizing the immobilization of gold nanoparticles on functionalized silicon surfaces: amine-vs thiol-terminated silane. Gold Bulletin 2013, 46 (4), 335-341.
83. Feng, F.; Zhi, G.; Jia, H. S.; Cheng, L.; Tian, Y. T.; Li, X. J., SERS detection of low-concentration adenine by a patterned silver structure immersion plated on a silicon nanoporous pillar array. Nanotechnology 2009, 20 (29), 295501.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83752-
dc.description.abstract本研究成功開發出以多醚-矽烷官能化樹枝狀高分子為基底之表面增強拉曼散射(SERS)基板,因獨特設計之樹枝狀高分子結構具有矽氧烷官能基,可以藉由水解縮合反應與玻璃基板結合,並以多醚基作為還原點原位還原形成銀奈米粒子,利用不同代數之樹枝狀高分子調控奈米銀粒子之分布,期望提升SERS訊號的強度及穩定性。樹枝狀高分子設計以具反應選擇性之雙官能基單體4-isocyanato-4-(3,3-dimethyl-2,4-dioxo-azetidino)-diphenylmethane (IDD)為構築單元,與具多醚基之triethylene glycol monoether (TEGEE)反應,得到末端為多醚基之0.5代樹枝狀分子與diethylenetriamine反應,透過收斂法合成末端多醚基結構且不同代數之poly(urethane/malonamide)規則樹枝狀高分子,再以3-氨基丙基三乙氧基矽烷(APTES)進行化學改質,合成具矽烷官能基之樹枝狀高分子,且成功透過溶膠凝膠法與氫氧基化玻璃基板進行表面化學反應,將樹枝狀高分子修飾在玻璃表面,形成矽烷化基板;由樹枝狀高分子之羰基與末端醚基作為銀奈米粒子之成核點,以原位還原法將奈米銀粒子沉積在基板上,成功製備出矽烷化SERS基板。由於銀奈米粒子於基板之表面型態會影響SERS檢測效果,以不同代數之樹枝狀高分子(0.5-2.5代)及銀離子濃度(0.5-16 mg/mL),可以調控銀奈米粒子於矽烷化基板上的分佈及含量。結果顯示,1.5代樹枝狀高分子之複合材料為奈米銀粒子最佳分散劑,當銀離子達4 mg/mL時,能夠穩定分散還原之銀奈米粒子,且此基板能夠被穩定地應用於偵測腺嘌呤(adenine)生物分子,其偵測極限濃度(LOD)可達到10-8M,濃度介於10-5M至10-8M呈線性關係,且在重複30次測量下,其強度皆落於相對標準差以內。此新穎設計之利用樹枝狀高分子來控制銀奈米粒子尺寸及分佈之SERS基板,具有優異的靈敏度及穩定性,也將有非常大的潛力應用於分散其他種類之金屬奈米粒子,作為新一代無需標定(label-free)生醫及環境檢測晶片之應用。zh_TW
dc.description.abstractIn this study, nanocomposite thin films based on functionalized dendrons (alkoxysilane-containing dendrons with peripheral ether linkages) with in-situ reduction of silver nanoparticle (AgNPs) have been successfully fabricated for the sensing chips in surface-enhanced Raman scattering (SERS) detection. To develop highly reproducible and ultrasensitive SERS signals, it’s crucial to optimize the density and dispersion of silver nanoparticles on the substrates. Thus, we design the different generations of poly(urea/malonamide) dendrons (0.5, 1.5, and 2.5 generations) with peripheral ether linkages through iterative addition reactions to modulate the distribution of silver nanoparticles. The dendrons with azetidine-2,4-dione group could undergo ring-opening reaction with terminal primary amine of aminopropyltriethoxysilane (APTES). In addition, APTES was one of the most used surface modifiers because its three hydrolysable ethoxy groups could react with the silanol groups from the oxidized glass substrates. Subsequently, SERS substrates were fabricated by the immobilization of the AgNPs on the functionalized dendron-modified substrates by in-situ reduction of AgNO3 in alcohol solution. The anchoring of AgNPs on the substrates was carried out by electrostatic interaction with carbonyl groups and terminal ether linkages of dendrons. We explore the influence of dendrons of different generations, and concentrations of silver ions on SERS effects through SEM images and Raman spectra. The results show that the optimal SERS spectra were found at the 1.5 generation-dendrons with 4mg/mL AgNO3 immobilized on the silanized substrates, exhibiting the more stable, pronounced and linear-quantitative Raman enhancement for detection of adenine (10-5-10-8M), due to the presence of the moderate size and interparticle gap of AgNPs. The limit of detection (LOD) for adenine is lower than 10-8M. Such substrates with excellent sensitivity and stability exhibited high potential for the rapid and label-free SERS detection.en
