Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83735
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor楊哲人zh_TW
dc.contributor.advisorJer-Ren Yangen
dc.contributor.author林忠威zh_TW
dc.contributor.authorJhong-Wei Linen
dc.date.accessioned2023-03-19T21:16:04Z-
dc.date.available2023-12-26-
dc.date.copyright2022-08-19-
dc.date.issued2022-
dc.date.submitted2002-01-01-
dc.identifier.citation1. Cobb, H.M., The history of stainless steel. 2010: ASM International.
2. McGuire, M.F., Stainless steels for design engineers. 2008: Asm International.
3. Davis, J., ASM Speciality Handbook: Stainless Steels, ASM International. 1994, Ohio.
4. Fakić, B. and D. Ćubela, Review of the Development of Research in the Design of Semi Austenitic Stainless Steel 17-7PH. Journal of Trends in the Development of Machinery and Associated Technology, 2013. 17(1): p. 57-60.
5. Bhadeshia, H.K.D.H., Worked examples in the geometry of crystals. 2006: Institute of Metals.
6. Shohoji, N., Statistical Thermodynamic Approach to Interstitial Non-stoichiometric Compounds (Hydride, Carbide, Nitride, Phosphide and Sulphide). 2013, Lambert Academic Publishing, Saarbrücken, Germany.
7. Jumov, G., Martensite crystal lattice, mechanism of austenite-martensite transformation and behavior of carbon atoms in martensite. Metallurgical Transactions A, 1976. 7(7): p. 999-1011.
8. Kirkaldy, J., Hardenability Concepts with Applications to Steel: Symposium, 1977, Chicago: Proceedings. 1978: Metallurgical Society of AIME.
9. Lu, Y., H. Yu, and R.D. Sisson Jr, The effect of carbon content on the c/a ratio of as-quenched martensite in Fe-C alloys. Materials Science and Engineering: A, 2017. 700: p. 592-597.
10. Bain, E.C. and N. Dunkirk, The nature of martensite. trans. AIME, 1924. 70(1): p. 25-47.
11. Hidalgo, J., K. Findley, and M.J. Santofimia, Thermal and mechanical stability of retained austenite surrounded by martensite with different degrees of tempering. Materials Science and Engineering: A, 2017. 690: p. 337-347.
12. Lee, S.J. and Y.K. Lee. Effect of austenite grain size on martensitic transformation of a low alloy steel. in Materials Science Forum. 2005. Trans Tech Publ.
13. Wang, J., P.J. van der Wolk, and S. van der Zwaag, Determination of martensite start temperature in engineering steels part I. Empirical relations describing the effect of steel chemistry. Materials transactions, JIM, 2000. 41(7): p. 761-768.
14. Ghosh, G. and G. Olson, Kinetics of FCC→ BCC heterogeneous martensitic nucleation—I. The critical driving force for athermal nucleation. Acta Metallurgica et Materialia, 1994. 42(10): p. 3361-3370.
15. Maki, T., et al., Formation Temperature and Growth Behavior of Thin Plate Martensite in Fe–Ni–C Alloys. Transactions of the Japan Institute of Metals, 1975. 16(1): p. 35-41.
16. Maki, T., Morphology and substructure of martensite in steels. Phase transformations in steels, 2012: p. 34-58.
17. Sato, H. and S. Zaefferer, A study on the formation mechanisms of butterfly-type martensite in Fe–30% Ni alloy using EBSD-based orientation microscopy. Acta materialia, 2009. 57(6): p. 1931-1937.
18. Shibata, A., et al., Substructures of lenticular martensites with different martensite start temperatures in ferrous alloys. Acta Materialia, 2009. 57(2): p. 483-492.
19. Kitahara, H., et al., Crystallographic features of lath martensite in low-carbon steel. Acta materialia, 2006. 54(5): p. 1279-1288.
20. Morito, S., et al., The morphology and crystallography of lath martensite in Fe-C alloys. Acta materialia, 2003. 51(6): p. 1789-1799.
21. Sorgi, L. Two-view geometry estimation using the rodrigues rotation formula. in 2011 18th IEEE International Conference on Image Processing. 2011. IEEE.
22. Guo, C., et al., Effect of microstructure quenched around Ac3 point on the damage behavior in 0.087 C–1.35 Mn steel. Journal of Materials Research and Technology, 2019. 8(6): p. 5103-5113.
23. Morito, S., et al., The morphology and crystallography of lath martensite in alloy steels. Acta Materialia, 2006. 54(19): p. 5323-5331.
24. Hillert, M., On the theory of normal and abnormal grain growth. Acta metallurgica, 1965. 13(3): p. 227-238.
25. Razzak, M.A., et al., A simple model for abnormal grain growth. ISIJ international, 2012. 52(12): p. 2278-2282.
26. Cuddy, L. and J. Raley, Austenite grain coarsening in microalloyed steels. Metallurgical Transactions A, 1983. 14(10): p. 1989-1995.
27. Wilson, F. and T. Gladman, Aluminium nitride in steel. International Materials Reviews, 1988. 33(1): p. 221-286.
28. Gladman, T., On the theory of the effect of precipitate particles on grain growth in metals. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1966. 294(1438): p. 298-309.
29. An, X., et al., Suppression of austenite grain coarsening by using Nb–Ti microalloying in high temperature carburizing of a gear steel. Advanced Engineering Materials, 2019. 21(8): p. 1900132.
30. Saito, G., et al., In-situ observation of abnormal grain growth in a low-alloyed carbon steel using SEM-EBSD. Materialia, 2021. 15: p. 100985.
31. Bruno, J. and P.R. Rios, The grain size distribution and the detection of abnormal grain growth of austenite in an eutectoid steel containing niobium. Scripta metallurgica et materialia, 1995. 32(4): p. 601-606.
32. De Knijf, D., et al., Factors influencing the austenite stability during tensile testing of Quenching and Partitioning steel determined via in-situ Electron Backscatter Diffraction. Materials Science and Engineering: A, 2015. 638: p. 219-227.
33. Wang, M., et al., Smaller is less stable: size effects on twinning vs. transformation of reverted austenite in TRIP-maraging steels. Acta Materialia, 2014. 79: p. 268-281.
34. Xiong, X., et al., The effect of morphology on the stability of retained austenite in a quenched and partitioned steel. Scripta Materialia, 2013. 68(5): p. 321-324.
35. Fultz, B. and J. Morris, The mechanical stability of precipitated austenite in 9Ni steel. Metallurgical Transactions A, 1985. 16(12): p. 2251-2256.
36. Podder, A.S., et al., Thermal stability of retained austenite in bainitic steel: an in situ study. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2011. 467(2135): p. 3141-3156.
37. Changsheng, X., et al., Effects of preheating treatment on repeated martensitic transformation under cyclic heating and cooling. Journal of materials science, 1994. 29(15): p. 4051-4055.
38. Kim, J. and J.-K. Park, On the AlN precipitation and grain refinement in the Al (N)-added medium C–Mn steels. Philosophical Magazine Letters, 2017. 97(8): p. 320-327.
39. Razzak, M.A., et al., Preventing abnormal grain growth of austenite in low alloy steels. ISIJ international, 2014. 54(8): p. 1927-1934.
40. Sennour, M. and C. Esnouf, Contribution of advanced microscopy techniques to nano-precipitates characterization: case of AlN precipitation in low-carbon steel. Acta Materialia, 2003. 51(4): p. 943-957.
41. Biglari, M., C. Brakman, and E. Mittemeijer, Crystal structure and morphology of AIN precipitating on nitriding of an Fe-2at.% Al alloy. Philosophical Magazine A, 1995. 72(5): p. 1281-1299.
42. Sourmail, T., Precipitation in creep resistant austenitic stainless steels. Materials science and technology, 2001. 17(1): p. 1-14.
43. Beckitt, F. and B. Clark, The shape and mechanism of formation of M23C6 carbide in austenite. Acta Metallurgica, 1967. 15(1): p. 113-129.
44. Bhadeshia, H.K., Theory of transformations in steels. 2021: CRC Press.
45. Howell, P., J. Bee, and R. Honeycombe, The crystallography of the austenite-ferrite/carbide transformation in Fe− Cr− C alloys. Metallurgical Transactions A, 1979. 10(9): p. 1213-1222.
46. Marshall, P., Austenitic stainless steels: microstructure and mechanical properties. 1984: Springer Science & Business Media.
47. YUKAWA, N., M. MIZUTANI, and H. SAKA, Transmission Electron Microscopic Observation of Age-Hardened Structures of 17-7 PH Stainless Steel. Transactions of the Iron and Steel Institute of Japan, 1969. 9(3): p. 254-258.
48. Ping, D., et al., Microstructural evolution in 13Cr–8Ni–2.5 Mo–2Al martensitic precipitation-hardened stainless steel. Materials Science and Engineering: A, 2005. 394(1-2): p. 285-295.
49. Ayodele, O.O., et al., Carbon nanotube-reinforced intermetallic matrix composites: processing challenges, consolidation, and mechanical properties. The International Journal of Advanced Manufacturing Technology, 2019. 104(9): p. 3803-3820.
50. Wang, D., et al., NiAl precipitation in delta ferrite grains of 17-7 precipitation-hardening stainless steel during low-temperature interstitial hardening. Scripta Materialia, 2015. 108: p. 136-140.
51. Xi, W., S. Yin, and H. Lai, Microstructure and mechanical properties of stainless steel produced by centrifugal-SHS process. Journal of materials processing technology, 2003. 137(1-3): p. 1-4.
52. Chen, Y.-W., et al., Phase quantification in low carbon Nb-Mo bearing steel by electron backscatter diffraction technique coupled with kernel average misorientation. Materials Characterization, 2018. 139: p. 49-58.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83735-
dc.description.abstract本實驗使用華新麗華公司所提供之17Cr-7Ni PH不鏽鋼進行有關相辨認分析與析出強化之研究。該材料同時也被歸類於半沃斯田鐵系,它除了添加不銹鋼常見的Cr和Ni元素以外也額外添加了Al和N元素,目的是為了使AlN有著晶粒細化和NiAl能達到析出強化之效果。
首先,實驗的第一部分會將華新麗華所提供的鑄碇試樣、熱軋完後試樣與HRAP試樣(已做完Modified ConditionA熱處理)進行EBSD、KAM、IQ之相鑑定分析以期望區別此材料複雜的相組織。而第二部分則會透過熱膨脹儀模擬三種不同的固溶處理(ConditionA、Modified ConditionA、Repeatedly-modified ConditionA)來探討其是否具有晶粒細化之效果,並發現Modified ConditionA與Repeatedly-modified ConditionA熱處理能稍微地抑制混晶問題,但效果不如預期的好,其原因乃在Modified Sample中無法有效地析出奈米尺度之AlN。第三部分則是會以HRAP試樣作為起始材料,分別進行ConditionT與Repeatedly-tempered ConditionT熱處理後,並再次進行EBSD、KAM分析以釐清兩種不同參數之試樣析出前的相比例狀態,接著便分別進行565°C持溫不同時間(0~4.5h)的時效處理,期望NiAl成核於板條狀麻田散鐵基地內以產生析出強化之效果,再以OM、TEM、STEM進行觀察與統計分析,並發現NiAl僅需短時間之持溫就會廣泛地成核於麻田散鐵基地上(均質成核),且於後續的時效會逐漸透過差排與缺陷處發生粗化,最後則進行有關於拉伸試驗的機械性能測試與破斷面之觀察,而得知該材料的破裂機制屬於延性與脆性破裂共存之混合模式。
zh_TW
dc.description.abstractIn this study, the 17Cr-7Ni PH stainless steel provided by Walsin Lihwa Company was used to do phase identification analysis and precipitate hardening research.This material was classified as semi-austenitic stainless steel. It’s composition contains Al and N elements for the purpose of grain refinement and precipitate hardenning by AlN and NiAl respectively.
In the first part, three different as-receive samples (Ingot, HR and HRAP) were analyzed by the EBSD, KAM, IQ technique to expect to distinguish mixed phase of this material. In the second part, three different solution treatments (ConditionA, Modified ConditionA, Repeatedly-modified ConditionA) are conducted by dilatometer to examine whether they have grain refinement effect, and we found Modified ConditionA and Repeatedly-modified ConditionA heat treatments can refine grain size slightly, but not very effective. This is because nano-scale AlN couldn’t precipitate in Modified Sample effectively. In third part, HRAP sample would be used as starting material and conducted the ConditionT and Repeatedly-tempered ConditionT heat treatment respectively, and then do the EBSD, KAM, IQ analysis to clarify the phase different of them. After that, 565°C aging treatment for various time(0~4.5h) was conducted to achieve the effect of precipitate hardening, as well as observed and analyzed statistically by OM, TEM, STEM, and we can conclude NiAl precipitates nucleated widely in martensite matrix within short aging time (homogeneous nucleation), and they coarsened at dislocation or defect after longer aging time. Finally, the tensile test was conducted to evaluate mechanical properties of this material ,and fractographs was taken by SEM. The SEM result show the fracture surface contained dimples, cleavage facets and microvoids, indicating mixed mode fracture.
en
dc.description.provenanceMade available in DSpace on 2023-03-19T21:16:04Z (GMT). No. of bitstreams: 1
U0001-0408202214063900.pdf: 22804094 bytes, checksum: 5b6e322990a80f4b5c309fd3ebca8ee7 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents摘要 i
Abstract ii
目錄 iv
表目錄 vii
圖目錄 viii
第一章 前言 1
第二章 文獻回顧 2
2.1 不銹鋼及半沃斯田鐵系不銹鋼 2
2.1.1 不銹鋼之研究背景與其分類 2
2.1.2 半沃斯田鐵系不銹鋼 2
2.2 麻田散鐵相變化 6
2.2.1 相變化分類 6
2.2.2 麻田散鐵晶體結構與其相變化機制 7
2.2.3 影響麻田散鐵起始溫度之因素 12
2.2.4 麻田散鐵之分類 14
2.2.5 板條狀麻田散鐵與沃斯田鐵的晶體方位關係 15
2.2.6 板條狀麻田散鐵之階層結構 21
2.3 高溫時的晶粒成長與圖釘力效應 25
2.3.1 晶粒成長之分類 25
2.3.2 異常晶粒成長與圖釘力效應 26
2.4 殘留沃斯田鐵 28
2.4.1 殘留沃斯田鐵 28
2.4.2 循環回火對殘留沃斯田鐵之影響 29
2.5 17-7不鏽鋼於熱處理後常見的析出物 30
2.5.1 氮化鋁析出行為與其晶粒細化之效果 30
2.5.2 氮化鋁形貌與鐵基地晶體間方位關係 33
2.5.3 碳化鉻的析出行為與鐵基地晶體間方位關係 35
2.5.4 鎳鋁的析出行為與麻田散鐵基地晶體間方位關係 39
第三章 研究方法 43
3.1 實驗材料 43
3.2 熱處理步驟 44
3.2.1 Con.A、Modified Con.A、Repeatedly-modified Con.A 44
3.2.2 TH1050 & Repeatedly-tempered TH1050 ( RT TH1050 ) 46
3.3 實驗儀器與試片製備 48
3.4 分析軟體 50
第四章 結果與討論 52
4.1 17-7PH不鏽鋼相組織之觀察 52
4.1.1 δ肥粒鐵與麻田散鐵的相辨認分析技術 52
4.2 不同固溶熱處理對於晶粒細化之效果 63
4.2.1 晶相結果之觀察 63
4.2.2 Modified Sample中之AlN 66
4.2.3 Repeatedly-modified Sample中之相比例 69
4.3 時效前處理 73
4.3.1 時效前之晶相觀察 73
4.3.2 Condition T & RT Condition T之EBSD相比例分析 75
4.3.3 碳化鉻之TEM觀察 81
4.4 時效處理對於17-7PH不鏽鋼之機械性質與微結構觀察 86
4.4.1 硬度測試 86
4.4.2 NiAl於TEM之觀察 88
4.4.3 不同時效時間下差排與NiAl的密度量測統計 105
4.4.4 STEM模式下對於差排和NiAl之觀察 112
4.5 拉伸測試與其破斷面觀察 116
4.5.1 TH1050 & RT TH1050之拉伸機械性質 116
4.5.2 SEM破斷面觀察 119
第五章 結論 122
第六章 未來工作 123
參考文獻 124
-
dc.language.isozh_TW-
dc.title17-7 析出硬化型半沃斯田鐵系不銹鋼之相分析與機械性能之探討zh_TW
dc.titleInvestigations on phase identification and mechanical properties of 17-7 precipitate-hardened semi-austenitic stainless steelen
dc.typeThesis-
dc.date.schoolyear110-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee王星豪;林東毅;張君華zh_TW
dc.contributor.oralexamcommitteeShing-Hoa Wang;Dong-Yih Lin;Jyun-Hua Changen
dc.subject.keyword背向散射繞射技術,機械穩定,圖釘力效應,板條狀麻田散鐵,析出強化,方位關係,殘留沃斯田鐵,zh_TW
dc.subject.keywordEBSD,mechanical stabilization,pinnig effect,lath martensite,precipitate hardening,orientation relationship,retained austenite,en
dc.relation.page130-
dc.identifier.doi10.6342/NTU202202056-
dc.rights.note未授權-
dc.date.accepted2022-08-10-
dc.contributor.author-college工學院-
dc.contributor.author-dept材料科學與工程學系-
Appears in Collections:材料科學與工程學系

Files in This Item:
File SizeFormat 
ntu-110-2.pdf
  Restricted Access
22.27 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved