請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83645完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 闕蓓德(Pei-Te Chiueh) | |
| dc.contributor.author | Shih-Ya Wang | en |
| dc.contributor.author | 王詩雅 | zh_TW |
| dc.date.accessioned | 2023-03-19T21:12:52Z | - |
| dc.date.copyright | 2022-09-30 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-09-27 | |
| dc.identifier.citation | Abdul-Wahab, S. A., Bakheit, C. S., & Al-Alawi, S. M. (2005). Principal component and multiple regression analysis in modelling of ground-level ozone and factors affecting its concentrations. Environmental Modelling & Software, 20(10), 1263-1271. https://doi.org/10.1016/j.envsoft.2004.09.001 Adams, M. D., & Kanaroglou, P. S. (2016). Mapping real-time air pollution health risk for environmental management: Combining mobile and stationary air pollution monitoring with neural network models. J Environ Manage, 168, 133-141. https://doi.org/10.1016/j.jenvman.2015.12.012 Beelen, R., Hoek, G., Vienneau, D., Eeftens, M., Dimakopoulou, K., Pedeli, X., Tsai, M.-Y., K?nzli, N., Schikowski, T., Marcon, A., Eriksen, K. T., Raaschou-Nielsen, O., Stephanou, E., Patelarou, E., Lanki, T., Yli-Tuomi, T., Declercq, C., Falq, G., Stempfelet, M., . . . de Hoogh, K. (2013). Development of NO2 and NOx land use regression models for estimating air pollution exposure in 36 study areas in Europe – The ESCAPE project. Atmospheric Environment, 72, 10-23. https://doi.org/10.1016/j.atmosenv.2013.02.037 Chang, T.-Y., Tsai, C.-C., Wu, C.-F., Chang, L.-T., Chuang, K.-J., Chuang, H.-C., & Young, L.-H. (2021). Development of land-use regression models to estimate particle mass and number concentrations in Taichung, Taiwan. Atmospheric Environment, 252. https://doi.org/10.1016/j.atmosenv.2021.118303 Chen, G., Li, S., Knibbs, L. D., Hamm, N. A. S., Cao, W., Li, T., Guo, J., Ren, H., Abramson, M. J., & Guo, Y. (2018). A machine learning method to estimate PM2.5 concentrations across China with remote sensing, meteorological and land use information. Sci Total Environ, 636, 52-60. https://doi.org/10.1016/j.scitotenv.2018.04.251 de Hoogh, K., Gulliver, J., Donkelaar, A. V., Martin, R. V., Marshall, J. D., Bechle, M. J., Cesaroni, G., Pradas, M. C., Dedele, A., Eeftens, M., Forsberg, B., Galassi, C., Heinrich, J., Hoffmann, B., Jacquemin, B., Katsouyanni, K., Korek, M., Kunzli, N., Lindley, S. J., . . . Hoek, G. (2016). Development of West-European PM2.5 and NO2 land use regression models incorporating satellite-derived and chemical transport modelling data. Environ Res, 151, 1-10. https://doi.org/10.1016/j.envres.2016.07.005 Eeftens, M., Beelen, R., de Hoogh, K., Bellander, T., Cesaroni, G., Cirach, M., Declercq, C., Dedele, A., Dons, E., de Nazelle, A., Dimakopoulou, K., Eriksen, K., Falq, G., Fischer, P., Galassi, C., Grazuleviciene, R., Heinrich, J., Hoffmann, B., Jerrett, M., . . . Hoek, G. (2012). Development of Land Use Regression models for PM(2.5), PM(2.5) absorbance, PM(10) and PM(coarse) in 20 European study areas; results of the ESCAPE project. Environ Sci Technol, 46(20), 11195-11205. https://doi.org/10.1021/es301948k Feng, R., Wang, F., Wang, K., & Xu, S. (2021). Quantifying influences of anthropogenic-natural factors on ecological land evolution in mega-urban agglomeration: A case study of Guangdong-Hong Kong-Macao greater Bay area. Journal of Cleaner Production, 283. https://doi.org/10.1016/j.jclepro.2020.125304 Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18-27. https://doi.org/10.1016/j.rse.2017.06.031 Hoek, G., Beelen, R., de Hoogh, K., Vienneau, D., Gulliver, J., Fischer, P., & Briggs, D. (2008). A review of land-use regression models to assess spatial variation of outdoor air pollution. Atmospheric Environment, 42(33), 7561-7578. https://doi.org/10.1016/j.atmosenv.2008.05.057 Huang, C.-S., Lin, T.-H., Hung, H., Kuo, C.-P., Ho, C.-C., Guo, Y.-L., Chen, K.-C., & Wu, C.-F. (2019). Incorporating satellite-derived data with annual and monthly land use regression models for estimating spatial distribution of air pollution. Environmental Modelling & Software, 114, 181-187. https://doi.org/10.1016/j.envsoft.2019.01.010 Huang, H., Chen, Y., Clinton, N., Wang, J., Wang, X., Liu, C., Gong, P., Yang, J., Bai, Y., Zheng, Y., & Zhu, Z. (2017). Mapping major land cover dynamics in Beijing using all Landsat images in Google Earth Engine. Remote Sensing of Environment, 202, 166-176. https://doi.org/10.1016/j.rse.2017.02.021 Hyslop, N. P. (2009). Impaired visibility: the air pollution people see. Atmospheric Environment, 43(1), 182-195. https://doi.org/10.1016/j.atmosenv.2008.09.067 Jung, C. R., Hwang, B. F., & Chen, W. T. (2018). Incorporating long-term satellite-based aerosol optical depth, localized land use data, and meteorological variables to estimate ground-level PM2.5 concentrations in Taiwan from 2005 to 2015. Environ Pollut, 237, 1000-1010. https://doi.org/10.1016/j.envpol.2017.11.016 Koelemeijer, R. B. A., Homan, C. D., & Matthijsen, J. (2006). Comparison of spatial and temporal variations of aerosol optical thickness and particulate matter over Europe. Atmospheric Environment, 40(27), 5304-5315. https://doi.org/10.1016/j.atmosenv.2006.04.044 Koschmieder, H. (1924). Theorie der horizontalen Sichtweite. Beitrage zur Physik der freien Atmosphare, 33-53. Lee, J. H., Wu, C. F., Hoek, G., de Hoogh, K., Beelen, R., Brunekreef, B., & Chan, C. C. (2015). LUR models for particulate matters in the Taipei metropolis with high densities of roads and strong activities of industry, commerce and construction. Sci Total Environ, 514, 178-184. https://doi.org/10.1016/j.scitotenv.2015.01.091 Lepeule, J., Laden, F., Dockery, D., & Schwartz, J. (2012). Chronic exposure to fine particles and mortality: an extended follow-up of the Harvard Six Cities study from 1974 to 2009. Environ Health Perspect, 120(7), 965-970. https://doi.org/10.1289/ehp.1104660 M?lter, A., & Lindley, S. (2021). Developing land use regression models for environmental science research using the XLUR tool – More than a one-trick pony. Environmental Modelling & Software, 143. https://doi.org/10.1016/j.envsoft.2021.105108 Malm, W. C. (1999). Introduction to Visibility. Cooperative Institute for Research in the Atmosphere, NPS Visibility Program, Colorado State University. https://books.google.com.tw/books?id=2-QsAQAAMAAJ O’brien, R. M. (2007). A Caution Regarding Rules of Thumb for Variance Inflation Factors. Quality & Quantity, 41(5), 673-690. https://doi.org/10.1007/s11135-006-9018-6 Pope, C. A., 3rd, & Dockery, D. W. (2006). Health effects of fine particulate air pollution: lines that connect. J Air Waste Manag Assoc, 56(6), 709-742. https://doi.org/10.1080/10473289.2006.10464485 Ranjan, A. K., Patra, A. K., & Gorai, A. K. (2020). A Review on Estimation of Particulate Matter from Satellite-Based Aerosol Optical Depth: Data, Methods, and Challenges. Asia-Pacific Journal of Atmospheric Sciences, 57(3), 679-699. https://doi.org/10.1007/s13143-020-00215-0 Shi, L., Zanobetti, A., Kloog, I., Coull, B. A., Koutrakis, P., Melly, S. J., & Schwartz, J. D. (2016). Low-Concentration PM2.5 and Mortality: Estimating Acute and Chronic Effects in a Population-Based Study. Environ Health Perspect, 124(1), 46-52. https://doi.org/10.1289/ehp.1409111 Song, W., Jia, H., Huang, J., & Zhang, Y. (2014). A satellite-based geographically weighted regression model for regional PM2.5 estimation over the Pearl River Delta region in China. Remote Sensing of Environment, 154, 1-7. https://doi.org/10.1016/j.rse.2014.08.008 Tao, M., Chen, L., Wang, Z., Wang, J., Tao, J., & Wang, X. (2016). Did the widespread haze pollution over China increase during the last decade? A satellite view from space. Environmental Research Letters, 11(5). https://doi.org/10.1088/1748-9326/11/5/054019 Tripathy, S., Tunno, B. J., Michanowicz, D. R., Kinnee, E., Shmool, J. L. C., Gillooly, S., & Clougherty, J. E. (2019). Hybrid land use regression modeling for estimating spatio-temporal exposures to PM2.5, BC, and metal components across a metropolitan area of complex terrain and industrial sources. Sci Total Environ, 673, 54-63. https://doi.org/10.1016/j.scitotenv.2019.03.453 UN. (2022). World Cities Report 2022. https://unhabitat.org/sites/default/files/2022/06/wcr_2022.pdf Wahap, N. A., & Shafri, H. Z. M. (2020). Utilization of Google Earth Engine (GEE) for land cover monitoring over Klang Valley, Malaysia. IOP Conference Series: Earth and Environmental Science, 540(1), 012003. https://doi.org/10.1088/1755-1315/540/1/012003 Wei, J., Huang, W., Li, Z., Xue, W., Peng, Y., Sun, L., & Cribb, M. (2019). Estimating 1-km-resolution PM2.5 concentrations across China using the space-time random forest approach. Remote Sensing of Environment, 231. https://doi.org/10.1016/j.rse.2019.111221 WHO. (2021a). Ambient (outdoor) air pollution. https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health WHO. (2021b). WHO global air quality guidelines: particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. World Health Organization. https://apps.who.int/iris/handle/10665/345329 Wu, C. D., Zeng, Y. T., & Lung, S. C. (2018). A hybrid kriging/land-use regression model to assess PM2.5 spatial-temporal variability. Sci Total Environ, 645, 1456-1464. https://doi.org/10.1016/j.scitotenv.2018.07.073 Wu, C. F., Lin, H. I., Ho, C. C., Yang, T. H., Chen, C. C., & Chan, C. C. (2014). Modeling horizontal and vertical variation in intraurban exposure to PM2.5 concentrations and compositions. Environ Res, 133, 96-102. https://doi.org/10.1016/j.envres.2014.04.038 Xie, S., Liu, L., Zhang, X., Yang, J., Chen, X., & Gao, Y. (2019). Automatic Land-Cover Mapping using Landsat Time-Series Data based on Google Earth Engine. Remote Sensing, 11(24). https://doi.org/10.3390/rs11243023 Xing, Y. F., Xu, Y. H., Shi, M. H., & Lian, Y. X. (2016). The impact of PM2.5 on the human respiratory system. J Thorac Dis, 8(1), E69-74. https://doi.org/10.3978/j.issn.2072-1439.2016.01.19 Xu, J., Chang, L., Qu, Y., Yan, F., Wang, F., & Fu, Q. (2016). The meteorological modulation on PM2.5 interannual oscillation during 2013 to 2015 in Shanghai, China. Sci Total Environ, 572, 1138-1149. https://doi.org/10.1016/j.scitotenv.2016.08.024 Yang, X., Zheng, Y., Geng, G., Liu, H., Man, H., Lv, Z., He, K., & de Hoogh, K. (2017). Development of PM2.5 and NO2 models in a LUR framework incorporating satellite remote sensing and air quality model data in Pearl River Delta region, China. Environ Pollut, 226, 143-153. https://doi.org/10.1016/j.envpol.2017.03.079 Zhang, H., Hoff, R. M., & Engel-Cox, J. A. (2009). The relation between Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth and PM2.5 over the United States: a geographical comparison by U.S. Environmental Protection Agency regions. J Air Waste Manag Assoc, 59(11), 1358-1369. https://doi.org/10.3155/1047-3289.59.11.1358 Zhang, S., Wu, J., Fan, W., Yang, Q., & Zhao, D. (2020). Review of aerosol optical depth retrieval using visibility data. Earth-Science Reviews, 200. https://doi.org/10.1016/j.earscirev.2019.102986 交通部中央氣象局 (2004)。地面氣象測報作業規範(POD版)。交通部中央氣象局。https://books.google.com.tw/books?id=6ZIejCU9tvAC | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83645 | - |
| dc.description.abstract | 隨著工業化及都市化快速發展,空氣污染相關議題逐漸受到重視,其中細懸浮微粒(fine particulate matter, PM2.5)已有研究證實危害人體健康與干擾能見度,因而備受關注。為瞭解PM2.5之時空分布,我國環保署及地方環保局已建置多座空氣品質測站,作為污染濃度及暴露評估之依據;然而,受限於地形和建置成本等因素,使得測站分布不均、數量有限,進而造成估算上的誤差。本研究為解決此問題,以佔我國人口約40%的北部空品區為研究區域,PM2.5為研究目標污染物,利用土地利用回歸模型(land use regression, LUR)整合氣象、土地利用型態、交通等訊息,並結合衛星遙測資料,提升資料覆蓋範圍及時空連續性,以推估更準確的PM2.5濃度之時空分布。研究所使用的衛星遙測資料包含氣膠光學深度(aerosol optical depth, AOD)、衛星影像之土地覆蓋分類(land cover classification)及邊界層高度(boundary layer height, BLH),其中AOD可反映大氣垂直面的消光性,且時空上與PM2.5濃度高度相關,亦可有效提升LUR模型效能。此外,利用Google Earth Engine (GEE)平台所訓練之土地覆蓋分類,能有效替代傳統土地利用資料,不僅能取得更即時的土地利用訊息,亦具有和傳統LUR模型一樣的推估效能。本研究應用衛星遙測資料所建立的LUR模型,年尺度之Adjusted R2可達0.79,季節尺度則以秋季最高可達0.74;留一交叉驗證法(leave-one-out cross validation, LOOCV)模型驗證結果則顯示,年尺度模型R2為0.79,季節尺度則最高可達0.74,證實土地覆蓋分類結果及AOD等衛星資料的加入,可顯著提升模型效能並建立一穩健的濃度推估模型。此外,LUR模型所推估的濃度分布,能呈現空間上細微的差異性,有助於更準確地辨識各季節污染情形以及其污染熱點,作為空污改善政策之依據。 | zh_TW |
| dc.description.abstract | With the rapid development of industrialization and urbanization, air pollution issues are paid more attention. Recent studies have indicated that excessive fine particle matter (PM2.5) concentration in the atmosphere is hazardous to human health and even interferes with visibility. Therefore, the issue of PM2.5 has been receiving much attention in visual feeling. In order to understand the spatial and temporal distribution of PM2.5, Taiwan EPA and local environmental protection bureaus have built air quality monitoring stations to serve as a background for levels of pollutant concentration and exposure assessment. However, due to topographical constraints and construction costs, the geographical distribution of PM2.5 monitoring stations is uneven and the number of stations is limited. These dilemmas have caused assessment bias. In order to solve this problem, the northern air quality control area, where Taiwan’s 40% population live in, was used as the study area. By integrating information such as meteorology, land use inventory, traffic data, etc., an integrated and applicable land use regression model (LUR) for PM2.5 was built. It is worth noting that we added satellite remote sensing data, which was considered to improve the coverage of the data with temporal and spatial continuity information, to estimate more accurate spatio-temporal distribution of PM2.5 concentration. The satellite remote sensing data used in the study include aerosol optical depth (AOD), Landsat 8 land cover classification and boundary layer height (BLH); Among them, AOD reflect the extinction of the vertical plane of the atmosphere, which is highly correlated with the spatio-temporal distribution of PM2.5 concentration, and improve the performance of the LUR model effectively. Land cover classification trained by the Google Earth Engine (GEE) platform can effectively replace traditional land use data, not only to obtain more real-time land use information, but also to have the same performance as the traditional LUR model. The results show that the LUR model established by satellite remote sensing data in this study performs well; the Adjusted R2 of the annual model was 0.79, and the seasonal model performed best in autumn, Adjusted R2 was 0.74. In the model validation results, the annual scale model LOOCV (leave-one-out cross validation) R2 was 0.79, and the seasonal scale model LOOCV R2 reached 0.74. This method and development showing the effects of land cover classification and the addition of remote sensing data such as AOD can effectively improve the model performance and build a robust concentration estimation model. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T21:12:52Z (GMT). No. of bitstreams: 1 U0001-2509202218040500.pdf: 8142755 bytes, checksum: 8afe8558a4ccf588e3b198265755dfbd (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 誌謝 i 中文摘要 ii Abstract iii 目錄 v 圖目錄 viii 表目錄 x 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 2 第二章 文獻回顧 4 2.1 空氣品質管理 4 2.1.1 PM2.5之人體健康與環境影響 4 2.1.2 PM2.5空氣品質標準及相關防制策略 5 2.1.3 環境影響因子 7 2.2 衛星遙測資料 8 2.2.1 氣膠光學深度(AOD) 8 2.2.2 土地覆蓋資料 (land cover, LC) 11 2.3 土地利用回歸 14 2.3.1 土地利用回歸模型的原理與定義 14 2.3.2 LUR模型推估PM2.5濃度之應用 14 2.3.3 模型效能與驗證 17 第三章 研究方法 18 3.1 研究範疇 20 3.2 研究材料 21 3.2.1 因變數 21 3.2.2 應變數 23 3.3 研究方法 27 3.3.1 三階段AOD-PM2.5相關性分析 28 3.3.2 單一變數相關性分析 28 3.3.3 土地利用回歸模型 (Land use regression model, LUR) 29 3.3.4 土地覆蓋辨識 32 第四章 結果與討論 36 4.1 土地覆蓋辨識模型效能 36 4.1.1 土地覆蓋辨識結果 36 4.1.2 土地覆蓋辨識模型表現及準確度 39 4.2 單一變數相關性分析 40 4.3 主成分分析 45 4.3.1 巴氏球形檢定&KMO 45 4.3.2 解說總變異量 46 4.3.3 擷取和旋轉成分之負荷 47 4.4 AOD-PM2.5相關性分析 49 4.4.1 第一階段:時間尺度相關性分析 49 4.4.2 第二階段:空間尺度相關性 51 4.5 土地利用回歸模型 52 4.5.1 模型效能 52 4.5.2 模型驗證 56 4.5.3 基於LUR模型推估之PM2.5濃度分布圖 59 4.6 案例討論 64 4.6.1 新模型之主成分分析結果 64 4.6.2 新模型之濃度空間分布 67 4.7 測站觀測值與模型預估值之比較與討論 69 第五章 結論與建議 71 5.1 結論 71 5.2 建議 73 第六章 參考文獻 75 附錄 82 | |
| dc.language.iso | zh-TW | |
| dc.subject | 空氣污染 | zh_TW |
| dc.subject | 細懸浮微粒 | zh_TW |
| dc.subject | 氣膠光學深度 | zh_TW |
| dc.subject | 土地利用回歸模型 | zh_TW |
| dc.subject | 土地覆蓋分類 | zh_TW |
| dc.subject | Aerosol optical depth | en |
| dc.subject | Air pollution | en |
| dc.subject | Land cover classification | en |
| dc.subject | Land use regression model | en |
| dc.subject | Fine particulate matter | en |
| dc.title | 應用衛星遙測資料於土地利用回歸模型推估細懸浮微粒之時空分布 | zh_TW |
| dc.title | Estimate spatial distribution of PM2.5 using satellite remote sensing in land use regression model | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 馬鴻文(Hwong-wen Ma),莊振義(Jehn-Yih Juang) | |
| dc.subject.keyword | 細懸浮微粒,氣膠光學深度,土地利用回歸模型,土地覆蓋分類,空氣污染, | zh_TW |
| dc.subject.keyword | Fine particulate matter,Aerosol optical depth,Land use regression model,Land cover classification,Air pollution, | en |
| dc.relation.page | 90 | |
| dc.identifier.doi | 10.6342/NTU202204012 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2022-09-28 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 環境工程學研究所 | zh_TW |
| 顯示於系所單位: | 環境工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2509202218040500.pdf 未授權公開取用 | 7.95 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