dc.description.provenanceMade available in DSpace on 2023-03-19T21:16:41Z (GMT). No. of bitstreams: 1
U0001-0808202210363300.pdf: 6079206 bytes, checksum: 09551f060e31b59f16452a6eb157ae93 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents誌謝 i
中文摘要 ii
Abstract iii
目錄 iv
圖目錄 vii
表目錄 xi
壹、緒論 1
貳、文獻回顧 2
2.1 生醫檢測之發展 2
2.2 表面增強拉曼散射 2
2.2.1 拉曼光譜之簡介與原理 2
2.2.2 表面增強拉曼散射之簡介與原理 4
2.2.3 表面增強拉曼散射之應用 5
2.2.4 金屬奈米粒子光學性質與應用 6
2.3 有機-無機奈米複合材料 8
2.3.1 製備方式 9
2.3.2 優缺點及應用 12
2.3.3 矽氧烷於表面化學改質之應用 13
2.4 規則樹枝狀高分子 15
2.4.1樹枝狀高分子之簡介 17
2.4.2 Dendrimer合成路徑 18
2.4.3 反應選擇性單體IDD製備規則樹枝狀高分子 19
2.4.4 poly(urea/malonamide) dendrons於SERS之應用 22
2.5 研究動機 24
參、實驗內容 25
3.1 藥品及溶劑 25
3.2 實驗儀器 27
3.3 實驗流程圖 29
3.4 實驗步驟 31
3.4.1 Isocyanate-4’(3,3-dimethyl-2,4-dioxo-azetidino) diphenylmethane (IDD)之合成 31
3.4.2 醚基系列poly(urea/malonamide) dendrons之合成 32
3.4.3 含矽氧烷之poly(urea/malonamide) dendrons合成 36
3.4.4矽烷化樹枝狀高分子薄膜之製備 38
3.4.5具銀奈米粒子之矽烷化SERS平膜基板之製備 39
3.4.6表面增強拉曼散射之檢測方式 40
肆、結果與討論 41
4.1 IDD之合成與結構鑑定 41
4.2 醚基系列poly(urea/malonamide) dendrons之合成及結構鑑定 44
4.2.1 G0.5-TEGEE之合成及結構鑑定 44
4.2.2 G1.0-TEGEE之合成及結構鑑定 45
4.2.3 G1.5-TEGEE之合成及結構鑑定 47
4.2.4 G2.0-TEGEE之合成及結構鑑定 49
4.2.5 G2.5-TEGEE之合成及結構鑑定 51
4.3含矽氧烷之poly(urea/malonamide) dendrons合成及結構鑑定 54
4.3.1 A-G0.5-TEGEE之合成及結構鑑定 54
4.3.2 A-G1.5-TEGEE之合成及結構鑑定 56
4.3.3 A-G2.5-TEGEE之合成及結構鑑定 57
4.4矽烷化高分子薄膜之表面結構鑑定 59
4.4.1 A-G0.5-TEGEE 59
4.4.2 A-G1.5-TEGEE 63
4.4.3 A-G2.5-TEGEE 65
4.5具銀奈米粒子之高分子薄膜之合成與鑑定 67
4.5.1 銀奈米粒子於A-G0.5-TEGEE薄膜基板 67
4.5.2 銀奈米粒子於A-G1.5-TEGEE薄膜基板 69
4.5.3 銀奈米粒子於A-G2.5-TEGEE薄膜基板 71
4.6 具銀奈米粒子之高分子薄膜於SERS檢測之應用 74
4.6.1 不同銀離子濃度對於SERS效應之影響 74
4.6.2 不同代數樹枝狀高分子對SERS效應之影響 78
4.6.3 銀奈米粒子@醚基樹枝狀高分子薄膜基板與不同基板之比較 80
4.6.4 SERS基板之偵測極限濃度分析 82
4.6.5 SERS基板穩定性測試 83
伍、結論 84
陸、參考文獻 85
-
dc.language.isozh_TW-
dc.subject銀奈米粒子zh_TW
dc.subject溶膠凝膠法zh_TW
dc.subject矽烷化反應zh_TW
dc.subject樹枝狀高分子zh_TW
dc.subject銀奈米粒子zh_TW
dc.subject表面增強拉曼散測檢測zh_TW
dc.subject溶膠凝膠法zh_TW
dc.subject矽烷化反應zh_TW
dc.subject樹枝狀高分子zh_TW
dc.subject表面增強拉曼散測檢測zh_TW
dc.subjectsilver nanoparticlesen
dc.subjectsilanizationen
dc.subjectsol-gel reactionen
dc.subjectsurface-enhanced Raman scattering (SERS)en
dc.subjectsurface-enhanced Raman scattering (SERS)en
dc.subjectdendronsen
dc.subjectsol-gel reactionen
dc.subjectsilanizationen
dc.subjectdendronsen
dc.subjectsilver nanoparticlesen
dc.title多醚-矽烷官能化樹枝狀高分子-銀奈米粒子複合基板於SERS檢測之應用zh_TW
dc.titleImmobilization of silver nanoparticles based on alkoxysilane-containing dendrons with peripheral ether linkages for SERS detectionen
dc.typeThesis-
dc.date.schoolyear110-2-
dc.description.degree碩士-
dc.contributor.coadvisor劉定宇zh_TW
dc.contributor.coadvisorTing-Yu Liuen
dc.contributor.oralexamcommittee鄭有為;吳建欣zh_TW
dc.contributor.oralexamcommitteeYu-Wei Cheng;Chien-Hsin Wuen
dc.subject.keyword表面增強拉曼散測檢測,銀奈米粒子,樹枝狀高分子,矽烷化反應,溶膠凝膠法,zh_TW
dc.subject.keywordsurface-enhanced Raman scattering (SERS),silver nanoparticles,dendrons,silanization,sol-gel reaction,en
dc.relation.page91-
dc.identifier.doi10.6342/NTU202202135-
dc.rights.note未授權-
dc.date.accepted2022-08-08-
dc.contributor.author-college工學院-
dc.contributor.author-dept高分子科學與工程學研究所-
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-110-2.pdf
  未授權公開取用
5.94 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved