Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83640
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor廖英志zh_TW
dc.contributor.advisorYing-Chih Liaoen
dc.contributor.author曲家霈zh_TW
dc.contributor.authorChia-Pei Chuen
dc.date.accessioned2023-03-19T21:12:42Z-
dc.date.available2023-12-26-
dc.date.copyright2022-08-22-
dc.date.issued2022-
dc.date.submitted2002-01-01-
dc.identifier.citation[1] K. Suganuma, Introduction to Printed Electronics, Springer Science & Business Media, 2014.
[2] A. Kamyshny, S. Magdassi, Conductive Nanomaterials for Printed Electronics, Small. 10 (2014) 3515–3535. https://doi.org/10.1002/SMLL.201303000.
[3] M.J. Murray, J. v. Sanders, Close-packed structures of spheres of two different sizes II. The packing densities of likely arrangements, Http://Dx.Doi.Org/10.1080/01418618008239380. 42 (2006) 721–740. https://doi.org/10.1080/01418618008239380.
[4] Y. Yuan, L. Liu, Y. Zhuang, W. Jin, S. Li, Coupling effects of particle size and shape on improving the density of disordered polydisperse packings, Physical Review E. 98 (2018). https://doi.org/10.1103/PHYSREVE.98.042903.
[5] N. Roussel, ed., Understanding the Rheology of Concrete, Elsevier, 2011.
[6] S. Pillitteri, E. Opsomer, G. Lumay, N. Vandewalle, How size ratio and segregation affect the packing of binary granular mixtures, Soft Matter. 16 (2020) 9094–9100. https://doi.org/10.1039/D0SM00939C.
[7] R.D. Ferron, S. Shah, E. Fuente, C. Negro, Aggregation and breakage kinetics of fresh cement paste, Cement and Concrete Research. 50 (2013) 1–10. https://doi.org/10.1016/J.CEMCONRES.2013.03.002.
[8] G. Graninger, S. Kumar, G. Garrett, B.G. Falzon, Effect of shear forces on dispersion-related properties of microcrystalline cellulose-reinforced EVOH composites for advanced applications, Composites Part A: Applied Science and Manufacturing. 139 (2020) 106103. https://doi.org/10.1016/J.COMPOSITESA.2020.106103.
[9] C. Ducas, Electrical apparatus and method of manufacturing the same, No. 1,563,731, 1925.
[10] P. Eisler, Manufacture of electric circuit components , No. 2,441,960, 1948. https://patents.google.com/patent/US2441960A/en (accessed June 26, 2022).
[11] M. Ieong, B. Doris, J. Kedzierski, K. Rim, M. Yang, Silicon device scaling to the sub-10-nm regime, Science (1979). 306 (2004) 2057–2060. https://doi.org/10.1126/SCIENCE.1100731/ASSET/0C505BF3-E726-4FCB-800D-738170775C6D/ASSETS/GRAPHIC/306_2057_F5.JPEG.
[12] Y. Dai, H. Hu, M. Wang, J. Xu, S. Wang, Stretchable transistors and functional circuits for human-integrated electronics, Nature Electronics 2021 4:1. 4 (2021) 17–29. https://doi.org/10.1038/s41928-020-00513-5.
[13] M. Linec, B. Mušič, The Effects of Silica-Based Fillers on the Properties of Epoxy Molding Compounds, Materials 2019, Vol. 12, Page 1811. 12 (2019) 1811. https://doi.org/10.3390/MA12111811.
[14] W. Kim, J.W. Bae, I.D. Choi, Y.S. Kim, Thermally conductive EMC (epoxy molding compound) for microelectronic encapsulation, Polymer Engineering & Science. 39 (1999) 756–766. https://doi.org/10.1002/PEN.11464.
[15] W.H. Zhu, G. Li, W. Sun, F.X. Che, A. Sun, C.K. Wang, H.B. Tan, B.Z. Zhao, N.H. Chin, Cure shrinkage characterization and its implementation into correlation of warpage between simulation and measurement, EuroSime 2007: International Conference on Thermal, Mechanical and Multi-Physics Simulation Experiments in Microelectronics and Micro-Systems, 2007. (2007). https://doi.org/10.1109/ESIME.2007.359966.
[16] D. Tyagi, I. Yílgör, J.E. McGrath, G.L. Wilkes, Segmented organosiloxane copolymers: 2 Thermal and mechanical properties of siloxane—urea copolymers, Polymer (Guildf). 25 (1984) 1807–1816. https://doi.org/10.1016/0032-3861(84)90255-6.
[17] H. Chih-Chung, S. Vallury, S. Vallury, K. Lin, A. Yang, A study on warpage behavior of EMC in post-mold cure stage using Moldex3D, Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT). 2016 (2016) 000826–000850. https://doi.org/10.4071/2016DPC-TP25.
[18] M. Abd Elrahman, B. Hillemeier, Combined effect of fine fly ash and packing density on the properties of high performance concrete: An experimental approach, Construction and Building Materials. 58 (2014) 225–233. https://doi.org/10.1016/J.CONBUILDMAT.2014.02.024.
[19] W. van Antwerpen, C.G. du Toit, P.G. Rousseau, A review of correlations to model the packing structure and effective thermal conductivity in packed beds of mono-sized spherical particles, Nuclear Engineering and Design. 240 (2010) 1803–1818. https://doi.org/10.1016/J.NUCENGDES.2010.03.009.
[20] I. Mehdipour, K.H. Khayat, Understanding the role of particle packing characteristics in rheo-physical properties of cementitious suspensions: A literature review, Construction and Building Materials. 161 (2018) 340–353. https://doi.org/10.1016/J.CONBUILDMAT.2017.11.147.
[21] C.S. Chang, A. Misra, Packing Structure and Mechanical Properties of Granulates, Journal of Engineering Mechanics. 116 (1990) 1077–1093. https://doi.org/10.1061/(ASCE)0733-9399(1990)116:5(1077).
[22] J.D. Bernal, A Geometrical Approach to the Structure Of Liquids, Nature 1959 183:4655. 183 (1959) 141–147. https://doi.org/10.1038/183141a0.
[23] J.D. Bernal, The Bakerian Lecture, 1962. The Structure of Liquids on JSTOR, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences. 280 (1964) 299–322.
[24] S.X. Li, J. Zhao, P. Lu, Y. Xie, Maximum packing densities of basic 3D objects, Chinese Science Bulletin 2010 55:2. 55 (2010) 114–119. https://doi.org/10.1007/S11434-009-0650-0.
[25] R. Greenwood, P.F. Luckham, T. Gregory, The Effect of Diameter Ratio and Volume Ratio on the Viscosity of Bimodal Suspensions of Polymer Latices, J Colloid Interface Sci. 191 (1997) 11–21. https://doi.org/10.1006/JCIS.1997.4915.
[26] R.M. German, S.J. Park, Handbook of mathematical relations in particulate materials processing: ceramics, powder metals, cermets, carbides, hard materials, and minerals, John Wiley & Sons, 2009. https://books.google.com.tw/books?hl=zh-TW&lr=&id=kYW1mKNLePUC&oi=fnd&pg=PR7&dq=Handbook+of+Mathematical+Relations+in+Particulate+Materials+Processing&ots=1OtnkF5t_k&sig=UuCq2jEwyYFEqMyAnWh-IRiyk0w&redir_esc=y#v=onepage&q=Handbook%20of%20Mathematical%20Relations%20in%20Particulate%20Materials%20Processing&f=false (accessed June 28, 2022).
[27] R.D. Sudduth, A new method to predict the maximum packing fraction and the viscosity of solutions with a size distribution of suspended particles. II, Journal of Applied Polymer Science. 48 (1993) 37–55. https://doi.org/10.1002/APP.1993.070480105.
[28] R.D. Sudduth, A generalized model to predict the viscosity of solutions with suspended particles. III. Effects of particle interaction and particle size distribution, Journal of Applied Polymer Science. 50 (1993) 123–147. https://doi.org/10.1002/APP.1993.070500115.
[29] D.M. Liu, Particle packing and rheological property of highly-concentrated ceramic suspensions: φm determination and viscosity prediction, Journal of Materials Science 2000 35:21. 35 (2000) 5503–5507. https://doi.org/10.1023/A:1004885432221.
[30] J.F. Brady, Brownian motion, hydrodynamics, and the osmotic pressure, The Journal of Chemical Physics. 98 (1998) 3335. https://doi.org/10.1063/1.464105.
[31] T.F. Tadros, Dispersion of Powders: in Liquids and Stabilization of Suspensions , John Wiley & Sons, 2012.
[32] M. Zarei, J. Aalaie, Application of shear thickening fluids in material development, Journal of Materials Research and Technology. 9 (2020) 10411–10433. https://doi.org/10.1016/J.JMRT.2020.07.049.
