請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8374
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳益祥(Yih-Sharng Chen),張國柱(Kuo-Chu Chang) | |
dc.contributor.author | Jiun Hsu | en |
dc.contributor.author | 許鈞 | zh_TW |
dc.date.accessioned | 2021-05-20T00:53:02Z | - |
dc.date.available | 2020-08-26 | |
dc.date.available | 2021-05-20T00:53:02Z | - |
dc.date.copyright | 2020-08-26 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-07-31 | |
dc.identifier.citation | Alsoufi, B., Shen, I., Karamlou, T., Giacomuzzi, C., Burch, G., Silberbach, M., Ungerleider, R. (2005). Extracorporeal life support in neonates, infants, and children after repair of congenital heart disease: Modern era results in a single institution. Annals of Thoracic Surgery, 80(1), 15–21. https://doi.org/10.1016/j.athoracsur.2005.02.023 Attaran, R. R., Ewy, G. A. (2010). Epinephrine in resuscitation: curse or cure? Future Cardiology, 6(4), 473–482. https://doi.org/10.2217/fca.10.24 Augoustides, J. G. T., Stone, M. E., Drenger, B. (2014). Novel approaches to spinal cord protection during thoracoabdominal aortic interventions. Current Opinion in Anaesthesiology, 27(1), 98–105. https://doi.org/10.1097/ACO.0000000000000033 Babior, B. M., Curnutte, J. T., Kipnes, B. S. (1975). Pyridine nucleotide-dependent superoxide production by a cell-free system from human granulocytes. Journal of Clinical Investigation, 56(4), 1035–1042. https://doi.org/10.1172/JCI108150 Bartlett, R H, Roloff, D. W., Cornell, R. G., Andrews, A. F., Dillon, P. W., Zwischenberger, J. B. (1985). Extracorporeal circulation in neonatal respiratory failure: a prospective randomized study. Pediatrics, 76(4), 479–487. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/3900904 Bartlett, Robert H. (2005). Extracorporeal Life Support: History and New Directions. ASAIO Journal, 51, 487–489. https://doi.org/10.1097/01.mat.0000179141.08834.cb Belaidi, E., Morand, J., Gras, E., Pépin, J. L., Godin-Ribuot, D. (2016). Targeting the ROS-HIF-1-endothelin axis as a therapeutic approach for the treatment of obstructive sleep apnea-related cardiovascular complications. Pharmacology and Therapeutics, 168, 1–11. https://doi.org/10.1016/j.pharmthera.2016.07.010 Bhakri, K. P., Mulholland, J., Punjabi, P. P. (2014). Understanding innovations in the evolving practice of blood and crystalloid cardioplegia. Perfusion (United Kingdom), 29(6), 505–510. https://doi.org/10.1177/0267659114524977 Bhat, P., Hirsch, J. C., Gelehrter, S., Cooley, E., Donohue, J., King, K., Gajarski, R. J. (2013). Outcomes of infants weighing three kilograms or less requiring extracorporeal membrane oxygenation after cardiac surgery. Annals of Thoracic Surgery, 95(2), 656–661. https://doi.org/10.1016/j.athoracsur.2012.06.041 Biglow, W. G., Callaghan, J. C., Hopps, J. A. (1950). General hypothermia for experimental intracardiac surgery; the use of electrophrenic respirations, an artificial pacemaker for cardiac standstill and radio-frequency rewarming in general hypothermia. Annals of Surgery, 132(3), 531–539. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/15433219 Bretschneider, H. J. (1980). Myocardial protection. The Thoracic and Cardiovascular Surgeon, 28, 295–302. Bruick, R. K. (2000). Expression of the gene encoding the proapoptotic Nip3 protein is induced by hypoxia. Proceedings of the National Academy of Sciences, 97(16), 9082–9087. https://doi.org/10.1073/pnas.97.16.9082 Cai, Z. (2003). Hearts From Rodents Exposed to Intermittent Hypoxia or Erythropoietin Are Protected Against Ischemia-Reperfusion Injury. Circulation, 108(1), 79–85. https://doi.org/10.1161/01.CIR.0000078635.89229.8A Callaway, C. W., Donnino, M. W., Fink, E. L., Geocadin, R. G., Golan, E., Kern, K. B., … Zimmerman, J. L. (2015). Part 8: Post–Cardiac Arrest Care: 2015 American Heart Association Guidelines Update for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation, 132(18 Suppl 2), S465–S482. https://doi.org/https://doi.org/10.1161/CIR.0000000000000262 Casas, A. I., Geuss, E., Kleikers, P. W. M., Mencl, S., Herrmann, A. M., Buendia, I., … Schmidt, H. H. H. W. (2017). NOX4-dependent neuronal autotoxicity and BBB breakdown explain the superior sensitivity of the brain to ischemic damage. Proceedings of the National Academy of Sciences, 114(46), 201705034. https://doi.org/10.1073/pnas.1705034114 Cave, D. M., Gazmuri, R. J., Otto, C. W., Nadkarni, V. M., Cheng, A., Brooks, S. C., … Hazinski, M. F. (2010). Part 7: CPR techniques and devices: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation, 122. https://doi.org/10.1161/CIRCULATIONAHA.110.970970 Chan, C.-Y., Chen, Y.-S., Lee, H.-H., Huang, H.-S., Lai, Y.-L., Chen, C.-F., Ma, M.-C. (2007). Erythropoietin protects post-ischemic hearts by preventing extracellular matrix degradation: role of Jak2-ERK pathway. Life Sciences, 81(9), 717–723. https://doi.org/10.1016/j.lfs.2007.07.013 Chekeni, F. B., Elliott, M. R., Sandilos, J. K., Walk, S. F., Kinchen, J. M., Lazarowski, E. R., … Ravichandran, K. S. (2010). Pannexin 1 channels mediate ‘find-me’ signal release and membrane permeability during apoptosis. Nature, 467(7317), 863–867. https://doi.org/10.1038/nature09413 Chen, Y. S., Chao, A., Yu, H. Y., Ko, W. J., Wu, I. H., Chen, R. J. C., … Wang, S. S. (2003). Analysis and results of prolonged resuscitation in cardiac arrest patients rescued by extracorporeal membrane oxygenation. Journal of the American College of Cardiology, 41(2), 197–203. https://doi.org/10.1016/S0735-1097(02)02716-X Chen, Y. S., Lin, J. W., Yu, H. Y., Ko, W. J., Jerng, J. S., Chang, W. T., … Lin, F. Y. (2008). Cardiopulmonary resuscitation with assisted extracorporeal life-support versus conventional cardiopulmonary resuscitation in adults with in-hospital cardiac arrest: an observational study and propensity analysis. The Lancet, 372(webpanel 1), 554–561. https://doi.org/10.1016/S0140-6736(08)60958-7 Chen, Y. S., Yu, H. Y., Huang, S. C., Lin, J. W., Chi, N. H., Wang, C. H., … Ko, W. J. (2008). Extracorporeal membrane oxygenation support can extend the duration of cardiopulmonary resuscitation. Critical Care Medicine, 36(9), 2529–2535. https://doi.org/10.1097/CCM.0b013e318183f491 Collaborative, U. K., Trial, E. (1996). UK collaborative randomised trial of neonatal extracorporeal membrane oxygenation. UK Collaborative ECMO Trail Group. Lancet, 348, 75–82. https://doi.org/10.1016/S0140-6736(96)04100-1 Cross, J. L., Meloni, B. P., Bakker, A. J., Lee, S., Knuckey, N. W. (2010). Modes of neuronal calcium entry and homeostasis following cerebral ischemia. International Journal of Alzheimer’s Disease, 2010. https://doi.org/10.4061/2010/316862 D’Arcy, M. S. (2019). Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biology International, 43(6), 582–592. https://doi.org/10.1002/cbin.11137 Dellinger, R. P., Levy, M., Rhodes, A., Annane, D., Gerlach, H., Opal, S. M., … Zimmerman, J. L. (2013). Surviving sepsis campaign: International guidelines for management of severe sepsis and septic shock: 2012. Critical Care Medicine, 41(2), 580–637. https://doi.org/10.1097/CCM.0b013e31827e83af Diebold, I., Petry, A., Hess, J., Görlach, A. (2010). The NADPH oxidase subunit NOX4 is a new target gene of the hypoxia-inducible factor-1. Molecular Biology of the Cell, 21(12), 2087–2096. https://doi.org/10.1091/mbc.E09-12-1003 Dragancea, I., Rundgren, M., Englund, E., Friberg, H., Cronberg, T. (2013). The influence of induced hypothermia and delayed prognostication on the mode of death after cardiac arrest. Resuscitation, 84(3), 337–342. https://doi.org/10.1016/j.resuscitation.2012.09.015 Duann, P., Datta, P. K., Pan, C., Blumberg, J. B., Sharma, M., Lianos, E. A. (2006). Superoxide dismutase mimetic preserves the glomerular capillary permeability barrier to protein. Journal of Pharmacology and Experimental Therapeutics, 316(3), 1249–1254. https://doi.org/10.1124/jpet.105.092957 Erbayraktar, S., Grasso, G., Sfacteria, A., Xie, Q. -w., Coleman, T., Kreilgaard, M., … Brines, M. (2003). Asialoerythropoietin is a nonerythropoietic cytokine with broad neuroprotective activity in vivo. Proceedings of the National Academy of Sciences, 100(11), 6741–6746. https://doi.org/10.1073/pnas.1031753100 Etz, C. D., Kari, F. A., Mueller, C. S., Silovitz, D., Brenner, R. M., Lin, H. M., Griepp, R. B. (2011). The collateral network concept: A reassessment of the anatomy of spinal cord perfusion. Journal of Thoracic and Cardiovascular Surgery, 141(4), 1020–1028. https://doi.org/10.1016/j.jtcvs.2010.06.023 Ewy, G. A., Bobrow, B. J. (2016). Cardiocerebral Resuscitation. Journal of Intensive Care Medicine, 31(1), 24–33. https://doi.org/10.1177/0885066614544450 Fridell, J. A., Mangus, R. S., Tector, A. J. (2009). Clinical experience with histidine-tryptophan-ketoglutarate solution in abdominal organ preservation: A review of recent literature. Clinical Transplantation, Vol. 23, pp. 305–312. https://doi.org/10.1111/j.1399-0012.2008.00952.x Gao, C. J., Niu, L., Ren, P. C., Wang, W., Zhu, C., Li, Y. Q., … Sun, X. D. (2012). Hypoxic preconditioning attenuates global cerebral ischemic injury following asphyxial cardiac arrest through regulation of delta opioid receptor system. Neuroscience, 202, 352–362. https://doi.org/10.1016/j.neuroscience.2011.11.060 Gerbode, F., Osborn, J. J., Bramson, M. L. (1967). Experiences in the development of a membrane heart-lung machine. The American Journal of Surgery, 114(1), 16–23. https://doi.org/10.1016/0002-9610(67)90035-9 Gibbon, J. H. (1937). ARTIFICIAL MAINTENANCE OF CIRCULATION DURING EXPERIMENTAL OCCLUSION OF PULMONARY ARTERY. Archives of Surgery, 34(6), 1105. https://doi.org/10.1001/archsurg.1937.01190120131008 Griepp, R. B., Stinson, E. B., Hollingsworth, J. F., Buehler, D. (1975). Prosthetic replacement of the aortic arch. The Journal of Thoracic and Cardiovascular Surgery, 70, 1051–1063. Halterman, M. W., Miller, C. C., Federoff, H. J. (1999). Hypoxia-inducible factor-1alpha mediates hypoxia-induced delayed neuronal death that involves p53. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 19(16), 6818–6824. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10436039 Hayashida, K., Sano, M., Kamimura, N., Yokota, T., Suzuki, M., Ohta, S., … Hori, S. (2014). Hydrogen inhalation during normoxic resuscitation improves neurological outcome in a rat model of cardiac arrest independently of targeted temperature management. Circulation, 130(24), 2173–2180. https://doi.org/10.1161/CIRCULATIONAHA.114.011848 Hearse, D. J., Humphrey, S. M., Chain, E. B. (1973). Abrupt reoxygenation of the anoxic potassium-arrested perfused rat heart: A study of myocardial enzyme release. Journal of Molecular and Cellular Cardiology, 5(4), 395–407. https://doi.org/10.1016/0022-2828(73)90030-8 Helmsworth, J. A., KAPLAN, S., CLARK, L. C., McADAMS, A. J., MATTHEWS, E. C., EDWARDS, F. K. (1959). Myocardial injury associated with asystole induced with potassium citrate. Annals of Surgery, 149(2), 200–206. https://doi.org/10.1097/00000658-195902000-00005 Hendrickx, H. H. L., Rao, G. R., Safar, P., Gisvold, S. E. (1984). Asphyxia, cardiac arrest and resuscitation in rats. I. Short term recovery. Resuscitation, 12(2), 97–116. https://doi.org/10.1016/0300-9572(84)90062-5 Hotchkiss, R. S., Strasser, A., McDunn, J. E., Swanson, P. E. (2009). Cell death in Disease: Mechanisms and Emerging Therapeutic Concepts. The New England Journal of Medicine, 361(16), 1570–1583. https://doi.org/10.1056/NEJMra0901217 Hsu, J., Chang, C. H., Chiang, L. T., Caffrey, J. L., Lin, J. W., Chen, Y. S. (2019). Survival analysis of extracorporeal membrane oxygenation in neonatal and pediatric patients – A nationwide cohort study. Journal of the Formosan Medical Association, 118(9), 1339–1346. https://doi.org/10.1016/j.jfma.2018.12.008 Hsu, J., Wang, C. H., Huang, S. C., Yu, H. Y., Chi, N. H., Wu, I. H., … Chen, Y. S. (2014). Clinical applications of extracorporeal membranous oxygenation: A mini-review. Acta Cardiologica Sinica, Vol. 30, pp. 507–513. https://doi.org/10.6515/ACS20140821A Huang, C.-H., Hsu, C.-Y., Chen, H.-W., Tsai, M.-S., Cheng, H.-J., Chang, C.-H., … Chen, W.-J. (2007). Erythropoietin Improves the Postresuscitation Myocardial Dysfunction and Survival in the Asphyxia-Induced Cardiac Arrest Model. Shock, 28(1), 53–58. https://doi.org/10.1097/shk.0b013e31802f0218 Huang, C. T., Tsai, Y. J., Tsai, P. R., Ko, W. J. (2013). Extracorporeal membrane oxygenation resuscitation in adult patients with refractory septic shock. Journal of Thoracic and Cardiovascular Surgery, 146(5), 1041–1046. https://doi.org/10.1016/j.jtcvs.2012.08.022 Huang, H. S., Ma, M. C. (2015). High sodium-induced oxidative stress and poor anticrystallization defense aggravate calcium oxalate crystal formation in rat hyperoxaluric kidneys. PLoS ONE, 10(8), 1–19. https://doi.org/10.1371/journal.pone.0134764 Huang, S.-C., Wu, E.-T., Chen, Y.-S., Chang, C.-I., Chiu, I.-S., Wang, S.-S., … Ko, W.-J. (2008). Extracorporeal membrane oxygenation rescue for cardiopulmonary resuscitation in pediatric patients. Critical Care Medicine, 36(5), 1607–1613. https://doi.org/10.1097/CCM.0b013e318170b82b Huang, S C, Wu, E. T., Chen, Y. S., Chang, C. I., Chiu, I. S., Chi, N. H., … Ko, W. J. (2005). Experience with extracorporeal life support in pediatric patients after cardiac surgery. ASAIO Journal, 51(5), 517–521. https://doi.org/10.1097/01.mat.0000177215.32770.e6 Huang, Shu Chien, Chen, Y. S., Chi, N. H., Hsu, J., Wang, C. H., Yu, H. Y., … Lin, F. Y. (2006). Out-of-center extracorporeal membrane oxygenation for adult cardiogenic shock patients. Artificial Organs, 30(1), 24–28. https://doi.org/10.1111/j.1525-1594.2006.00176.x Joseph, W. L., Maloney, J. V. (1965). Extracorporeal Circulation as an Adjunct to Resuscitation of the Heart. JAMA: The Journal of the American Medical Association, 193(8), 683–684. https://doi.org/10.1001/jama.1965.03090080045016 Kahles, T., Brandes, R. P. (2013). Which