Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83716
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃天偉zh_TW
dc.contributor.advisorTian-Wei Huangen
dc.contributor.author鄧健平zh_TW
dc.contributor.authorKin Ping Tangen
dc.date.accessioned2023-03-19T21:15:16Z-
dc.date.available2023-12-26-
dc.date.copyright2022-08-15-
dc.date.issued2022-
dc.date.submitted2002-01-01-
dc.identifier.citation[1] FCC Takes Steps to Open Spectrum Horizons for New Services and Tech-nologies, Mar. 2019, [online] Available: https://docs.fcc.gov/public/attachments/DOC-356588A1.pdf.
[2] I. F. Akyildiz, A. Kak and S. Nie, "6G and Beyond: The Future of Wireless Communications Systems," in IEEE Access, vol. 8, pp. 133995-134030, 2020, doi: 10.1109/ACCESS.2020.3010896.
[3] G. Wikström et al., "Challenges and Technologies for 6G," 2020 2nd 6G Wireless Summit (6G SUMMIT), Levi, Finland, 2020, pp. 1-5, doi: 10.1109/6GSUMMIT49458.2020.9083880.
[4] Radio Frequency Channel Arrangements for Fixed Service Systems Oper-ating in the Bands 71–76 GHz and 81–86 GHz, document ECC/Rec. (05)07, ECC, Copenhagen, Denmark, 2009, 2013.
[5] Y. Xing and T. S. Rappaport, "Propagation Measurement System and Ap-proach at 140 GHz-Moving to 6G and Above 100 GHz," 2018 IEEE Global Com-munications Conference (GLOBECOM), 2018, pp. 1-6, doi: 10.1109/GLOCOM.2018.8647921.
[6] W. Lin, H. Yang, J. Tsai, T. Huang and H. Wang, "1024-QAM High Image Rejection $E$-Band Sub-Harmonic IQ Modulator and Transmitter in 65-nm CMOS Process," in IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 11, pp. 3974-3985, Nov. 2013, doi: 10.1109/TMTT.2013.2284473.
[7] S. Lee et al., "9.5 An 80Gb/s 300GHz-Band Single-Chip CMOS Trans-ceiver," 2019 IEEE International Solid- State Circuits Conference - (ISSCC), 2019, pp. 170-172, doi: 10.1109/ISSCC.2019.8662314.
[8] A. Simsek, S. Kim and M. J. W. Rodwell, "A 140 GHz MIMO Transceiver in 45 nm SOI CMOS," 2018 IEEE BiCMOS and Compound Semiconductor Inte-grated Circuits and Technology Symposium (BCICTS), 2018, pp. 231-234, doi: 10.1109/BCICTS.2018.8550954.
[9] W. -J. Lin, J. -H. Tsai, J. -H. Cheng, W. -H. Lin, T. -T. Chiang and T. -W. Huang, "A 67-86 GHz Spectrum-Efficient CMOS Transmitter Supporting 1024-QAM With a Process-Variation-Tolerant Design," in IEEE Access, vol. 8, pp. 74458-74471, 2020, doi: 10.1109/ACCESS.2020.2983913.
[10] Behzad Razavi, RF Microelectronics, New Jersey:Prentice Hall Inc., 1998.
[11] J. J. Grefenstette, "Optimization of Control Parameters for Genetic Algo-rithms," in IEEE Transactions on Systems, Man, and Cybernetics, vol. 16, no. 1, pp. 122-128, Jan. 1986, doi: 10.1109/TSMC.1986.289288.
[12] Laarhoven, P. J. M., & Aarts, E. H. L. (1987). Simulated annealing: Theory and applications. Dordrecht: D. Reidel.
[13] Laarhoven, P. J. M., & Aarts, E. H. L. (1987). Simulated annealing: Theory and applications. Dordrecht: D. Reidel.
[14] D. Parveg, M. Varonen, M. Kärkkäinen, D. Karaca, A. Vahdati and K. A. I. Halonen, "Wideband millimeter-wave active and passive mixers in 28 nm bulk CMOS technology," 2015 10th European Microwave Integrated Circuits Confer-ence (EuMIC), 2015, pp. 116-119, doi: 10.1109/EuMIC.2015.7345082.