[33] I.M. Krieger, T.J. Dougherty, A Mechanism for Non‐Newtonian Flow in Suspensions of Rigid Spheres, Transactions of the Society of Rheology. 3 (2000) 137. https://doi.org/10.1122/1.548848.
[34] A. Einstein, On the motion of small particles suspended in liquids at rest required by the molecular-kinetic theory of heat, Annalen Der Physik. 17 (1905) 549–560. https://doi.org/10.1119/1.16478.
[35] G.K. Batchelor, The effect of Brownian motion on the bulk stress in a suspension of spherical particles, Journal of Fluid Mechanics. 83 (1977) 97–117. https://doi.org/10.1017/S0022112077001062.
[36] M. Mooney, The viscosity of a concentrated suspension of spherical particles, Journal of Colloid Science. 6 (1951) 162–170. https://doi.org/10.1016/0095-8522(51)90036-0.
[37] J. Mewis, J. Vermant, Rheology of sterically stabilized dispersions and latices, Progress in Organic Coatings. 40 (2000).
[38] H.D. Koca, S. Doganay, A. Turgut, I.H. Tavman, R. Saidur, I.M. Mahbubul, Effect of particle size on the viscosity of nanofluids: A review, Renewable and Sustainable Energy Reviews. 82 (2018) 1664–1674. https://doi.org/10.1016/J.RSER.2017.07.016.
[39] C. Parkinson, S. Matsumoto, P. Sherman, The influence of particle-size distribution on the apparent viscosity of non-newtonian dispersed systems, Journal of Colloid and Interface Science. 33 (1970) 150–160. https://doi.org/10.1016/0021-9797(70)90082-2.
[40] G. Wypych, The effect of fillers on rheological properties of filled materials, Handbook of Fillers. (2016) 533–551. https://doi.org/10.1016/B978-1-895198-91-1.50011-7.
[41] M.A. Zirnsak, D.U. Hur, D. v. Boger, Normal stresses in fibre suspensions, Journal of Non-Newtonian Fluid Mechanics. 54 (1994) 153–193. https://doi.org/10.1016/0377-0257(94)80020-0.
[42] W. Pabst, E. Gregorová, C. Berthold, Particle shape and suspension rheology of short-fiber systems, J Eur Ceram Soc. 26 (2006) 149–160. https://doi.org/10.1016/J.JEURCERAMSOC.2004.10.016.
[43] N. Kishore, S. Gu, Momentum and heat transfer phenomena of spheroid particles at moderate Reynolds and Prandtl numbers, International Journal of Heat and Mass Transfer. 54 (2011) 2595–2601. https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2011.02.001.
[44] R.B. Bird, W.E. Stewart, E.N. Lightfoot, Transport phenomena, American Society of Mechanical Engineers Digital Collection, 2002. https://doi.org/10.1115/1.1424298.
[45] P. Taboada-Serrano, C.J. Chin, S. Yiacoumi, C. Tsouris, Modeling aggregation of colloidal particles, Current Opinion in Colloid & Interface Science. 10 (2005) 123–132. https://doi.org/10.1016/J.COCIS.2005.07.003.
[46] A. Teleki, R. Wengeler, L. Wengeler, H. Nirschl, S.E. Pratsinis, Distinguishing between aggregates and agglomerates of flame-made TiO2 by high-pressure dispersion, Powder Technology. 181 (2008) 292–300. https://doi.org/10.1016/J.POWTEC.2007.05.016.
[47] F. Babick, Suspensions of Colloidal Particles and Aggregates, 2016. https://doi.org/10.1007/978-3-319-30663-6.
[48] R.L. Powell, S.G. Mason, Dispersion by laminar flow, AIChE Journal. 28 (1982) 286–293. https://doi.org/10.1002/AIC.690280218.
[49] S. Elghobashi, G.C. Truesdell, Direct simulation of particle dispersion in a decaying isotropic turbulence, Journal of Fluid Mechanics. 242 (1992) 655–700. https://doi.org/10.1017/S0022112092002532.
[50] P. Mohanty, R. Mahapatra, P. Padhi, C.H.V.V. Ramana, D.K. Mishra, Ultrasonic cavitation: An approach to synthesize uniformly dispersed metal matrix nanocomposites—A review, Nano-Structures & Nano-Objects. 23 (2020) 100475. https://doi.org/10.1016/J.NANOSO.2020.100475.
[51] P.C. Ma, N.A. Siddiqui, G. Marom, J.K. Kim, Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review, Composites Part A: Applied Science and Manufacturing. 41 (2010) 1345–1367. https://doi.org/10.1016/J.COMPOSITESA.2010.07.003.
[52] I.C.V.M. Santos, P.F. Oliveira, C.R.E. Mansur, FACTORS THAT AFFECT CRUDE OIL VISCOSITY AND TECHNIQUES TO REDUCE IT: A REVIEW, Brazilian Journal of Petroleum and Gas. 11 (2017) 115–130. https://doi.org/10.5419/BJPG2017-0010.
[53] S.T. Erdoǧan, N.S. Martys, C.F. Ferraris, D.W. Fowler, Influence of the shape and roughness of inclusions on the rheological properties of a cementitious suspension, Cement and Concrete Composites. 30 (2008) 393–402. https://doi.org/10.1016/J.CEMCONCOMP.2008.01.003.
[54] R.I. Tanner, Review Article: Aspects of non-colloidal suspension rheology, Physics of Fluids. 30 (2018) 101301. https://doi.org/10.1063/1.5047535.
[55] R.H. Colby1, L.J. Fetters, W.W. Graessley, Melt Viscosity-Molecular Weight Relationship for Linear Polymers, Macromolecules. 20 (1987) 2226–2237. https://pubs.acs.org/sharingguidelines (accessed July 9, 2022).
[56] A.R. Jagtap, A. More, Developments in reactive diluents: a review, Polymer Bulletin 2021 79:8. 79 (2021) 5667–5708. https://doi.org/10.1007/S00289-021-03808-5.
[57] N.B. Cramer, J.W. Stansbury, C.N. Bowman, Recent advances and developments in composite dental restorative materials, Journal of Dental Research. 90 (2011) 402–416. https://doi.org/10.1177/0022034510381263.
[58] R. Schwalm, UV Coatings: Basics, Recent Developments and New Applications, 2006.
[59] J.J. Stickel, R.L. Powell, FLUID MECHANICS AND RHEOLOGY OF DENSE SUSPENSIONS, Annu. Rev. Fluid Mech. 37 (2005) 129–178. https://doi.org/10.1146/annurev.fluid.36.050802.122132.
[60] M.M. Cross, Rheology of non-Newtonian fluids: A new flow equation for pseudoplastic systems, Journal of Colloid Science. 20 (1965) 417–437. https://doi.org/10.1016/0095-8522(65)90022-X.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83640-
dc.description.abstract近年來,印刷電子的技術被廣泛利用在各個領域上。印刷電子是利用不同的印刷方式,將功能性墨水或膠體印製在不同基材上,形成各式電子元件與線路。為了提升特定性質,如導電性、機械強度等,會在溶劑或樹脂內加入不同種類的顆粒以達到需求,但加入越多顆粒會導致膠體的黏度大幅上升,且由於顆粒間彼此的凡得瓦力過大,容易造成顆粒間團聚,使得流動性不佳,影響印刷的品質。
本論文主要探討如何提升膠體固含量至90 wt% (~80 vol%),並且在提升膠體固含量的同時,使膠體在低剪切速率下黏度低於100 Pa·s,以提升未來印刷電子上之應用。首先,為了使顆粒可以均勻地混入樹脂中,我們利用三滾筒以物理方式給予適當剪切應力以避免顆粒團聚。接著,透過整合Sudduth model以及Krieger-Dougherty equation來預測在已知的二氧化矽粒徑分布下,不同固含量之膠體的黏度性質,並預測出最適顆粒大小與比例來達到最大堆積密度。利用球磨技術縮小顆粒粒徑,並在經過計算後將大小兩種粒徑分布以4:1的比例進行混合,可以使最大填充密度達到90 wt%。總而言之,本研究提出了一種製備具有良好流動性的高固含量膠體之方法,並且透過建立模型來預測出在已知粒徑分布下之顆粒最密堆積以及懸浮液在不同固含量下之黏度變化,同時針對兩種粒徑分布找出一最佳比例來獲得顆粒間的最密堆積。
zh_TW
dc.description.abstractIn recent years, printed electronics have been widely used in various fields. The printed electronics use different printing methods to print functional inks or paste on different substrates to form various electronic components and circuits. To enhance the specific properties of the printed patterns, such as conductivity, mechanical strength, different kinds of particles are added to the solvent to reach the requirements. However, higher solid fraction will significantly increase the viscosity of the paste. Also, due to the higher van der Waals force between particles, particles are prone to aggregate, which will cause poor flowability and affect the quality of printing.
In this study, high solid fraction colloid with great flowability is formulated for the future applications on printed electronics. First, three-roll milling is used to well-disperse particles into the resin without aggregation by applying appropriate shear stress. Then, the Sudduth model and Krieger-Dougherty equation are integrated to predict the viscosity of different solid fraction colloids under the existing particle size distribution. To obtain different sizes of particles, ball-milling is used to reduce the particle size. The packing density is enhanced by adjusting the ratio of particles with different particle size distribution. In summary, this study provides a method to formulate high solid fraction colloids with good flowability. By building the model, the maximum packing density with known particle size distribution and the viscosity of suspension with different solid fraction can be predicted. The optimal ratio of two different particle size distributions can also be obtained to get the maximum packing density.
en
dc.description.provenanceMade available in DSpace on 2023-03-19T21:12:42Z (GMT). No. of bitstreams: 1
U0001-1808202210214800.pdf: 3097316 bytes, checksum: fbc7d6bc5dcf6ef2b92626c6529dfe93 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents碩士論文口試委員審定書 i
致謝 ii
摘要 iv
Abstract v
圖目錄 viii
表目錄 x
第1章 緒論 1
1.1 研究背景與動機 1
1.2 論文架構 2
1.3 研究目的 3
第2章 文獻回顧 4
2.1 電子元件製造技術 4
2.2 堆積密度 5
2.2.1 單一大小、形狀顆粒之堆積密度 6
2.2.2 不同大小顆粒之堆積密度 7
2.3 顆粒與流變性質之關係 8
2.3.1 剪切應力對流變性質的影響 8
2.3.2 顆粒體積分率對流變性質的影響 9
2.3.3 顆粒大小、粒徑分布對流變性質的影響 13
2.3.4 顆粒形狀、種類對流變性質的影響 14
2.4 顆粒分散 16
2.4.1 顆粒分散機制 16
2.4.2 常見顆粒分散方式 17
2.5 降低黏度 19
2.5.1 顆粒性質 20
2.5.2 稀釋單體 20
第3章 實驗系統程序 22
3.1 實驗藥品與儀器介紹 22
3.1.1 實驗藥品與材料 22
3.1.2 實驗儀器 22
3.2 實驗流程 23
3.2.1 二氧化矽膠體之製備 23
3.2.2 混入不同粒徑分布之顆粒於膠體中 23
3.2.3 製備小顆粒之二氧化矽 24
3.2.4 分析顆粒之最密堆積以及膠體黏度對固含量之關係 24
3.2.5 分析不同固含量膠體黏度性質 25
第4章 實驗結果 26
4.1 二氧化矽顆粒 26
4.1.1 二氧化矽顆粒在乾式環境下之分布 26
4.1.2 二氧化矽顆粒在膠體中之分布 27
4.2 顆粒添加量對膠體流變性質之影響 28
4.3 模型建立 33
4.4 提升膠體固含量 36
第5章 結論與未來展望 42
5.1 結論 42
5.2 未來研究方向 42
參考資料 43
附錄 51
-
dc.language.isozh_TW-
dc.subject分散性zh_TW
dc.subject高固含量膠體zh_TW
dc.subject流動性zh_TW
dc.subject分散性zh_TW
dc.subject高固含量膠體zh_TW
dc.subject流動性zh_TW
dc.subjectdispersionen
dc.subjecthigh solid fraction colloidsen
dc.subjectflowabilityen
dc.subjectdispersionen
dc.subjecthigh solid fraction colloidsen
dc.subjectflowabilityen
dc.title高固含量膠體流動性之研究zh_TW
dc.titleFlowability enhancement of high solid fraction colloidsen
dc.typeThesis-
dc.date.schoolyear110-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee郭修伯;楊馥菱;童世煌zh_TW
dc.contributor.oralexamcommitteeHsiu-Po Kuo;Fu-Ling Yang;Shih-Huang Tungen
dc.subject.keyword高固含量膠體,流動性,分散性,zh_TW
dc.subject.keywordhigh solid fraction colloids,flowability,dispersion,en
dc.relation.page58-
dc.identifier.doi10.6342/NTU202202538-
dc.rights.note未授權-
dc.date.accepted2022-08-19-
dc.contributor.author-college工學院-
dc.contributor.author-dept化學工程學系-
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-110-2.pdf
  未授權公開取用
3.02 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved