請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83667
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 王安邦(An-Bang Wang) | |
dc.contributor.author | Ting-Wei Sun | en |
dc.contributor.author | 孫廷瑋 | zh_TW |
dc.date.accessioned | 2023-03-19T21:13:34Z | - |
dc.date.copyright | 2022-10-13 | |
dc.date.issued | 2022 | |
dc.date.submitted | 2022-09-29 | |
dc.identifier.citation | [1] Niculescu, A.-G., Chircov, C., B?rc?, A. C., & Grumezescu, A. M. (2021). Fabrication and applications of microfluidic devices: A review. International Journal of Molecular Sciences, 22(4), 2011. [2] Fair, R. B. (2007). Digital microfluidics: is a true lab-on-a-chip possible? Microfluidics and Nanofluidics, 3(3), 245–281. [3] Pollack, M. G., Shenderov, A. D., & Fair, R. B. (2002). Electrowetting-based actuation of droplets for integrated microfluidics. Lab on a Chip, 2(2), 96–101. [4] Lee J, Moon H, Fowler J, Kim C-J, Schoellhammer T. (2001). Addressable micro liquid handling by electric control of surface tension. In: Proceedings. of the 2001 IEEE 14th international conference on MEMS, Interlaken, Switzerland, pp 499–502 [5] Cho S-K, Fan S-K, Moon H, Kim C-J. (2002). Towards digital microfluidic circuits: creating, transporting, cutting and merging liquid droplets by electrowettingbased actuation. Technical Digest MEMS 2002 IEEE International Conference on Micro Electro Mechanical Systems, vol 11, pp 454–461 [6] Gascoyne, P. R. C., & Vykoukal, J. V. (2004). Dielectrophoresis-based sample handling in general-purpose programmable diagnostic instruments. Proceedings of the IEEE. Institute of Electrical and Electronics Engineers, 92(1), 22–42. [7] Darhuber, A. A., Valentino, J. P., Troian, S. M., & Wagner, S. (2003). Thermocapillary actuation of droplets on chemically patterned surfaces by programmable microheater arrays. Journal of Microelectromechanical Systems: A Joint IEEE and ASME Publication on Microstructures, Microactuators, Microsensors, and Microsystems, 12(6), 873–879. [8] Renaudin A, Tabourier P, Zhang V, Druhon C, Camart JC (2004) “Plateforme SAW d?di?e ? la microfluidique discr?te pour applications biologiques”., In: 2?me Congr?s Fran?ais de Microfluidique, Soci?t? Hydrotechnique de France, Toulouse, France, pp 14–16 [9] Olmedillas-L?pez, S., Olivera-Salazar, R., Garc?a-Arranz, M., & Garc?a-Olmo, D.(2022). Current and emerging applications of droplet digital PCR in oncology: An updated review. Molecular Diagnosis & Therapy, 26(1), 61–87. [10] Scheeline, A., & Behrens, R. L. (2012). Potential of levitated drops to serve as microreactors for biophysical measurements. Biophysical Chemistry, 165–166, 1–12. [11] 陳明宏、曾繁根 (民 95),數位化微流體操縱技術,科學發展月刊,頁 50-53。 [12] Atkins, P., De Paula, J., & Keeler, J. (2017). Atkins’ physical chemistry (11th ed.). Oxford University Press. [13] de Gennes P. G. (1985). Wetting: statics and dynamics. Reviews of Modern Physics 827–863. [14] Bonn, D., Eggers, J., Indekeu, J., Meunier, J., & Rolley, E. (2009). Wetting and spreading. Reviews of Modern Physics, 81(2), 739–805. [15] Young, T. (1805). III. An essay on the cohesion of fluids. Philosophical Transactions of the Royal Society of London, 95(0), 65–87. [16] Xu, Z. N. (2014). An algorithm for selecting the most accurate protocol for contact angle measurement by drop shape analysis. The Review of Scientific Instruments, 85(12), 125107. [17] Akbari, R., & Antonini, C. (2021). Contact angle measurements: From existing methods to an open-source tool. Advances in Colloid and Interface Science, 294(102470), 102470. [18] Liu, T. L., & Kim, C.-J. C. (2017). Contact angle measurement of small capillary length liquid in super-repelled state. Scientific Reports, 7(1), 740. [19] Bateni, A., Susnar, S. S., Amirfazli, A., & Neumann, A. W. (2003). A high-accuracy polynomial fitting approach to determine contact angles. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 219(1–3), 215–231. [20] Chini, S. F., & Amirfazli, A. (2011). A method for measuring contact angle of asymmetric and symmetric drops. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 388(1–3), 29–37. [21] Gao, L., & McCarthy, T. J. (2006). Contact angle hysteresis explained. Langmuir: The ACS Journal of Surfaces and Colloids, 22(14), 6234–6237. [22] Reyssat, M., Pardo, F., & Qu?r?, D. (2009). Drops onto gradients of texture. EPL (Europhysics Letters), 87(3), 36003. [23] Moradi, N., Varnik, F., & Steinbach, I. (2010). Roughness-gradient–induced spontaneous motion of droplets on hydrophobic surfaces: A lattice Boltzmann study. EPL (Europhysics Letters), 89(2), 26006. [24] Chandesris, B., Soupremanien, U., & Dunoyer, N. (2013). Uphill motion of droplets on tilted and vertical grooved substrates induced by a wettability gradient. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 434, 126–135. [25] Liu, C., Sun, J., Li, J., Xiang, C., Che, L., Wang, Z., & Zhou, X. (2017). Longrange spontaneous droplet self-propulsion on wettability gradient surfaces. Scientific Reports, 7(1), 7552. [26] Tseng, Y.-T., Tseng, F.-G., Chen, Y.-F., & Chieng, C.-C. (2004). Fundamental studies on micro-droplet movement by Marangoni and capillary effects. Sensors and Actuators. A, Physical, 114(2–3), 292–301. [27] Pratap, V., Moumen, N., & Subramanian, R. S. (2008). Thermocapillary motion of a liquid drop on a horizontal solid surface. Langmuir: The ACS Journal of Surfaces and Colloids, 24(9), 5185–5193. [28] Ichimura, K., Oh, S. K., & Nakagawa, M. (2000). Light-driven motion of liquids on a photoresponsive surface. Science (New York, N.Y.), 288(5471), 1624–1626. [29] Yang, D., Piech, M., Bell, N. S., Gust, D., Vail, S., Garcia, A. A., … Picraux, S. T.(2007). Photon control of liquid motion on reversibly photoresponsive surfaces. Langmuir: The ACS Journal of Surfaces and Colloids, 23(21), 10864–10872. [30] Pollack, M. G., Fair, R. B., & Shenderov, A. D. (2000). Electrowetting-based actuation of liquid droplets for microfluidic applications. Applied physics letters, 77(11), 1725–1726. [31] Daniel, S., Chaudhury, M. K., & de Gennes, P.-G. (2005). Vibration-actuated drop motion on surfaces for batch microfluidic processes. Langmuir: The ACS Journal of Surfaces and Colloids, 21(9), 4240–4248. [32] Brunet, P., Eggers, J., & Deegan, R. D. (2007). Vibration-induced climbing of drops. Physical Review Letters, 99(14), 144501. [33] Lord Kelvin. (1890). Mathematical and Physical Papers 3, 384. [34] Rayleigh, Lord, & Nachtrieb, N. H. (1957). The theory of sound. Physics today, 10(1), 32–34. [35] Lamb, H. (1932). Hydrodynamics; Cambridge University Press:? Cambridge, U.K. [36] Daniel, S., Sircar, S., Gliem, J., & Chaudhury, M. K. (2004). Ratcheting motion of liquid drops on gradient surfaces. Langmuir: The ACS Journal of Surfaces and Colloids, 20(10), 4085–4092. [37] Celestini, F., & Kofman, R. (2006). Vibration of submillimeter-size supported droplets. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 73(4 Pt 1), 041602. [38] Costalonga, M., & Brunet, P. (2020). Directional motion of vibrated sessile drops?: a quantitative study. [39] Daniel, S., & Chaudhury, M. K. (2002). Rectified motion of liquid drops ongradient surfaces induced by vibration. Langmuir: The ACS Journal of Surfaces and Colloids, 18(9), 3404–3407. [40] 王重皓(2018)。液滴在振動板上之振盪模態與移動機制探討。國立臺灣大學應力所碩士論文,台北市。 [41] Tsai, P.-H., Kurniawan, T., & Wang, A.-B. (2019). A simple technique to achieve meniscus-free interfaces. Physics of Fluids (Woodbury, N.Y.: 1994), 31(1), 011702 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83667 | - |
dc.description.abstract | 本研究探討液滴於固體表面上受水平振動驅動後運動之現象,並針對驅動波形進行改進,使其具有更好的驅動效率,首次成功完成以水平振動驅動液滴於傾斜平面上之爬升。本研究主要可分為三部分,第一部分為液滴於水平基板上長程運動之力學表現分析,第二部分為波形改進及親疏水性對液滴在水平基板移動產生之影響,第三部分為液滴於傾斜基板上爬升現象之探討。 本研究於第一部分中發現了數位液滴操控啟動過程中,會出現速度差上3倍以上的兩段式速度區:運動開始時的固定速度,而在經過一個液滴直徑後,則進入一個快的定速度區。此現象為首次發現,另外也發現液滴在基板上運動的過程中會受到表面是否潤濕所影響,而後也進行定量分析基板之運動指標參數比較,探討水平振動平板上之液滴運動行為與形成快區與慢區差異機制,而後發現疏水表面有加強液滴移動的效果。 第二部分則為更改驅動波形對液滴運動速度之影響。本研究以前人使用之波形(Waveform A)作為對照,本研究在驅動波形中加入了靜程的停歇即為Waveform B,從兩者驅動液滴的結果差異,可以表現此改變有較好的液滴移動效率,與較大的液滴移動視窗。 第三部分中,吾人使用新設計的驅動波形,以水平振動方式驅動,首次成功將液滴順利爬升傾斜45度之基板,並繪製出其控制參數的相圖。 | zh_TW |
dc.description.abstract | This research investigates the phenomenon of sessile drop motion on solid surface driven by horizontal vibration, and improves the driving waveform to make it more efficient and further successfully drive the droplet climbing on inclined plane by horizontal vibration for the first time. This research can be divided into three parts. First part is the long-range motion of digital droplets driven by horizontal vibration on a horizontal substrate. Second, the effect of waveform improvement on droplet movement has been discussed. The last part is the investigation of the phenomenon of droplet climbing on an inclined substrate driven by horizontal vibration. Two velocity zones that velocity can differ at least 3 times between the zones are found in the long-range motion of droplets in the first part of this study. The uniform but lower velocity happened at the beginning of the motion, and then becomes faster. This phenomenon has never been reported in the literature and is a new finding of droplet motion driven by vibration. It is also found that the droplet movement on the substrate is significantly influenced by whether the surface is wetted or not. The mechanism of droplet motion on the horizontally vibrating plate was then investigated by quantitatively analyzing the parameters of the substrate and droplet motion, further discussed the moving mechanism of liquid droplet and the difference of formation of fast and slow zone. Then, the increase of droplet velocity on the horizontally vibrating substrate were observed by making the substrate more hydrophobicity. The second part is the effect of changing the driving waveform on the droplet motion speed. In this study, the previous waveform (Waveform A) was used as comparison. For improved waveform, the working period was reduced and a pause period was added to the triangular waveform to make it Waveform B. The difference in the droplet driving results between the two waveforms was compared. From the comparison results, we can observe that Waveform B has better droplet movement efficiency and larger droplet movement window compared to Waveform A. Also, it is found that the acceleration value of the substrate has a significant effect on the droplet movement speed. Based on the first and second part, we introduced the tilt angle of the substrate to our experiment and used Waveform B to drive the inclined substrate by horizontal vibration, resulting in climbing phenomenon of the droplets. The motion of the droplet at different frequencies and tilt angles can be seen that the droplet moves differently at different frequencies, in the order of stationary, slow climbing, fast climbing, slow climbing, stationary and sliding down from lower to higher frequency, and the larger the inclination angle, the smaller the droplet climbing window and the slower the climbing speed. | en |
dc.description.provenance | Made available in DSpace on 2023-03-19T21:13:34Z (GMT). No. of bitstreams: 1 U0001-2909202211395500.pdf: 5073368 bytes, checksum: ff9bd5076ea6c5f685cfc182f3a59879 (MD5) Previous issue date: 2022 | en |
dc.description.tableofcontents | 口試委員會審定書 i 摘要 ii Abstract iii 圖目錄 vii 表目錄 xii 符號表 xiii 第1章 緒論 1 1.1前言 1 1.2 研究動機 1 第2章 文獻回顧 2 2.1微流體與數位液滴 2 2.2液滴與固體之交互作用與潤濕特性 3 2.3液滴移動機制 5 2.4液滴驅動方法 8 2.5振動驅動液滴 10 2.6液滴自然頻率 14 第3章 實驗架設與方法 17 3.1液滴振動驅動系統 17 3.1.1訊號產生器(Function generator) 18 3.1.2 功率放大器(Power amplifier) 19 3.1.3 振盪器(Mini-shaker) 19 3-2影像擷取系統 20 3.2.1 高速攝影機(high speed camera) 20 3.2.2 鏡頭(lens) 21 3.2.3 光源(light source) 22 3.3 實驗材料準備系統 23 3.3.1 雷射雕刻機(laser engraver) 23 3.3.2 淨水器 24 3.3.3 超音波清洗機 24 3.3.4 實驗基板製作 25 3.3.5 基板清洗標準作業程序 26 3.4 資料分析方法及校正 27 3.4.1 數位化影像分析 27 3.4.2 MATLAB edge程式校正及誤差分析 28 3.4.3 速度與加速度計算 29 3.4.4 輸入與輸出分析 33 第4章 實驗結果與討論 37 4.1 振動水平基板之驅動驗證實驗 37 4.2 振動水平基板之液滴移動再探討 40 4.2.1.液滴在水平親水基板的長程移動分析 41 4.2.2 不同驅動波形對液滴移動的影響(Waveform B) 59 4.2.3 疏水基板之非對稱波形(Waveform B) 65 4.3液滴在傾斜基板之爬升實驗 68 4.4液滴的搖擺模態與運動之關係 73 4.5 液滴振動致動之參數視窗 76 第5章 結論 77 參考文獻 79 | |
dc.language.iso | zh-TW | |
dc.title | 以水平振動驅動數位液滴於傾斜平板移動與爬升之影響參數與運動機制探討 | zh_TW |
dc.title | On the controlling parameters and moving mechanism of digital droplet moving on inclined plates driven by horizontal vibration | en |
dc.type | Thesis | |
dc.date.schoolyear | 110-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳俊杉(Chuin-Shan Chen),江宏仁(Hong-Ren Jiang),張鈞棣(Chun-Ti Chang) | |
dc.subject.keyword | 數位液滴,水平振動平板,振動驅動波形,兩段式速度,液滴移動機制,液滴爬升, | zh_TW |
dc.subject.keyword | Digital droplets,horizontal-vibrated substrate,vibration-driven waveform,two velocity zones,droplet moving mechanism,droplet climbing, | en |
dc.relation.page | 83 | |
dc.identifier.doi | 10.6342/NTU202204225 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2022-09-30 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 應用力學研究所 | zh_TW |
顯示於系所單位: | 應用力學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-2909202211395500.pdf 目前未授權公開取用 | 4.95 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。