[15] C. J. Lee, J. -S. Kang and C. S. Park, "A $D$ -Band Low-Power Gain-Boosted Up-Conversion Mixer With Low LO Power in 40-nm CMOS Tech-nology," in IEEE Microwave and Wireless Components Letters, vol. 27, no. 12, pp. 1113-1115, Dec. 2017, doi: 10.1109/LMWC.2017.2763753.
[16] C. J. Lee, J. -S. Kang and C. S. Park, "A $D$ -Band Low-Power Gain-Boosted Up-Conversion Mixer With Low LO Power in 40-nm CMOS Tech-nology," in IEEE Microwave and Wireless Components Letters, vol. 27, no. 12, pp. 1113-1115, Dec. 2017, doi: 10.1109/LMWC.2017.2763753.
[17] S. Li, Z. Zhang and G. M. Rebeiz, "An Eight-Element 136–147 GHz Wa-fer-Scale Phased-Array Transmitter With 32 dBm Peak EIRP and >16 Gbps 16QAM and 64QAM Operation," in IEEE Journal of Solid-State Circuits, vol. 57, no. 6, pp. 1635-1648, June 2022, doi: 10.1109/JSSC.2022.3148385.
[18] I. Sarkas et al., "Silicon-based radar and imaging sensors operating above 120 GHz," 2012 19th International Conference on Microwaves, Radar & Wireless Communications, 2012, pp. 91-96, doi: 10.1109/MIKON.2012.6233499.
[19] Z. Pi and F. Khan, "An introduction to millimeter-wave mobile broadband systems," in IEEE Communications Magazine, vol. 49, no. 6, pp. 101-107, June 2011, doi: 10.1109/MCOM.2011.5783993.
[20] L. Pantoli, A. Barigelli, G. Leuzzi, F. Vitulli and A. Suriani, "GaAs Bal-anced Amplifier for Ka-Band Space Communications System," 2018 13th European Microwave Integrated Circuits Conference (EuMIC), 2018, pp. 313-316, doi: 10.23919/EuMIC.2018.8539922.
[21] K. Wang, Y. Yan and X. Liang, "A K-band power amplifier in a 0.15-um GaAs pHEMT process," 2018 IEEE MTT-S International Wireless Symposium (IWS), 2018, pp. 1-3, doi: 10.1109/IEEE-IWS.2018.8400956.

[22] I. Huang et al., "A 29.6 dBm 29-GHz Power Amplifier for Satellite and 5G Communications Using 0.15-μm GaAs p-HEMT Technology," 2018 Asia-Pacific Microwave Conference (APMC), 2018, pp. 986-988, doi: 10.23919/APMC.2018.8617649.
[23] D. P. Nguyen, B. L. Pham and A. Pham, "A Compact Ka-Band Integrated Doherty Amplifier With Reconfigurable Input Network," in IEEE Transactions on Microwave Theory and Techniques, vol. 67, no. 1, pp. 205-215, Jan. 2019, doi: 10.1109/TMTT.2018.2874249.
[24] D. P. Nguyen, X. -T. Tran, N. L. K. Nguyen, P. T. Nguyen and A. -V. Pham, "A Wideband High Efficiency Ka-Band MMIC Power Amplifier for 5G Wireless Communications," 2019 IEEE International Symposium on Circuits and Systems (ISCAS), 2019, pp. 1-5, doi: 10.1109/ISCAS.2019.8702092.
[25] D. N. Martin, P. Enrico de Falco, M. Roberg, G. Lasser and T. W. Barton, "An 18–38-GHz K-/Ka-Band Reconfigurable Chireix Outphasing GaAs MMIC Power Amplifier," in IEEE Transactions on Microwave Theory and Techniques, vol. 68, no. 7, pp. 3028-3038, July 2020, doi: 10.1109/TMTT.2020.2992029.
[26] S. N. Ali et al., "A 40% PAE Frequency-Reconfigurable CMOS Power Amplifier With Tunable Gate–Drain Neutralization for 28-GHz 5G Radios," in IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 5, pp. 2231-2245, May 2018, doi: 10.1109/TMTT.2018.2801806.
[27] S. N. Ali, P. Agarwal, S. Gopal, S. Mirabbasi and D. Heo, "A 25–35 GHz Neutralized Continuous Class-F CMOS Power Amplifier for 5G Mobile Communi-cations Achieving 26% Modulation PAE at 1.5 Gb/s and 46.4% Peak PAE," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 66, no. 2, pp. 834-847, Feb. 2019, doi: 10.1109/TCSI.2018.2860019.
[28] T. Li, M. Huang and H. Wang, "Millimeter-Wave Continuous-Mode Power Amplifier for 5G MIMO Applications," in IEEE Transactions on Microwave Theory and Techniques, vol. 67, no. 7, pp. 3088-3098, July 2019, doi: 10.1109/TMTT.2019.2906592.
[29] Z. -J. Huang, B. -W. Huang, K. -Y. Kao and K. -Y. Lin, "A High-Gain Continuous Class- F Power Amplifier in 90-nm CMOS for 5G Communication," 2019 IEEE Asia-Pacific Microwave Conference (APMC), 2019, pp. 177-179, doi: 10.1109/APMC46564.2019.9038839.
[30] N. S. Mannem, M. Huang, T. Huang, S. Li and H. Wang, "24.2 A Recon-figurable Series/Parallel Quadrature-Coupler-Based Doherty PA in CMOS SOI with VSWR Resilient Linearity and Back-Off PAE for 5G MIMO Arrays," 2020 IEEE International Solid- State Circuits Conference - (ISSCC), 2020, pp. 364-366, doi: 10.1109/ISSCC19947.2020.9062944.
[31] Z. -H. Wang, C. -N. Chen and H. Wang, "A 30-40 GHz Continuous Class F−1 Power Amplifier with 35.8% Peak PAE in 65 nm CMOS Technology," 2020 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), 2020, pp. 178-180, doi: 10.1109/RFIT49453.2020.9226239.
[32] K. -J. Chuang, K. P. Tang, Y. -H. Lin, T. -H. Chen, C. -S. Wu and T. -W. Huang, "An Efficient and Linear 24.4dBm Ka-Band GaAs Power Amplifier for 5G Communication," 2021 IEEE International Symposium on Radio-Frequency Integra-tion Technology (RFIT), 2021, pp. 1-3, doi: 10.1109/RFIT52905.2021.9565269.
[33] Qorvo 2018, RF Front-end Technology and Tradeoffs for 5G mmWave Fixed Wireless Access, EDI CON website, accessed 8 July 2022, < https://www.edicononline.com/wp-content/uploads/sites/2/2019/10/2_RF-Front-end-Technology-and-Tradeoffs-for-5G-mmWave-Fixed-Wireless-Access.pdf >.

[34] Colantonio, P., Giannini, F., & Limiti, E. (2009). In High efficiency RF and microwave solid state power amplifiers (pp. 436–439). essay, J. Wiley.

[35] Z. Ye and F. Yang, "A D-Band I/Q Drain Mixer for Direct Up-convertion in 70-nm GaAs Technology," 2021 IEEE MTT-S International Wireless Symposium (IWS), 2021, pp. 1-3, doi: 10.1109/IWS52775.2021.9499424.

[36] R. Guo, H. Tao and B. Zhang, "A 26 GHz Doherty power amplifier and a fully integrated 2×2 PA in 0.15μm GaN HEMT process for heterogeneous integra-tion and 5G," 2018 IEEE MTT-S International Wireless Symposium (IWS), 2018, pp. 1-4, doi: 10.1109/IEEE-IWS.2018.8401017.

[37] R. Giofrè, A. Del Gaudio, W. Ciccognani, S. Colangeli and E. Limiti, "A GaN-on-Si MMIC Doherty Power Amplifier for 5G Applications," 2018 Asia-Pacific Microwave Conference (APMC), 2018, pp. 971-973, doi: 10.23919/APMC.2018.8617664.

[38] D. Wohlert, B. Peterson, T. R. Mya Kywe, L. Ledezma and J. Gengler, "8-Watt Linear Three-Stage GaN Doherty Power Amplifier for 28 GHz 5G Applica-tions," 2019 IEEE BiCMOS and Compound semiconductor Integrated Circuits and Technology Symposium (BCICTS), 2019, pp. 1-4, doi: 10.1109/BCICTS45179.2019.8972750.

[39] M. Bao, D. Gustafsson, R. Hou, Z. Ouarch, C. Chang and K. Andersson, "A 24–28-GHz Doherty Power Amplifier With 4-W Output Power and 32% PAE at 6-dB OPBO in 150-nm GaN Technology," in IEEE Microwave and Wireless Com-ponents Letters, vol. 31, no. 6, pp. 752-755, June 2021, doi: 10.1109/LMWC.2021.3063868.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83716-
dc.description.abstract本論文設計製作四顆微波單晶積體電路(MMICs),這些電路可以作為5G與未來通信系統的關鍵元件。
應用在D頻段127.5 - 152.5 GHz的次諧波調變器以28-nm CMOS製程製作,在140GHz時,量測顯示該調變器的鏡像抑制比可達到-43dBc,轉換增益則為-9dB。該電路運作在被動模式,不需要消耗任何電能,本論文揭露其中克服次太赫茲高頻電路挑戰的被動元件設計。
Ka頻段25 - 31 GHz功率放大器使用0.15-μm GaAs pHEMT製程實現,量測時該晶片達到43.4% 的最高功率轉換效率以及24.4dBm的飽和輸出功率;同時在27GHz時最高增益是21.2dB。該電路可達到超過36.7% 的寬頻最高功率轉換效率以及超過23.8dBm的寬頻飽和輸出功率。該功率放大器在轉輸64正交振幅調變訊號時,可達到21.5dBm的輸出功率。這個設計之後經過修改,以改善其輸入反射係數以及增加頻寬下的增益平坦度。量測確認其設計上的修改能有效解決上述問題。
另一Ka頻段25 - 31 GHz功率放大器使用0.15-μm GaN-on-SiC HEMT製程及Doherty架構製作,本論文深入探討此如何以補償電晶體在高功率運作下的相位失真以提升效能。該功率放大器達到30.4dBm的飽和輸出功率,同時有25.2%的峰值功率轉換效率;在6dB的功率回推使用時,功率轉換效率仍然保持15%。
zh_TW
dc.description.abstractThis thesis presents the realization of four MMICs as key components of transmitters for 5G and beyond communication systems.
A D-band 127.5 – 152.5 GHz subharmonic modulator is fabricated in a 28nm CMOS technology. An image-rejection-ratio of -43dBc is recoded with a -9dB conver-sion gain. The modulator operates passively with no DC power consumption. Design de-tails of the passive components are revealed and discussion is made on overcoming the challenge of the sub-terahertz frequency.
A Ka-band 25 – 31 GHz power amplifier is realized in a 0.15-μm GaAs pHEMT process. In measurement it achieves a peak power added efficiency of 43.4% with the saturated output power of 24.4dBm and a peak gain of 21.2dB at 27 GHz. It also demonstrates a wideband performance keeping the peak power added efficiency above 36.7% and saturated output power above 23.8dBm across the bandwidth. Carrying a 64 Quadrature Amplitude Modulation signal, it has an output power of 21.5dBm. The design is then modified to improve its input return loss and flatten the gain across bandwidth. The alteration is proven to be effective by measurement.
A Ka-band 25 – 31 GHz Doherty power amplifier is designed with an exper-imental 0.15-μm GaN-on-SiC HEMT process. Details of the architecture are examined with extra effort put to compensate the phase imbalance of the transistors. This work reaches a saturated output power of 30.4dBm with a peak power added efficiency of 25.2%. In a 6dB power back-off, it shows a power added efficiency of 15%.
