請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83749完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 廖英志(Ying-Chih Liao) | |
| dc.contributor.author | Yu-Chieh Chiu | en |
| dc.contributor.author | 邱鈺絜 | zh_TW |
| dc.date.accessioned | 2023-03-19T21:16:35Z | - |
| dc.date.copyright | 2022-08-19 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-08-09 | |
| dc.identifier.citation | 1. Ummartyotin, S., et al., Development of transparent bacterial cellulose nanocomposite film as substrate for flexible organic light emitting diode (OLED) display. Industrial crops and products, 2012. 35(1): p. 92-97. 2. Han, S.T., Y. Zhou, and V. Roy, Towards the development of flexible non?volatile memories. Advanced Materials, 2013. 25(38): p. 5425-5449. 3. Park, S. and S. Jayaraman, Smart textiles: Wearable electronic systems. MRS bulletin, 2003. 28(8): p. 585-591. 4. Roberts, M.E., A.N. Sokolov, and Z. Bao, Material and device considerations for organic thin-film transistor sensors. Journal of Materials Chemistry, 2009. 19(21): p. 3351-3363. 5. Mannsfeld, S.C., et al., Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nature materials, 2010. 9(10): p. 859-864. 6. Benight, S.J., et al., Stretchable and self-healing polymers and devices for electronic skin. Progress in Polymer Science, 2013. 38(12): p. 1961-1977. 7. Baran, D., D. Corzo, and G.T. Blazquez, Flexible electronics: status, challenges and opportunities. Frontiers in Electronics, 2020: p. 2. 8. Xu, S., et al., Soft microfluidic assemblies of sensors, circuits, and radios for the skin. Science, 2014. 344(6179): p. 70-74. 9. Kim, M.g., et al., Size?scalable and high?density liquid?metal?based soft electronic passive components and circuits using soft lithography. Advanced Functional Materials, 2017. 27(3): p. 1604466. 10. Dickey, M.D., Stretchable and soft electronics using liquid metals. Advanced Materials, 2017. 29(27): p. 1606425. 11. Vanfleteren, J., et al., Printed circuit board technology inspired stretchable circuits. MRS bulletin, 2012. 37(3): p. 254-260. 12. Blees, M.K., et al., Graphene kirigami. Nature, 2015. 524(7564): p. 204-207. 13. Kim, H.-J., et al., A biaxial stretchable interconnect with liquid-alloy-covered joints on elastomeric substrate. Journal of Microelectromechanical systems, 2009. 18(1): p. 138-146. 14. Udofia, E.N. and W. Zhou, A guiding framework for microextrusion additive manufacturing. Journal of Manufacturing Science and Engineering, 2019. 141(5). 15. Kubo, M., et al., Stretchable microfluidic radiofrequency antennas. Advanced materials, 2010. 22(25): p. 2749-2752. 16. Biswas, S., et al., Integrated multilayer stretchable printed circuit boards paving the way for deformable active matrix. Nature communications, 2019. 10(1): p. 1-8. 17. Lu, T., J. Wissman, and C. Majidi, Soft anisotropic conductors as electric vias for ga-based liquid metal circuits. ACS applied materials & interfaces, 2015. 7(48): p. 26923-26929. 18. Lu, T., et al., Soft-matter printed circuit board with UV laser micropatterning. ACS applied materials & interfaces, 2017. 9(26): p. 22055-22062. 19. Marques, D.G., et al., Reliable interfaces for EGaIn multi-layer stretchable circuits and microelectronics. Lab on a Chip, 2019. 19(5): p. 897-906. 20. Ladd, C., et al., 3D printing of free standing liquid metal microstructures. Advanced Materials, 2013. 25(36): p. 5081-5085. 21. Zhang, M., et al., Versatile fabrication of liquid metal nano-ink based flexible electronic devices. Applied Materials Today, 2021. 22: p. 100903. 22. Lu, T., et al., Rapid prototyping for soft?matter electronics. Advanced Functional Materials, 2014. 24(22): p. 3351-3356. 23. Hammock, M.L., et al., 25th anniversary article: the evolution of electronic skin (e?skin): a brief history, design considerations, and recent progress. Advanced materials, 2013. 25(42): p. 5997-6038. 24. Jung, T. and S. Yang, Highly stable liquid metal-based pressure sensor integrated with a microfluidic channel. Sensors, 2015. 15(5): p. 11823-11835. 25. Varga, M., et al., On-skin liquid metal inertial sensor. Lab on a Chip, 2017. 17(19): p. 3272-3278. 26. Li, G. and D.-W. Lee, An advanced selective liquid-metal plating technique for stretchable biosensor applications. Lab on a Chip, 2017. 17(20): p. 3415-3421. 27. Kim, S., et al., Direct wiring of eutectic gallium–indium to a metal electrode for soft sensor systems. ACS applied materials & interfaces, 2019. 11(22): p. 20557-20565. 28. Won, P., et al., Recent advances in liquid-metal-based wearable electronics and materials. Iscience, 2021. 24(7): p. 102698. 29. Jobs, M., et al., A tunable spherical cap microfluidic electrically small antenna. Small, 2013. 9(19): p. 3230-3234. 30. Zhu, L., et al., Liquid metal–based soft microfluidics. Small, 2020. 16(9): p. 1903841. 31. Khoshmanesh, K., et al., Liquid metal enabled microfluidics. Lab on a Chip, 2017. 17(6): p. 974-993. 32. Xie, W., et al., Gallium-based liquid metal particles for therapeutics. Trends in Biotechnology, 2021. 39(6): p. 624-640. 33. Bahadori, M. and Z. Akbari, Prediction of the surface tension of cesium in the whole liquid range. Physics and Chemistry of Liquids, 2016. 54(4): p. 454-461. 34. Dickey, M.D., Emerging applications of liquid metals featuring surface oxides. ACS applied materials & interfaces, 2014. 6(21): p. 18369-18379. 35. Li, G., X. Wu, and D.-W. Lee, Selectively plated stretchable liquid metal wires for transparent electronics. Sensors and Actuators B: Chemical, 2015. 221: p. 1114-1119. 36. Tang, S.-Y., et al., Gallium liquid metal: the Devil's elixir. Annual Review of Materials Research, 2021. 51: p. 381-408. 37. Creighton, M.A., et al., Oxidation of gallium-based liquid metal alloys by water. Langmuir, 2020. 36(43): p. 12933-12941. 38. Neumann, T.V. and M.D. Dickey, Liquid metal direct write and 3D printing: a review. Advanced Materials Technologies, 2020. 5(9): p. 2000070. 39. Gigu?re, P.A. and D. Lamontagne, Polarography with a dropping gallium electrode. Science, 1954. 120(3114): p. 390-391. 40. Joshipura, I.D., et al., Methods to pattern liquid metals. Journal of materials chemistry c, 2015. 3(16): p. 3834-3841. 41. Dickey, M.D., et al., Eutectic gallium?indium (EGaIn): a liquid metal alloy for the formation of stable structures in microchannels at room temperature. Advanced functional materials, 2008. 18(7): p. 1097-1104. 42. Lin, Y., et al., Vacuum filling of complex microchannels with liquid metal. Lab on a Chip, 2017. 17(18): p. 3043-3050. 43. Park, Y.-L., B.-R. Chen, and R.J. Wood, Design and fabrication of soft artificial skin using embedded microchannels and liquid conductors. IEEE Sensors journal, 2012. 12(8): p. 2711-2718. 44. Gozen, B.A., et al., High?density soft?matter electronics with micron?scale line width. Advanced materials, 2014. 26(30): p. 5211-5216. 45. Zhang, S., et al., High-fidelity conformal printing of 3D liquid alloy circuits for soft electronics. ACS applied materials & interfaces, 2019. 11(7): p. 7148-7156. 46. Tavakoli, M., et al., EGaIn?Assisted Room?Temperature Sintering of Silver Nanoparticles for Stretchable, Inkjet?Printed, Thin?Film Electronics. Advanced Materials, 2018. 30(29): p. 1801852. 47. Hirsch, A., et al., Intrinsically stretchable biphasic (solid–liquid) thin metal films. Advanced Materials, 2016. 28(22): p. 4507-4512. 48. Xu, J., et al., Printable and recyclable conductive ink based on a liquid metal with excellent surface wettability for flexible electronics. ACS applied materials & interfaces, 2021. 13(6): p. 7443-7452. 49. Liao, M., et al., Polyvinyl alcohol-stabilized liquid metal hydrogel for wearable transient epidermal sensors. ACS Applied Materials & Interfaces, 2019. 11(50): p. 47358-47364. 50. Liu, S., et al., Laser sintering of liquid metal nanoparticles for scalable manufacturing of soft and flexible electronics. ACS applied materials & interfaces, 2018. 10(33): p. 28232-28241. 51. Deng, B. and G.J. Cheng, Pulsed laser modulated shock transition from liquid metal nanoparticles to mechanically and thermally robust solid–liquid patterns. Advanced Materials, 2019. 31(14): p. 1807811. 52. Tang, L., et al., Large-scale fabrication of highly elastic conductors on a broad range of surfaces. ACS applied materials & interfaces, 2019. 11(7): p. 7138-7147. 53. Rahim, M.A., et al., Polyphenol?Induced Adhesive Liquid Metal Inks for Substrate?Independent Direct Pen Writing. Advanced Functional Materials, 2021. 31(10): p. 2007336. 54. Finkenauer, L.R., et al., Analysis of the efficiency of surfactant-mediated stabilization reactions of EGaIn nanodroplets. Langmuir, 2017. 33(38): p. 9703-9710. 55. Wei, Q., et al., Surface engineering of liquid metal nanodroplets by attachable diblock copolymers. ACS nano, 2020. 14(8): p. 9884-9893. 56. Tang, S.Y., et al., Microfluidic mass production of stabilized and stealthy liquid metal nanoparticles. Small, 2018. 14(21): p. 1800118. 57. Lopes, P.A., et al., Bi-phasic Ag–In–Ga-embedded elastomer inks for digitally printed, ultra-stretchable, multi-layer electronics. ACS Applied Materials & Interfaces, 2021. 13(12): p. 14552-14561. 58. Li, Y., et al., Printable liquid metal microparticle ink for ultrastretchable electronics. ACS Applied Materials & Interfaces, 2020. 12(45): p. 50852-50859. 59. Guven, O., Application of DLVO theory on the interaction forces for rheology of coal–water Slurrie. Mod. Concepts Mater. Sci, 2020. 2(5): p. 1-8. 60. Frank Kleinsteinberg, M.V. The best for red and yellow – a new additive technology for waterborne iron oxide pigment concentrates. News 2021; Available from: https://www.ipcm.it/en/post/evonik-additive-technology-waterborne-iron-oxide-pigment-con.aspx. 61. Li, V.C., et al., Direct ink write 3D printed cellulose nanofiber aerogel structures with highly deformable, shape recoverable, and functionalizable properties. ACS Sustainable Chemistry & Engineering, 2018. 6(2): p. 2011-2022. 62. Zhou, G., et al., 3D Printed Ti3C2Tx MXene/Cellulose Nanofiber Architectures for Solid?State Supercapacitors: Ink Rheology, 3D Printability, and Electrochemical Performance. Advanced Functional Materials, 2022. 32(14): p. 2109593. 63. Jia, Y., et al., Surfactant-free emulsions stabilized by tempo-oxidized bacterial cellulose. Carbohydrate polymers, 2016. 151: p. 907-915. 64. Ooi, Y., et al., Suppressing the coffee-ring effect of colloidal droplets by dispersed cellulose nanofibers. Science and Technology of Advanced Materials, 2017. 18(1): p. 316-324. 65. Liao, S.-Y., et al., Flexible liquid metal/cellulose nanofiber composites film with excellent thermal reliability for highly efficient and broadband EMI shielding. Chemical Engineering Journal, 2021. 422: p. 129962. 66. Li, X., et al., Evaporation-induced sintering of liquid metal droplets with biological nanofibrils for flexible conductivity and responsive actuation. Nature communications, 2019. 10(1): p. 1-9. 67. Catal?n?G?mez, S., et al., Modification of the Mechanical Properties of Core?Shell Liquid Gallium Nanoparticles by Thermal Oxidation at Low Temperature. Particle & Particle Systems Characterization, 2021. 38(10): p. 2100141. 68. Boley, J.W., E.L. White, and R.K. Kramer, Mechanically sintered gallium–indium nanoparticles. Advanced Materials, 2015. 27(14): p. 2355-2360. 69. Lear, T.R., et al., Liquid metal particle popping: Macroscale to nanoscale. Extreme Mechanics Letters, 2017. 13: p. 126-134. 70. Wu, P., et al., Self-sintering liquid metal ink with laponite? for flexible electronics. Journal of Materials Chemistry C, 2021. 9(9): p. 3070-3080. 71. Rabinovich, Y.I., M.S. Esayanur, and B.M. Moudgil, Capillary forces between two spheres with a fixed volume liquid bridge: theory and experiment. Langmuir, 2005. 21(24): p. 10992-10997. 72. Zhou, Z., Q. Li, and X. Zhao, Evolution of interparticle capillary forces during drying of colloidal crystals. Langmuir, 2006. 22(8): p. 3692-3697. 73. Santos, F.J., et al., Standard reference data for the viscosity of toluene. Journal of physical and chemical reference data, 2006. 35(1): p. 1-8. 74. Surface Tension. 75. The Nippon Koryo Yakuhin Kaisha, L. Terpineol. 2011; Available from: https://www.nky-kk.co.jp/english/products/terpineol.html. 76. Chemicals, L.f. 2008; Available from: https://www.lookchem.com/Terpineol/. 77. Ethyl Alcohol, Reagent Anhydrous. Available from: https://macro.lsu.edu/howto/solvents/ethanol.htm. 78. Edge, E., Water-density viscosity specific weight. Engineer's Edge,[Online]. Available: https://www.engineersedge.com/physics/water__density_viscosity_specific_weight_13146.htm. [Accessed 21 May 2019], 2000. 79. Surface tension values of some common test liquids for surface energy analysis. 80. Bohne, D., S. Fischer, and E. Obermeier, Thermal, conductivity, density, viscosity, and Prandtl?numbers of ethylene glycol?water mixtures. Berichte der Bunsengesellschaft f?r physikalische Chemie, 1984. 88(8): p. 739-742. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83749 | - |
| dc.description.abstract | 隨著科技的發展,穿戴式裝置的輕量化需求漸增,多層可撓式印刷電子在近年被廣泛討論。對於多層可撓式電子而言,導電線路必須克服在變形時產生的機械破壞,並且需在垂直通孔形成穩定的導通線路。液態金屬(liquid metal)由於具有高拉伸與高導電性,因此在應用於可撓式電子上具有相當大的潛力。但液態金屬的高表面張力以及低表面潤濕性使得材料分散性與貼附性差,導致其無法直接圖樣化。將液態金屬製備成懸浮顆粒能夠有效改善上述的困難,進而能製備成導電線路印刷用的墨水。除此之外,在製備成多層立體結構時,為了避免如線路轉折、重力等因素破壞導電通路,因此需要以高固含量墨水使顆粒厚實堆疊。然而,乾燥後的液態金屬線路必須經過後續的機械燒結以聚結顆粒,對於非平面結構可能造成不均勻燒結的問題。因此,提高固含量的穩定懸浮墨水與燒結過程改進便成為製備液態金屬墨水的關鍵技術。 為了製備多層可撓式電子線路,本研究利用穩定懸浮的高固含量液態金屬顆粒墨水實現可撓式基材的平面印刷以及多層結構中導通的孔洞結構。在30wt%的固含量下,使用乙二醇(ethylene glycol)作為墨水溶劑,並添加奈米纖維素(cellulose nanofiber),提升墨水懸浮穩定性以及與基材貼附性。透過直寫式印刷於剛性或柔性基板的良好表現,展現墨水優異的印刷能力。此外,藉由蒸發誘導燒結(evaporation-induced sintering),免去液態金屬顆粒後續機械燒結的步驟,封裝後導電率可達到105 S/m。在經過1000次的彎折測試後,電阻值可維持不變,呈現其優異的撓曲能力。最後,利用PET層壓與液態金屬墨水填孔技術,製備出多層印刷電路板和NFC天線,展示多層液態金屬可撓式印刷線路的應用性以及可撓式電子元件的發展潛力 | zh_TW |
| dc.description.abstract | With the development of technology and the increasing demand for lightweight wearable devices, multilayer flexible printed electronics have been widely studied in recent years. To fabricate multilayer flexible electronics, the mechanical damage of conductive circuit during deformation must be overcome and a high stability of conductive circuit in the vertical vias is required. Liquid metals have great potential for flexible electronic applications because of its’ high surface tension and high conductivity. However, the high surface tension and low surface wettability of liquid metals lead to poor material dispersion and adhesion, making it difficult to directly pattern. The suspension liquid particle inks can effectively overcome the above difficulties, and can further be used to prepare inks for conductive circuit printing. Furthermore, in the formation of multi-layer 3D structure, in order to avoid negative factors, such as line turning and gravity, to destroy the conductive path, a thick stack of particles has to be formed with high solid content ink. Nevertheless, the circuit must undergo subsequent mechanical sintering to coalesce the particles, which may cause uneven sintering for non-planar structures. Therefore, increasing solid content and enhancing sintering process are critical to manufacture liquid metal ink. In this study, in order to prepare multi-layer flexible electronic circuits, high solid content liquid metal colloidal inks with high stability have utilized to achieve 2D printing and 3D conductive via structure in multilayer flexible structures. By using ethylene glycol as the ink solvent and adding cellulose nanofiber, suspension stability and adhesion to the substrate are enhanced at 30wt% liquid metal ink. The excellent printability of ink is demonstrated by the good performance of direct printing on rigid or flexible substrates. In addition, evaporation-induced sintering eliminates the need for subsequent mechanical sintering of liquid metal particles and achieves a high electrical conductivity of 105 S/m. After 1000 bending cycles, the resistance remains constant, presenting its excellent flexibility. Finally, multi-layer printed circuit boards and NFC antennas are prepared by the PET lamination and liquid metal ink hole-filling technology, showing the applicability of multi-layer liquid metal flexible printed circuits and the development potential of flexible electronics. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T21:16:35Z (GMT). No. of bitstreams: 1 U0001-0908202200503800.pdf: 6582085 bytes, checksum: 871ec756dfe774921bb06425f1932dd4 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 致謝 ii 摘要 iv Abstract v 目錄 vii 圖目錄 x 表目錄 xiv 第1章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 2 1.3 論文架構 2 第2章 文獻回顧 3 2.1 柔性電子 3 2.1.1 柔性電子平面圖樣化技術 5 2.1.2 柔性電子多層技術 6 2.2 液態金屬 9 2.2.1 鎵基底液態金屬性質 10 2.2.2 氧化性 12 2.2.3 液態金屬液滴 12 2.3 液態金屬表面圖樣化技術 13 2.3.1 液態金屬塊材圖樣化技術 13 2.3.2 液態金屬墨水圖樣化技術 18 2.4 懸浮分散穩定方法 22 2.4.1 DLVO理論 22 2.4.2 纖維素材料添加劑 24 2.5 液態金屬顆粒燒結 26 2.5.1 機械燒結 26 2.5.2 蒸發誘導燒結 28 第3章 實驗系統程序 30 3.1 實驗藥品與儀器介紹 30 3.1.1 實驗藥品 30 3.1.2 實驗儀器 31 3.2 實驗流程 32 3.2.1 奈米纖維素-液態金屬墨水製備 32 3.2.2 平面圖樣印刷 32 3.2.3 多層結構印刷 33 3.2.4 機械性燒結步驟與測試 34 3.2.5 顆粒尺寸分布分析 34 3.2.6 沉降特性分析 35 第4章 結果與討論 37 4.1 液態金屬膠體墨水 37 4.1.1 溶劑選擇 37 4.1.2 液態金屬顆粒尺寸關係 41 4.1.3 機械作用燒結導電 43 4.1.4 液態金屬墨水的困難 45 4.2 奈米纖維素添加劑 47 4.2.1 添加奈米纖維素之墨水穩定性 47 4.2.2 奈米纖維素最適添加量與墨水黏度 50 4.2.3 提升液態金屬墨水之固含量 52 4.2.4 奈米纖維素-液態金屬薄膜結構 54 4.2.5 奈米纖維素誘發液態金屬燒結性 55 4.2.6 印刷導電性 59 4.3 奈米纖維素-液態金屬墨水平面印刷 61 4.3.1 印刷性 61 4.3.2 彎折性測試 62 4.4 多層可撓式印刷線路應用 63 4.4.1 多層薄膜疊層與穿孔設計 63 4.4.2 多層柔版導通之填孔性 64 4.4.3 孔洞線路之彎折性測試 65 4.4.4 多層可撓式線路製備 66 4.4.5 多層印刷線路應用 67 第5章 結論與未來展望 69 參考資料 70 | |
| dc.language.iso | zh-TW | |
| dc.subject | 懸浮穩定性 | zh_TW |
| dc.subject | 可撓式電子 | zh_TW |
| dc.subject | 液態金屬墨水 | zh_TW |
| dc.subject | 多層結構 | zh_TW |
| dc.subject | liquid metal ink | en |
| dc.subject | multi-layer structure | en |
| dc.subject | suspension stability | en |
| dc.subject | flexible electronics | en |
| dc.title | 液態金屬顆粒墨水於多層可撓式印刷電子之應用 | zh_TW |
| dc.title | Liquid Metal Colloidal Ink for Multi-Layer Flexible Electronics | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張鑑祥(Chien-Hsiang Chang),高振宏(C Robert Kao),廖育德(Yu-Te Liao),李文亞(Wen-Ya Lee) | |
| dc.subject.keyword | 可撓式電子,液態金屬墨水,多層結構,懸浮穩定性, | zh_TW |
| dc.subject.keyword | flexible electronics,liquid metal ink,multi-layer structure,suspension stability, | en |
| dc.relation.page | 74 | |
| dc.identifier.doi | 10.6342/NTU202202176 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2022-08-09 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0908202200503800.pdf 未授權公開取用 | 6.43 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