NADPH oxidase isoform is relevant for ischemic stroke? the case for Nox 2. Antioxidants and Redox Signaling, 18(12), 1400–1417. https://doi.org/10.1089/ars.2012.4721 Kammermeyer, K. (1957). Silicone Rubber as a Selective Barrier. Industrial Engineering Chemistry, 49(10), 1685–1686. https://doi.org/10.1021/ie50574a024 Kang, S. K., Kang, M. W., Rhee, Y. J., Kim, C. S., Jeon, B. H., Han, S. J., … Yu, J. H. (2016). In vivo neuroprotective effect of histidine-tryptophan-ketoglutarate solution in an ischemia/reperfusion spinal cord injury animal model. Korean Journal of Thoracic and Cardiovascular Surgery, 49(4), 232–241. https://doi.org/10.5090/kjtcs.2016.49.4.232 Katz, L., Ebmeyer, U., Safar, P., Radovsky, A., Neumar, R. (1995). Outcome model of asphyxial cardiac arrest in rats. Journal of Cerebral Blood Flow and Metabolism : Official Journal of the International Society of Cerebral Blood Flow and Metabolism, 15(6), 1032–1039. https://doi.org/10.1038/jcbfm.1995.129 Kleinman, M. E., Chameides, L., Schexnayder, S. M., Samson, R. A., Hazinski, M. F., Atkins, D. L., … Zaritsky, A. L. (2010). Part 14: Pediatric advanced life support: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation, 122(SUPPL. 3). https://doi.org/10.1161/CIRCULATIONAHA.110.971101 Kleinschnitz, C., Grund, H., Wingler, K., Armitage, M. E., Jones, E., Mittal, M., … Schmidt, H. H. H. W. H. W. (2010). Post-stroke inhibition of induced NADPH Oxidase type 4 prevents oxidative stress and neurodegeneration. PLoS Biology, 8(9). https://doi.org/10.1371/journal.pbio.1000479 Ko, W. J., Lin, C. Y., Chen, R. J., Wang, S. S., Lin, F. Y., Chen, Y. S. (2002). Extracorporeal membrane oxygenation support for adult postcardiotomy cardiogenic shock. Annals of Thoracic Surgery, 73(2), 538–545. https://doi.org/10.1016/S0003-4975(01)03330-6 Kolff, W. J., Berk, H. T. J., Welle, N. M., van der LEY, A. J. W., van DIJK, E. C., van NOORDWIJK, J. (1944). The Artificial Kidney: a dialyser with a great area. Acta Medica Scandinavica, 117(2), 121–134. https://doi.org/10.1111/j.0954-6820.1944.tb03951.x Ku, K., Oku, H., Alam, M. S., Saitoh, Y., Nosaka, S., Nakayama, K. (1997). Prolonged hypothermic cardiac storage with histidine-tryptophan-ketoglutarate solution: comparison with glucose-insulin-potassium and University of Wisconsin solutions. Transplantation, 64(7), 971–975. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9381543 Kubler, W., Spieckermann, P. G., Grebe, D., Bretschneider, H. J. (1969). The Energy Metabolism of the Heart during Ischaemia and during Post-ischaemic Regeneration with and without Artificial Cardiac Arrest. British Journal of Surgery, 56(8), 630. Lewis, M. S., Whatley, R. E., Cain, P., McIntyre, T. M., Prescott, S. M., Zimmerman, G. A. (1988). Hydrogen peroxide stimulates the synthesis of platelet-activating factor by endothelium and induces endothelial cell-dependent neutrophil adhesion. Journal of Clinical Investigation, 82(6), 2045–2055. https://doi.org/10.1172/JCI113825 Lin, C.-S., Lee, S.-H., Huang, H.-S., Chen, Y.-S., Ma, M.-C. (2015). H 2 O 2 generated by NADPH oxidase 4 contributes to transient receptor potential vanilloid 1 channel-mediated mechanosensation in the rat kidney. American Journal of Physiology - Renal Physiology, 309(4), F369–F376. https://doi.org/10.1152/ajprenal.00462.2014 Lin, J. W., Wang, M. J., Yu, H. Y., Wang, C. H., Chang, W. T., Jerng, J. S., … Chen, Y. S. (2010). Comparing the survival between extracorporeal rescue and conventional resuscitation in adult in-hospital cardiac arrests: Propensity analysis of three-year data. Resuscitation, 81(7), 796–803. https://doi.org/10.1016/j.resuscitation.2010.03.002 Liu, W., Wang, G., Yakovlev, A. G. (2002). Identification and functional analysis of the rat caspase-3 gene promoter. Journal of Biological Chemistry, 277(10), 8273–8278. https://doi.org/10.1074/jbc.M110768200 Lu, F. J., Lin, J. T., Wang, H. P., Huang, W. C. (1996). A simple, sensitive, non-stimulated photon counting system for detection of superoxide anion in whole blood. Experientia, 52(2), 141–144. https://doi.org/10.1007/BF01923359 Ma, M.-C., Wang, B.-W., Yeh, T.-P., Wu, J.-L., Chung, T.-H., Tsui, K., … Huang, Y.-T. (2015). Interleukin-27, a novel cytokine induced by ischemia-reperfusion injury in rat hearts, mediates cardioprotective effects via the gp130/STAT3 pathway. Basic Research in Cardiology, 110(3), 22. https://doi.org/10.1007/s00395-015-0480-y Ma, M. C., Qian, H., Ghassemi, F., Zhao, P., Xia, Y. (2005). Oxygen-sensitive delta-opioid receptor-regulated survival and death signals: Novel insights into neuronal preconditioning and protection. Journal of Biological Chemistry, 280(16), 16208–16218. https://doi.org/10.1074/jbc.M408055200 MacLaren, G., Butt, W., Best, D., Donath, S., Taylor, A. (2007). Extracorporeal membrane oxygenation for refractory septic shock in children: One institution’s experience. Pediatric Critical Care Medicine, 8(5), 447–451. https://doi.org/10.1097/01.PCC.0000282155.25974.8F Melrose, D. G., Dreyer, B., Bentall, H. H., Baker, J. B. E. (1955). Elective Cardiac Arrest. The Lancet, 266(6879), 21–23. https://doi.org/10.1016/S0140-6736(55)93381-X Meneshian, A., Bulkley, G. B. (2002). The physiology of endothelial xanthine oxidase: From urate catabolism to reperfusion injury to inflammatory signal transduction. Microcirculation, 9(3), 161–175. https://doi.org/10.1038/sj.mn.7800136 Murphy, M. P. (2009). How mitochondria produce reactive oxygen species. Biochemical Journal, 417(1), 1–13. https://doi.org/10.1042/BJ20081386 Perkins, G. D., Ji, C., Deakin, C. D., Quinn, T., Nolan, J. P., Scomparin, C., … Lall, R. (2018). A randomized trial of epinephrine in out-of-hospital cardiac arrest. New England Journal of Medicine, 379(8), 711–721. https://doi.org/10.1056/NEJMoa1806842 Phan, W. L., Huang, Y. T., Ma, M. C. (2015). Interleukin-27 Protects cardiomyocyte-like H9c2 cells against metabolic syndrome: Role of STAT3 signaling. BioMed Research International, 2015. https://doi.org/10.1155/2015/689614 Piccirillo, S., Castaldo, P., MacRì, M. L., Amoroso, S., Magi, S. (2018). Glutamate as a potential “survival factor” in an in vitro model of neuronal hypoxia/reoxygenation injury: Leading role of the Na + /Ca 2+ exchanger. Cell Death and Disease, 9(7). https://doi.org/10.1038/s41419-018-0784-6 Rak, R., Chao, D. L., Pluta, R. M., Mitchell, J. B., Oldfield, E. H., Watson, J. C. (2000). Neuroprotection by the stable nitroxide Tempol during reperfusion in a rat model of transient focal ischemia. Journal of Neurosurgery, 92(4), 646–651. https://doi.org/10.3171/jns.2000.92.4.0646 Rastan, A. J., Dege, A., Mohr, M., Doll, N., Falk, V., Walther, T., Mohr, F. W. (2010). Early and late outcomes of 517 consecutive adult patients treated with extracorporeal membrane oxygenation for refractory postcardiotomy cardiogenic shock. The Journal of Thoracic and Cardiovascular Surgery, 139(2), 302-311.e1. https://doi.org/10.1016/j.jtcvs.2009.10.043 Royer-Pokora, B., Kunkel, L. M., Monaco, A. P., Goff, S. C., Newburger, P. E., Baehner, R. L., … Orkin, S. H. (1986). Cloning the gene for an inherited human disorder - Chronic granulomatous disease - On the basis of its chromosomal location. Nature, 322(6074), 32–38. https://doi.org/10.1038/322032a0 Sanders, S. A., Eisenthal, R., Harrison, R. (1997). NADH oxidase activity of human xanthine oxidoreductase. Eur.J.Biochem., 245, 541–548. Schemm, R., Berger, T., Schriefl, C., Weihs, W., Holzer, M., Warenits, A., … Ettl, F. (2018). Epinephrine during CPR significantly increases organ perfusion in a rat VF cardiac arrest model. Resuscitation, 130(2018), e50. https://doi.org/10.1016/j.resuscitation.2018.07.089 Schluep, M., Gravesteijn, B. Y., Stolker, R. J., Endeman, H., Hoeks, S. E. (2018). One-year survival after in-hospital cardiac arrest: A systematic review and meta-analysis. Resuscitation, 132(September), 90–100. https://doi.org/10.1016/j.resuscitation.2018.09.001 Segal, A. W., Jones, O. T. G., Webster, D., Allison, A. C. (1978). ABSENCE OF A NEWLY DESCRIBED CYTOCHROME b FROM NEUTROPHILS OF PATIENTS WITH CHRONIC GRANULOMATOUS DISEASE. The Lancet, 312(8087), 446–449. https://doi.org/10.1016/S0140-6736(78)91445-9 Semenza, G. L., Wang, G. L. (1992). A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Molecular and Cellular Biology, 12, 5447–5454. https://doi.org/10.1128/MCB.12.12.5447.Updated Skalski, J. H., Zembala, M. (2005). Albert Wojciech Adamkiewicz: The discoverer of the variable vascularity of the spinal cord. Annals of Thoracic Surgery, 80(5), 1971–1975. https://doi.org/10.1016/j.athoracsur.2005.06.022 Smith, M., Vukomanovic, A., Brodie, D., Thiagarajan, R., Rycus, P., Buscher, H. (2017). Duration of veno-arterial extracorporeal life support (VA ECMO) and outcome: an analysis of the Extracorporeal Life Support Organization (ELSO) registry. Critical Care, 21(1), 45. https://doi.org/10.1186/s13054-017-1633-1 Stoney, W. S. (2009). Evolution of cardiopulmonary bypass. Circulation, 119, 2844–2853. https://doi.org/10.1161/CIRCULATIONAHA.108.830174 Suzuki, H., Tomida, A., Tsuruo, T. (2001). Dephosphorylated hypoxia-inducible factor 1alpha as a mediator of p53-dependent apoptosis during hypoxia. Oncogene, 20(41), 5779–5788. https://doi.org/10.1038/sj.onc.1204742 Taccone, F. S., Crippa, I. A., Dell’Anna, A. M., Scolletta, S. (2015). Neuroprotective strategies and neuroprognostication after cardiac arrest. Best Practice and Research: Clinical Anaesthesiology, 29(4), 451–464. https://doi.org/10.1016/j.bpa.2015.08.005 Tekin, D., Dursun, A. D., Xi, L. (2010). Hypoxia inducible factor 1 (HIF-1) and cardioprotection. Acta Pharmacologica Sinica, 31(9), 1085–1094. https://doi.org/10.1038/aps.2010.132 The BRCTII Study Group. (1991). A randomized clinical trial of calcium entry blocker administration to comatose survivors of cardiac arrest. Controlled Clinical Trials, 12(4), 525–545. https://doi.org/10.1016/0197-2456(91)90011-A Thompson, L. E., Chan, P. S., Tang, F., Nallamothu, B. K., Girotra, S., Perman, S. M., … Bradley, S. M. (2018). Long-Term Survival Trends of Medicare Patients After In-Hospital Cardiac Arrest: Insights from Get With The Guidelines-Resuscitation®. Resuscitation, 123, 58–64. https://doi.org/10.1016/j.resuscitation.2017.10.023 Van Hoecke, M., Prigent-Tessier, A. S., Garnier, P. E., Bertrand, N. M., Filomenko, R., Bettaieb, A., … Beley, A. G. (2007). Evidence of HIF-1 functional binding activity to caspase-3 promoter after photothrombotic cerebral ischemia. Molecular and Cellular Neuroscience, 34(1), 40–47. https://doi.org/10.1016/j.mcn.2006.09.009 Viana, F. F., Shi, W. Y., Hayward, P. A., Larobina, M. E., Liskaser, F., Matalanis, G. (2013). Custodiol versus blood cardioplegia in complex cardiac operations: An Australian experience. European Journal of Cardio-Thoracic Surgery, 43(3), 526–531. https://doi.org/10.1093/ejcts/ezs319 Wang, C. H., Chou, N. K., Becker, L. B., Lin, J. W., Yu, H. Y., Chi, N. H., … Chen, Y. S. (2014). Improved outcome of extracorporeal cardiopulmonary resuscitation for out-of-hospital cardiac arrest - A comparison with that for extracorporeal rescue for in-hospital cardiac arrest. Resuscitation, 85(9), 1219–1224. https://doi.org/10.1016/j.resuscitation.2014.06.022 Wenger, R., Kurtcuoglu, V., Scholz, C., Marti, H., Hoogewijs, D. (2015). Frequently asked questions in hypoxia research. Hypoxia, 35. https://doi.org/10.2147/hp.s92198 Woo, Y. J. (2012). Invited Commentary. The Annals of Thoracic Surgery, 93(5), 1508–1509. https://doi.org/10.1016/j.athoracsur.2012.02.059 Yang, Z., Sharma, A. K., Marshall, M., Kron, I. L., Laubach, V. E. (2009). NADPH oxidase in bone marrow-derived cells mediates pulmonary ischemia-reperfusion injury. American Journal of Respiratory Cell and Molecular Biology, 40(3), 375–381. https://doi.org/10.1165/rcmb.2008-0300OC Yellon, D. M., Hausenloy, D. J. (2007). Myocardial Reperfusion Injury. New England Journal of Medicine, 357(11), 1121–1135. https://doi.org/10.1056/NEJMra071667 Zapol, W. M., Snider, M. T., Hill, J. D., Fallat, R. J., Bartlett, R. H., Edmunds, L. H., … Miller, R. G. (1979). Extracorporeal membrane oxygenation in severe acute respiratory failure. A randomized prospective study. JAMA : The Journal of the American Medical Association, 242, 2193–2196. https://doi.org/10.1001/jama.1979.03300200023016 Zhang, H., Bosch-Marce, M., Shimoda, L. A., Yee, S. T., Jin, H. B., Wesley, J. B., … Semenza, G. L. (2008). Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. Journal of Biological Chemistry, 283(16), 10892–10903. https://doi.org/10.1074/jbc.M800102200 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8374 | - |
dc.description.abstract | 背景:病人在心跳停止的情況下,腦部的灌流停止,使得中樞神經系統開始缺氧,即使以目前的高等心肺復甦術施以急救,腦部的灌流能仍無法達成正常的供氧。一旦腦部缺氧的時間過久,就會引發缺氧性病變造成腦部損傷使得腦部功能的喪失。這樣的病人即使在急救後恢復了心跳血壓,可能會有認知功能的障礙,如果合併腦部的損傷太嚴重,甚至到無法恢復意識的程度,則一旦維生系統撤除,也會因為其他的併發症過世。心臟外科醫師在執行某些心臟大血管手術的時候,會需要將全身的血液流動暫停,會影響到全身器官甚至腦部的灌流,時間太久也會引起神經學的併發症。在心臟外科手術的時候,常常須使用心肌保護液要將心臟停止下來,讓心臟在缺氧過後能夠順利恢復功能。這樣的保護液,在器官移植的過程中也用來避免缺氧再灌流的傷害。由此,我們推測心肌保護液也能同樣的在腦部缺氧在灌流的時候提供保護。 方法:本篇研究先以健保資料庫的數據分析,觀察台灣使用葉克膜的原因、存活率以及產生的併發症,以證實我們的臨床觀察並不侷限於單一醫院。然後設計實驗以證實我們的假說。在實驗的第一部份採用老鼠胚胎的腦部神經元培養來進行體外實驗,在嚴重缺氧或是加入過氧化氫的環境下,將神經元培養基液的1/2到1/4體積置換成HTK溶液(Histidine-Tryptophan-Ketoglutarate solution),以觀察因細胞受傷而釋出的乳酸去氫酶比例,細胞存活性分析,神經元細胞在低氧誘導因子、細胞凋亡蛋白脢3總量及其活化型的量、以及NADPH氧化酶2及NADPH氧化酶4的表現,在整個觀察時序第0到第72小時過程中的變化。在實驗的第二部份中,使用窒息所引發心跳停止的老鼠模型,並分別在左頸動脈輸注生理食鹽水或是HTK溶液,在窒息後4分30秒或是6分30秒開始施予標準化的心肺復甦術,觀察老鼠的存活率以及神經學表現。並在存活的第三天收集老鼠的血液並予以安樂死,之後取出老鼠的腦部並做切片,在相同的切面染色以評估神經細胞壞死的面積比例。在另一個相同的切面做過氧化氫濃度,NADPH氧化酶4基因表現以及活性的分析。 結果:在神經元嚴重缺氧的研究顯示,使用HTK溶液可以降低乳酸去氫酶的釋放比例,提昇神經元細胞在嚴重低氧環境中的存活能力,並且藉由將低氧誘導因子維持在較高的濃度,也讓細胞凋亡蛋白脢原3雖然表現增加但維持在沒有活化的狀態,以及讓NADPH氧化酶4的表現反而下降,並且在使用低氧誘導因子拮抗劑之後,恢復NOX4的表現。在第二部份因窒息誘發心跳停止的動物實驗中,使用HTK溶液的老鼠在缺氧後有較小的腦部壞死面積,以及顯著下降的NOX4訊息核糖核酸表現以及NOX4酶活性的表現,同時反應到腦部過氧化氫濃度的下降,以及對老鼠的存活率上升,以及神經受損分數的明顯改善。 結論:HTK溶液對於腦部的保護作用,在神經元的細胞研究以及老鼠的動物實驗中得到正面的結果,因此對於之後發展腦部保護液提供良好的基礎。另外,由於研究中加入了觀察各個時間點對各項因子的測量,所以擴展了低氧誘導因子在持續性高濃度的狀況下對於細胞內缺氧再灌流訊息傳遞所表現出不同的結果。這也讓我們對於生理上訊息傳遞的理解,從單一時間點訊息傳遞因子濃度之間的相對關係,到觀察整個時序上因為訊息傳遞因子濃度的變化可能會造成的不同後果。 | zh_TW |
dc.description.abstract | Background: When patient’s heart stop beating, the blood flow to brain stopped and the insult of ischemia started. Even the advanced cardiopulmonary resuscitation or extracorporeal cardiopulmonary resuscitation could be commenced immediately, we still could not restore the full blood supply to all organs, including brain. As the ischemic time increased, the possibility of ischemic brain injury became higher and might resulted in permanent brain damage and loss of function. After spontaneous circulation regained, these patients might still pose some neurological deficits, and some of them would not regain consciousness, and might pass away if life-maintaining equipments withdrawn. When cardiovascular surgeon performing surgery, the whole body circulation might need to be hold for a while. If the duration became too long, the patient might complicated with neurological defects. We used cardioprotective solution to protect heart during ischemic period, and also use organ preservation solution during organ transplantation. Thus we expect that amino-acid based cardioprotective solution might as well protect brain during ischemic period. Method: We first conducted a retrospective study using national health insurance research database. Patients used ECMO were identified and the patient’s diagnosis, prior medical condition, mortality rate and the morbidities were evaluated. We verified our clinical experience to all hospitals of Taiwan. In the first part of laboratory study, we used rat embryonic cortical neurons culture, and challenged with severe hypoxia or hydrogen peroxide to mimic the oxidative stress during ischemia and reperfusion. The neuronal culture medium was replaced ½ to ¼ with HTK solution (Histidine-Tryptophan-Ketoglutarate) to test the effect of neuron protection. Lactate dehydrogenase, cell survival analysis were performed at each time point, and the level of hypoxia-inducible factor 1(HIF-1), total and cleaved caspase 3, the gene expression and enzymatic activity of NADPH oxidase 2(NOX2) and NADPH oxidase 4(NOX4) were measured during the observation time points at 0, 1, 2, 4, 8, 24, 48, and 72 hours. In the second part of laboratory study, we used rat asphyxial cardiac arrest model and clamp endotracheal tube for 4 minutes and 30 seconds, or 6 minutes and 30 seconds. Phosphate-buffered saline(PBS) or HTK solution was infused into left carotid artery at the beginning of asphyxia. Standardized chest compression, ventilation and epinephrine infusion were given at the end of asphyxia. The mortality rate and neurological deficit score of survived animals were observed after return to spontaneous circulation and on day 1, 2, and 3 after then. At 72 hours after experiment, the rats were sacrificed humanely. Blood were obtained for hydrogen peroxide analysis and brain were harvested for slices, which were sent for infarction area analysis and NOX4 mRNA quantification and NOX4 activity evaluation. Results: The cortical neuron studies revealed that the usage of HTK solution reduced LDH release during severe hypoxia or when challenged with hydrogen peroxide, also, viability increased. With the add of HTK solution, HIF-1 could maintain relatively high level, which made procaspase-3 expression increased but remained in inactive form. Also, the persisted high HIF-1 level resulted in reduced NOX4 expression, and when the antagonist of HIF-1, 400083, was used, NOX4 level returned to the level when challenged with severe hypoxia. In the second part of this study, we used rat asphyxial cardiac arrest model. The infusion of HTK solution made the infarction size of rate brain mild decreased, reduced NOX4 mRNA expression and decreased NOX4 enzyme activity. The hydrogen peroxide concentration from brain slice homogenate were also lowerd when HTK solution was used. The survival rate and neurological deficit score both improved if HTK were used. Conclusion: The protective effect of HTK solution to brain were proved by our study on the cortical neuron cells and animal studies. This proves our hypothesis were correct and build a foundation for future development of proper neurological protective solution. Our study observed the concentration changed for HIF-1 and the response of cells to it. The signal transduction of HIF-1 axis might not only depend on the concentration of HIF-1 at one single timepoint, but might depend on the change of HIF-1 concentration with a time-dependent manner. This would be a new point of view for cellular signal transduction. | en |
dc.description.provenance | Made available in DSpace on 2021-05-20T00:53:02Z (GMT). No. of bitstreams: 1 U0001-2807202015505600.pdf: 5985126 bytes, checksum: 77b1e9a6bad5d2ee02aeb3931f689c9e (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 口試委員會審定書 i 誌謝 ii 中文摘要 iii 英文摘要 v 第一章 緒論 1 1.1 背景 1 1.2 葉克膜在治療疾病上的應用與限制 2 1.2.1 葉克膜的發展 2 1.2.2 葉克膜的應用 6 1.2.3 葉克膜的限制 8 1.3 缺氧及再灌流對組織的影響 8 1.3.1缺氧及再灌流時,引起的細胞死亡 9 1.3.2 低氧誘導因子 10 1.3.3 活性含氧物 13 1.3.4 NADPH氧化酶 14 1.3.5 細胞凋亡蛋白酶 17 1.4 從心肌保護液到全身保護液 17 1.4.1 心肌保護液 17 1.4.2 心臟血管手術中腦部及脊髓的保護 19 1.4.3 動物實驗的選擇 21 1.5 擬研究的問題 21 第二章 研究方法 23 2.1 健保資料庫的研究 23 2.1.1 葉克膜病人的疾病分組及納入分析的共變量 23 2.1.2 健保資料庫研究所使用之統計學方法 24 2.2老鼠的皮質細胞培養 24 2.3嚴重缺氧的誘發 25 2.4乳酸去氫酶以及細胞活性分析(cell viability assay) 25 2.5 於神經細胞培養中加入過氧化氫溶液 26 2.6 以發光氨化學螢光法來驗證HTK溶液本身去除過氧化物的能力 26 2.7利用窒息來造成老鼠大腦的缺氧損傷 28 2.8神經損傷評分 30 2.9在培養基質以及大腦皮質中的過氧化氫定量分析 30 2.10以西方墨點法分析蛋白質的表現 30 2.11測量NOX在大腦組織中的活性 31 2.12以實時PCR來定量NOX4的表現 31 2.13統計分析方法 32 第三章 結果 33 3.1葉克膜健保資料庫的研究 33 3.1.1 在未成年病人使用葉克膜的結果 33 3.1.2 在成年病人使用葉克膜的結果 36 3.2 HTK溶液對腦部缺氧再灌流傷害的保護作用 36 3.2.1 神經元細胞培養在常氧的環境下對不同容積比率的HTK溶液產生的反應 36 3.2.2 培養的老鼠皮質神經元細胞對嚴重缺氧的反應 38 3.2.3 神經元細胞在缺氧時,過氧化氫濃度變化,低氧誘發因子與NOX2以及NOX4的關係 40 3.2.4 將過氧化氫直接加入老鼠皮質神經元培養中,來模擬嚴重缺氧後造成的氧化壓力(oxidative stress) 42 3.2.5 在沒有神經元的環境下,HTK溶液對過氧化氫的清除能力 44 3.2.6 在窒息式心跳停止的動物實驗進行心肺復甦術的結果 46 3.2.7 老鼠腦部的切片以及使用TTC染色來評估壞死區域 48 3.2.8 使用HTK溶液對於缺氧後,腦部組織NOX4的表現以及過氧化氫濃度的影響。 49 第四章 討論 51 4.1 健保資料庫中葉克膜使用的研究 51 4.2 HTK溶液作為神經保護液 52 4.2.1 老鼠胚胎神經元培養的研究 53 4.2.2 老鼠窒息性心臟停止的大腦缺氧實驗 56 4.3 綜合討論 60 4.4 本篇研究的限制 60 第五章 展望 60 English Summary 63 Chapter 1 Introduction 63 1.1 Background 63 1.2 Application and limitations of ECMO in disease treatments 65 1.3 Effects of ischemia and reperfusion on tissues 73 1.4 From cardioplegic solution to whole body protective solution 83 1.5 Topics to be studied 90 Chapter 2 Research method 91 2.1 Study on the health insurance research database (NHIRD) 91 2.2 Primary culture of rat cortical neurons 93 2.3 Induction of severe hypoxia (SH) 95 2.4 LDH levels and cell viability assays 95 2.5 Exogenous H2O2 treatment in cortical neurons 95 2.6 Preparation of cell-free system for luminol-enhanced chemiluminescence (CL) determination 96 2.7 Induction of rat brain ischemic damage by asphyxia 97 2.8 Neurological deficit score 98 2.9 Quantitation of H2O2 in culture medium and brain cortex 98 2.10 Western blot analysis for protein expression 98 2.11 Measurementof NOX activity in brain tissue 99 2.12 Quantitative real-time PCR for NOX4 expression 99 2.13 Statistical analysis 100 Chapter 3 Results 101 3.1 Study on the ECMO data from NHIRD 101 3.2 The protective effect of HTK solution to brain ischemic-reperfusion injury 103 3.2.1 The response of cultured rat cortical neurons during normoxia using different ratios of HTK in volume 103 3.2.2 Responses of cultured rat cortical neurons during SH 103 3.2.3 The association of NOX and HIF-1α during SH 104 3.2.4 H2O2 administration to rat cortical neuron cultures, mimicking oxidative stress during SH 105 3.2.5 Effects of HTK on H2O2 scavenge in a neuron-free system. 106 3.2.6 Results of cardiopulmonary resuscitation (CPR) for asphyxial cardiac arrest (aCA). 106 3.2.7 Photographs illustrating the coronal sections of rat brain slices stained with TTC 108 3.2.8 Effects of HTK on H2O2 production and brain tissue nicotinamide adenine dinucleotide phosphate oxygenase 4 (NOX4) expression. 108 Chapter 4 Results 109 4.1 Research on ECMO use with the NHIRD database 109 4.2 Using HTK solution as a neuroprotective solution 112 4.3 Comprehensive Discussion 115 4.4 Limitation of this study 116 Chapter 5 Prospectives 117 參考文獻 120 相關論文發表 131 | |
dc.language.iso | zh-TW | |
dc.title | 恢復心跳血壓幫助意識清醒:以胺基酸溶液做神經保護及其分子機制之探討 | zh_TW |
dc.title | Regain Circulation and Resume Consciousness: Amino-acid based solution for neuroprotection and it's molecular mechanism | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-2 | |
dc.description.degree | 博士 | |
dc.contributor.author-orcid | 0000-0001-9615-0975 | |
dc.contributor.oralexamcommittee | 楊偉勛(Wei-Shiung Yang),黃瑞仁(Juey-Jen Hwang),林萍章(Ping-Chang Lin),林昭維(Jou-Wei Lin),黃建華(Chien-Hua Huang) | |
dc.subject.keyword | 葉克膜,HTK心肌保護液,低氧誘導因子,細胞凋亡蛋白酶3,NADPH氧化酶4, | zh_TW |
dc.subject.keyword | HIF-1,caspase 3,NOX4,HTK,ECMO, | en |
dc.relation.page | 132 | |
dc.identifier.doi | 10.6342/NTU202001974 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2020-08-03 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 臨床醫學研究所 | zh_TW |
顯示於系所單位: | 臨床醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-2807202015505600.pdf | 5.84 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。