en
dc.description.provenanceMade available in DSpace on 2023-03-19T21:15:16Z (GMT). No. of bitstreams: 1
U0001-0308202215005300.pdf: 9123259 bytes, checksum: ae6216d9810b28097f7cc8d411345e7e (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents口試委員會審定書 i
ACKNOWLEGMENT ii
中文摘要 iii
ABSTRACT iv
CONTENTS v
LIST OF FIGURES ix
LIST OF TABLES xvii
Chapter 1 Introduction 1
1.1 Background and Motivation 1
1.2 Contribution 2
1.3 Thesis Organizationb 2
Chapter 2 Design of a D-band 127.5 – 152.5 GHz Subharmonic I/Q Modulator with a High Image Rejection Ratio 4
2.1 Background and Motivation 4
2.2 Design of the Subharmonic I/Q Modulator 5
2.2.1 Process Selection 5
2.2.2 Circuit Architecture 5
2.2.3 Device Size and Bias Point Selection 7
2.2.4 IRR and the HPF/LPF structure 13
2.2.5 LO 90 Degree Coupler 17
2.2.6 LO Balun 20
2.2.7 Mixer Core 25
2.2.8 RF Balun 29
2.3 Simulation Result 31
2.3.1 Simulated Performance 31
2.3.2 Process Variation Analysis 35
2.4 Experiment Result and Measurement 38
2.5 Further Investigation 50
2.5.1 Layout Scaling 50
2.5.2 Capacitor Design 50
2.5.3 Device Modeling 52
2.6 Conclusion 53
Chapter 3 Design of a highly efficient 25 – 31 GHz Ka-band 0.15-μm GaAs Power Amplifier with an Output Power of 24.4dBm 54
3.1 Background and Motivation 54
3.2 Process and Device Selection 55
3.3 Circuit Design and Architecture 56
3.3.1 Output Matching Network Design 56
3.3.2 Phase Analysis of the Output Matching Network 57
3.3.3 Bypass Network 60
3.3.4 Input and Inter-Stage Matching 62
3.4 Experimental Result 63
3.4.1 Large Signal Performance 64
3.4.2 Third Order Intermodulation 69
3.4.3 Digital Modulation 71
3.4.4 Measurement Summary and Comparison Table 73
3.5 Conclusion 74
Chapter 4 Redesign of the Ka-band 0.15-μm GaAs Power Amplifier 75
4.1 Background and Motivation 75
4.2 Process and Device Selection 75
4.3 Circuit Design and Architecture 76
4.3.1 Output Matching Network 77
4.3.2 Input Matching 77
4.4 Experimental Result 79
4.4.1 Simulation Result 79
4.4.2 Measurement Result 81
4.5 Conclusion 89
Chapter 5 Design of a Ka-band Doherty Power Amplifier with an Output Power of 30.4dBm in a Novel 0.15-μm GaN-on-SiC Process 91
5.1 Background and Motivation 91
5.2 Process Selection 92
5.3 Architecture and Circuit Design 95
5.3.1 Principle of a Doherty Power Amplifier 95
5.3.2 Basic Architecture 97
5.3.3 Amplifier Design 98
5.3.4 Bypass Network 103
5.3.5 Phase Compensation 103
5.4 Experimental Result 106
5.4.1 Simulation Result 106
5.4.2 Measurement Result 109
5.5 Conclusion 118
Chapter 6 Conclusion 119
References 121
-
dc.language.isoen-
dc.subject次諧波混頻器zh_TW
dc.subject微波單晶積體電路zh_TW
dc.subject功率放大器zh_TW
dc.subject鏡像抑制zh_TW
dc.subject功率放大器zh_TW
dc.subject次太赫茲zh_TW
dc.subject微波單晶積體電路zh_TW
dc.subject次太赫茲zh_TW
dc.subject次諧波混頻器zh_TW
dc.subject鏡像抑制zh_TW
dc.subjectMMICen
dc.subjectsub-terahertzen
dc.subjectsubharmonic modulatoren
dc.subjectimage-rejection-ratioen
dc.subjectpower amplifieren
dc.subjectimage-rejection-ratioen
dc.subjectsubharmonic modulatoren
dc.subjectsub-terahertzen
dc.subjectMMICen
dc.subjectpower amplifieren
dc.title28nm CMOS D頻段調解器及砷化鎵/氮化鎵Ka頻段功率放大器之設計zh_TW
dc.titleDesign of a 28nm CMOS D-Band Modulator and GaAs/GaN Ka-Band Power Amplifiersen
dc.typeThesis-
dc.date.schoolyear110-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee李俊興;蔡政翰;鄭宇翔;黃裕津zh_TW
dc.contributor.oralexamcommitteeChun-Hsing Li;Jeng-Han Tsai;Yu-Hsiang Cheng;Yuh-Jing Hwangen
dc.subject.keyword次太赫茲,次諧波混頻器,鏡像抑制,功率放大器,微波單晶積體電路,zh_TW
dc.subject.keywordsub-terahertz,subharmonic modulator,image-rejection-ratio,power amplifier,MMIC,en
dc.relation.page130-
dc.identifier.doi10.6342/NTU202202012-
dc.rights.note未授權-
dc.date.accepted2022-08-11-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電信工程學研究所-
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-110-2.pdf
  未授權公開取用
8.91 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved