Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83596
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳振中(Chun-Chung Chan)
dc.contributor.authorLi-Han Wangen
dc.contributor.author王莉涵zh_TW
dc.date.accessioned2023-03-19T21:11:28Z-
dc.date.copyright2022-09-05
dc.date.issued2022
dc.date.submitted2022-08-25
dc.identifier.citation(1) Weiner, S.; Addadi, L. Acidic Macromolecules of Mineralized Tissues: The Controllers of Crystal Formation. Trends Biochem. Sci. 1991, 16 (7), 252–256. (2) De Yoreo, J. J.; Gilbert, P. U. P. A.; Sommerdijk, N. A. J. M.; Penn, R. L.; Whitelam, S.; Joester, D.; Zhang, H.; Rimer, J. D.; Navrotsky, A.; Banfield, J. F.; Wallace, A. F.; Michel, F. M.; Meldrum, F. C.; C?lfen, H.; Dove, P. M. Crystallization by Particle Attachment in Synthetic, Biogenic, and Geologic Environments. Science. 2015, 349 (6247), aaa6760. (3) Gower, L. B.; Odom, D. J. Deposition of Calcium Carbonate Films by a Polymer-Induced Liquid-Precursor (PILP) Process. J. Cryst. Growth. 2000, 210 (4), 719–734. (4) Li, Y.; Thula, T. T.; Jee, S.; Perkins, S. L.; Aparicio, C.; Douglas, E. P.; Gower, L. B. Biomimetic Mineralization of Woven Bone-Like Nanocomposites: Role of Collagen Cross-Links. Biomacromolecules. 2012, 13 (1), 49–59. (5) Burwell, A. K.; Thula-Mata, T.; Gower, L. B.; Habeliz, S.; Kurylo, M.; Ho, S. P.; Chien, Y.-C.; Cheng, J.; Cheng, N. F.; Gansky, S. A.; Marshall, S. J.; Marshall, G. W. Functional Remineralization of Dentin Lesions Using Polymer-Induced Liquid-Precursor Process. PLOS ONE. 2012, 7 (6), e38852. (6) Wolf, S. E.; Gower, L. B. Challenges and Perspectives of the Polymer-Induced Liquid-Precursor Process: The Pathway from Liquid-Condensed Mineral Precursors to Mesocrystalline Products. New Perspectives on Mineral Nucleation and Growth: From Solution Precursors to Solid Materials. Springer International Publishing: Cham, 2017, pp 43–75. (7) Gower, L. B. Biomimetic Model Systems for Investigating the Amorphous Precursor Pathway and Its Role in Biomineralization. Chem. Rev. 2008, 108 (11), 4551–4627. (8) Yao, S.; Lin, X.; Xu, Y.; Chen, Y.; Qiu, P.; Shao, C.; Jin, B.; Mu, Z.; Sommerdijk, N. A. J. M.; Tang, R. Osteoporotic Bone Recovery by a Highly Bone-Inductive Calcium Phosphate Polymer-Induced Liquid-Precursor. Adv. Sci. 2019, 6 (19), 1900683. (9) Liu, Z.; Shao, C.; Jin, B.; Zhang, Z.; Zhao, Y.; Xu, X.; Tang, R. Crosslinking Ionic Oligomers as Conformable Precursors to Calcium Carbonate. Nature. 2019, 574 (7778), 394–398. (10) Gillam, D. g.; Orchardson, R. Advances in the Treatment of Root Dentine Sensitivity: Mechanisms and Treatment Principles. Endod. Top. 2006, 13 (1), 13–33. (11) Kim, J. won; Park, J.-C. Dentin Hypersensitivity and Emerging Concepts for Treatments. J. Oral Biosci. 2017, 59 (4), 211–217. (12) Bertassoni, L. E.; Stankoska, K.; Swain, M. V. Insights into the Structure and Composition of the Peritubular Dentin Organic Matrix and the Lamina Limitans. Micron. 2012, 43 (2), 229–236. (13) Krauser, J. T. Hypersensitive Teeth. Part I: Etiology. J. Prosthet. Dent. 1986, 56 (2), 153–156. (14) Canadian Advisory Board on Dentin Hypersensitivity. Consensus-Based Recommendations for the Diagnosis and Management of Dentin Hypersensitivity. J. Can. Dent. Assoc. 2003, 69 (4), 221–226. (15) Davis, W. B.; Winter, P. J. The Effect of Abrasion on Enamel and Dentine and Exposure to Dietary Acid. Br. Dent. J. 1980, 148 (11), 253–256. (16) Meurman, J. H.; Frank, R. M. Scanning Electron Microscopic Study of the Effect of Salivary Pellicle on Enamel Erosion. Caries Res. 1991, 25 (1), 1–6. (17) Gwinnett, A. J. Chemically Conditioned Dentin: A Comparison of Conventional and Environmental Scanning Electron Microscopy Findings. Dent. Mater. 1994, 10 (3), 149–155. (18) Lussi, A.; Hellwig, E.; Zero, D.; Jaeggi, T. Erosive Tooth Wear: Diagnosis, Risk Factors and Prevention. Am. J. Dent. 2006, 19 (6), 319–325. (19) Featherstone, J. D. B.; Lussi, A. Understanding the Chemistry of Dental Erosion. Dent. Eros. 2006, 20, 66–76. (20) Moazzez, R.; Bartlett, D. Intrinsic Causes of Erosion. Erosive Tooth Wear. 2014, 25, 180–196. (21) Absi, E. G.; Addy, M.; Adams, D. Dentine Hypersensitivity. J. Clin. Periodontol. 1987, 14 (5), 280–284. (22) Rimondini, L.; Baroni, C.; Carrassi, A. Ultrastructure of Hypersensitive and Non-Sensitive Dentine. J. Clin. Periodontol. 1995, 22 (12), 899–902. (23) Bartold, P. Dentinal Hypersensitivity: A Review. Aust. Dent. J. 2006, 51 (3), 212–218. (24) Bernick, Sol. Innervation of the Human Tooth. Anat. Rec. 1948, 101 (1), 81–107. (25) Frank, R. M. Attachment Sites between the Odontoblast Process and the Intradentinal Nerve Fibre. Arch. Oral Biol. 1968, 13 (7), 833-834. (26) Pashley, D. H. Dynamics of the Pulpo-Dentin Complex. Crit. Rev. Oral Biol. Med. 1996, 7 (2), 104–133. (27) Orchardson, R.; Cadden, S. W. An Update on the Physiology of the Dentine–Pulp Complex. Dent. Update. 2001, 28 (4), 200–209. (28) Brannstrom, M.; Johnson, G.; Nordenvall, K.-J. Transmission and Control of Dentinal Pain: Resin Impregnation for the Desensitization of Dentin. J. Am. Dent. Assoc. 1979, 99 (4), 612–618. (29) Br?nnstr?m, M.; ?str?m, A. A Study on the Mechanism of Pain Elicited from the Dentin. J. Dent. Res. 1964, 43 (4), 619–625. (30) Chidchuangchai, W.; Vongsavan, N.; Matthews, B. Sensory Transduction Mechanisms Responsible for Pain Caused by Cold Stimulation of Dentine in Man. Arch. Oral Biol. 2007, 52 (2), 154–160. (31) Grossman, L. I. A Systematic Method for the Treatment of Hypersensitive Dentin. J. Am. Dent. Assoc. 1922. 1935, 22 (4), 592–602. (32) Tarbet, W. J.; Silverman, G.; Stolman, J. M.; Fratarcangelo, P. A. Clinical Evaluation of a New Treatment for Dentinal Hypersensitivity. J. Periodontol. 1980, 51 (9), 535–540. (33) Hodosh, M. A Superior Desensitizer—Potassium Nitrate. J. Am. Dent. Assoc. 1974, 88 (4), 831–832. (34) Greenhill, J. D.; Pashley, D. H. The Effects of Desensitizing Agents on the Hydraulic Conductance of Human Dentin in Vitro. J. Dent. Res. 1981, 60 (3), 686–698. (35) Markowitz, K.; Bilotto, G.; Kim, S. Decreasing Intradental Nerve Activity in the Cat with Potassium and Divalent Cations. Arch. Oral Biol. 1991, 36 (1), 1–7. (36) Peacock, J. M.; Orchardson, R. Effects of Potassium Ions on Action Potential Conduction in A- and C-Fibers of Rat Spinal Nerves. J. Dent. Res. 1995, 74 (2), 634–641. (37) Saeki, K.; Marshall, G. W.; Gansky, S. A.; Parkinson, C. R.; Marshall, S. J. Strontium Effects on Root Dentin Tubule Occlusion and Nanomechanical Properties. Dent. Mater. 2016, 32 (2), 240–251. (38) Markowitz, K.; Pashley, D. H. Discovering New Treatments for Sensitive Teeth: The Long Path from Biology to Therapy. J. Oral Rehabil. 2008, 35 (4), 300–315. (39) Silverman, G.; Berman, E.; Hanna, C. B.; Salvato, A.; Fratarcangelo, P.; Bartizek, R. D.; Bollmer, B. W.; Campbell, S. L.; Lanzalaco, A. C.; Mackay, B. J.; McClanahan, S. F.; Perlich, M. A.; Shaffer, J. B. Assessing the Efficacy of Three Dentifrices in the Treatment of Dentinal Hypersensitivity. J. Am. Dent. Assoc. 1996, 127 (2), 191–201. (40) West, N. X.; Addy, M.; Jackson, R. J.; Ridge, D. B. Dentine Hypersensitivity and the Placebo Response. J. Clin. Periodontol. 1997, 24 (4), 209–215. (41) Olley, R. C.; Pilecki, P.; Hughes, N.; Jeffery, P.; Austin, R. S.; Moazzez, R.; Bartlett, D. An in Situ Study Investigating Dentine Tubule Occlusion of Dentifrices Following Acid Challenge. J. Dent. 2012, 40 (7), 585–593. (42) Ehrligh, J.; Hochman, N.; Gedalia, I.; Tal, M. Residual Fluoride Concentrations and Scanning Electron Microscopic Examination of Root Surfaces of Human Teeth After Topical Application of Fluoride In Vivo. J. Dent. Res. 1975, 54 (4), 897–900. (43) Ritter, A. V.; de Dias, W. L.; Miguez, P.; Caplan, D. J.; Swift, E. J. Treating Cervical Dentin Hypersensitivity with Fluoride Varnish. J. Am. Dent. Assoc. 2006, 137 (7), 1013–1020. (44) Addy, M.; Dowell, P. Dentine Hypersensitivity - A Review. J. Clin. Periodontol. 1983, 10 (4), 351–363. (45) Suge, T.; Kawasaki, A.; Ishikawa, K.; Matsuo, T.; Ebisu, S. Ammonium Hexafluorosilicate Elicits Calcium Phosphate Precipitation and Shows Continuous Dentin Tubule Occlusion. Dent. Mater. 2008, 24 (2), 192–198. (46) Orchardson, R.; Gillam, D. G. Managing Dentin Hypersensitivity. J. Am. Dent. Assoc. 2006, 137 (7), 990–998. (47) Pillon, F. L.; Romani, I. G.; Schmidt, ?. R. Effect of a 3% Potassium Oxalate Topical Application on Dentinal Hypersensitivity After Subgingival Scaling and Root Planing. J. Periodontol. 2004, 75 (11), 1461–1464. (48) Arrais, C. A. G.; Chan, D. C. N.; Giannini, M. Effects of Desensitizing Agents on Dentinal Tubule Occlusion. J. Appl. Oral Sci. 2004, 12 (2), 144–148. (49) Ishihata, H.; Finger, W. J.; Kanehira, M.; Shimauchi, H.; Komatsu, M. In Vitro Dentin Permeability after Application of Gluma? Desensitizer as Aqueous Solution or Aqueous Fumed Silica Dispersion. J. Appl. Oral Sci. 2011, 19 (2), 147–153. (50) Hench, L. L.; Splinter, R. J.; Allen, W. C.; Greenlee, T. K. Bonding Mechanisms at the Interface of Ceramic Prosthetic Materials. J. Biomed. Mater. Res. 1971, 5 (6), 117–141. (51) Hench, L. L.; Paschall, H. A. Direct Chemical Bond of Bioactive Glass-Ceramic Materials to Bone and Muscle. J. Biomed. Mater. Res. 1973, 7 (3), 25–42. (52) Wilson, J.; Low, S. B. Bioactive Ceramics for Periodontal Treatment: Comparative Studies in the Patus Monkey. J. Appl. Biomater. 1992, 3 (2), 123–129. (53) Forsback, A.; Areva, S.; Salonen, J. Mineralization of Dentin Induced by Treatment with Bioactive Glass S53P4 in Vitro. Acta Odontol. Scand. 2004, 62 (1), 14–20. (54) Petrou, I.; Heu, R.; Stranick, M.; Lavender, S.; Zaidel, L.; Cummins, D.; Sullivan, R. J.; Hsueh, C.; Gimzewski, J. K. A Breakthrough Therapy for Dentin Hypersensitivity: How Dental Products Containing 8% Arginine and Calcium Carbonate Work to Deliver Effective Relief of Sensitive Teeth. J. Clin. Dent. 2009, 20 (1), 23–31. (55) Kimura, Y.; Wilder-Smith, P.; Yonaga, K.; Matsumoto, K. Treatment of Dentine Hypersensitivity by Lasers: A Review. J. Clin. Periodontol. 2000, 27 (10), 715–721. (56) Strang, R.; Moseley, H.; Carmichael, A. Soft Lasers--Have They a Place in Dentistry? Br. Dent. J. 1988, 165 (6), 221–225. (57) Matsumoto, K.; Nakamura, Y.; Wakabayashi, H. A Clinical Study on the Hypersensitive Dentine by 60 MW GaAlAs Semiconductor Laser. J. Showa Univ. Dent. Soc. 1990, 10 (4), 446–449. (58) Wakabayashi, H.; Hamba, M.; Matsumoto, K.; Tachibana, H. Effect of Irradiation by Semiconductor Laser on Responses Evoked in Trigeminal Caudal Neurons by Tooth Pulp Stimulation. Lasers Surg. Med. 1993, 13 (6), 605–610. (59) Lan, W.-H.; Liu, H.-C. Treatment of Dentin Hypersensitivity by Nd:YAG Laser. J. Clin. Laser Med. Surg. 1996, 14 (2), 89–92. (60) Liu, H.-C.; Lin, C.-P.; Lan, W.-H. Sealing Depth of Nd:YAG Laser on Human Dentinal Tubules. J. Endod. 1997, 23 (11), 691–693. (61) Whitters, C. J.; Hall, A.; Creanor, S. L.; Moseley, H.; Gilmour, W. H.; Strang, R.; Saunders, W. P.; Orchardson, R. A Clinical Study of Pulsed Nd:YAG Laser-Induced Pulpal Analgesia. J. Dent. 1995, 23 (3), 145–150. (62) Bonin, P.; Boivin, R.; Poulard, J. Dentinal Permeability of the Dog Canine after Exposure of a Cervical Cavity to the Beam of a CO2 Laser. J. Endod. 1991, 17 (3), 116–118. (63) Fayad, M. I.; Carter, J. M.; Liebow, C. Transient Effects of Low-Energy CO2 Laser Irradiation on Dentinal Impedance: Implications for Treatment of Hypersensitive Teeth. J. Endod. 1996, 22 (10), 526–531. (64) Chiang, Y.-C.; Lin, H.-P.; Chang, H.-H.; Cheng, Y.-W.; Tang, H.-Y.; Yen, W.-C.; Lin, P.-Y.; Chang, K.-W.; Lin, C.-P. A Mesoporous Silica Biomaterial for Dental Biomimetic Crystallization. ACS Nano. 2014, 8 (12), 12502–12513. (65) Ezzahmouly, M.; Elmoutaouakkil, A.; Ed-Dhahraouy, M.; Khallok, H.; Elouahli, A.; Mazurier, A.; ElAlbani, A.; Hatim, Z. Micro-Computed Tomographic and SEM Study of Porous Bioceramics Using an Adaptive Method Based on the Mathematical Morphological Operations. Heliyon. 2019, 5 (12), e02557. (66) Isabell, T. C.; Fischione, P. E.; O’Keefe, C.; Guruz, M. U.; Dravid, V. P. Plasma Cleaning and Its Applications for Electron Microscopy. Microsc. Microanal. 1999, 5 (2), 126–135. (67) Chu, B. Laser Light Scattering. Annu. Rev. Phys. Chem. 1970, 21 (1), 145–174. (68) Pate, K.; Safier, P. 12 - Chemical Metrology Methods for CMP Quality. Advances in Chemical Mechanical Planarization (CMP). Woodhead Publishing, 2016, pp 299–325. (69) Metz, G.; Wu, X. L.; Smith, S. O. Ramped-Amplitude Cross Polarization in Magic-Angle-Spinning NMR. J. Magn. Reson. A. 1994, 110 (2), 219–227. (70) Borisov, A. S.; Hazendonk, P.; Hayes, P. G. Solid-State Nuclear Magnetic Resonance Spectroscopy: A Review of Modern Techniques and Applications for Inorganic Polymers. J. Inorg. Organomet. Polym. Mater. 2010, 20 (2), 183–212. (71) Gullion, T.; Schaefer, J. Rotational-Echo Double-Resonance NMR. J. Magn. Reson. 1969. 1989, 81 (1), 196–200. (72) Goetz, J. M.; Schaefer, J. REDOR Dephasing by Multiple Spins in the Presence of Molecular Motion. J. Magn. Reson. 1997, 127 (2), 147–154. (73) Chen, L.; Lu, X.; Wang, Q.; Lafon, O.; Tr?bosc, J.; Deng, F.; Amoureux, J.-P. Distance Measurement between a Spin-1/2 and a Half-Integer Quadrupolar Nuclei by Solid-State NMR Using Exact Analytical Expressions. J. Magn. Reson. 2010, 206 (2), 269–273. (74) Lu, X.; Lafon, O.; Tr?bosc, J.; Amoureux, J.-P. Detailed Analysis of the S-RESPDOR Solid-State NMR Method for Inter-Nuclear Distance Measurement between Spin-1/2 and Quadrupolar Nuclei. J. Magn. Reson. 2012, 215, 34–49. (75) Chen, L.; Wang, Q.; Hu, B.; Lafon, O.; Tr?bosc, J.; Deng, F.; Amoureux, J.-P. Measurement of Hetero-Nuclear Distances Using a Symmetry-Based Pulse Sequence in Solid-State NMR. Phys. Chem. Chem. Phys. 2010, 12 (32), 9395–9405. (76) Brinkmann, A.; Kentgens, A. P. M. Sensitivity Enhancement and Heteronuclear Distance Measurements in Biological 17O Solid-State NMR. J. Phys. Chem. B. 2006, 110 (32), 16089–16101. (77) Brinkmann, A.; Kentgens, A. P. M. Proton-Selective 17O?1H Distance Measurements in Fast Magic-Angle-Spinning Solid-State NMR Spectroscopy for the Determination of Hydrogen Bond Lengths. J. Am. Chem. Soc. 2006, 128 (46), 14758–14759. (78) Wang, Q.; Lu, X.; Lafon, O.; Tr?bosc, J.; Deng, F.; Hu, B.; Chen, Q.; Amoureux, J.-P. Measurement of 13C–1H Dipolar Couplings in Solids by Using Ultra-Fast Magic-Angle Spinning NMR Spectroscopy with Symmetry-Based Sequences. Phys. Chem. Chem. Phys. 2011, 13 (13), 5967–5973. (79) Gan, Z. Measuring Multiple Carbon–Nitrogen Distances in Natural Abundant Solids Using R-RESPDOR NMR. Chem. Commun. 2006, No. 45, 4712–4714. (80) Tseng, Y.-H.; Mou, C.-Y.; Chan, J. C. C. Solid-State NMR Study of the Transformation of Octacalcium Phosphate to Hydroxyapatite:? A Mechanistic Model for Central Dark Line Formation. J. Am. Chem. Soc. 2006, 128 (21), 6909–6918. (81) Amjad, Z. Effect of Precipitation Inhibitors on Calcium Phosphate Scale Formation. Can. J. Chem. 1989, 67 (5), 850–856. (82) Chen, W.-Y.; Yang, C.-I.; Lin, C.-J.; Huang, S.-J.; Chan, J. C. C. Characterization of the Crystallization Pathway of Calcium Phosphate in Liposomes. J. Phys. Chem. C. 2014, 118 (22), 12022–12027. (83) Yesinowski, J. P.; Eckert, H. Hydrogen Environments in Calcium Phosphates: Proton MAS NMR at High Spinning Speeds. J. Am. Chem. Soc. 1987, 109 (21), 6274–6282. (84) Cho, G.; Wu, Y.; Ackerman, J. L. Detection of Hydroxyl Ions in Bone Mineral by Solid-State NMR Spectroscopy. Science. 2003, 300 (5622), 1123–1127. (85) Tas, A. C. Transformation of Brushite (CaHPO4·2H2O) to Whitlockite (Ca9Mg(HPO4)(PO4)6) or Other CaPs in Physiologically Relevant Solutions. J. Am. Ceram. Soc. 2016, 99 (4), 1200–1206. (86) Boanini, E.; Silingardi, F.; Gazzano, M.; Bigi, A. Synthesis and Hydrolysis of Brushite (DCPD): The Role of Ionic Substitution. Cryst. Growth Des. 2021, 21 (3), 1689–1697. (87) Gower, L.; Elias, J. Colloid Assembly and Transformation (CAT): The Relationship of PILP to Biomineralization. J. Struct. Biol. X. 2021, 6, 100059. (88) Dai, L.; Cheng, X.; Gower, L. B. Transition Bars during Transformation of an Amorphous Calcium Carbonate Precursor. Chem. Mater. 2008, 20 (22), 6917–6928. (89) Yu, Y.; Guo, Z.; Zhao, Y.; Kong, K.; Pan, H.; Xu, X.; Tang, R.; Liu, Z. A Flexible and Degradable Hybrid Mineral as a Plastic Substitute. Adv. Mater. 2022, 34 (9), 2107523. (90) Mu, Z.; Kong, K.; Jiang, K.; Dong, H.; Xu, X.; Liu, Z.; Tang, R. Pressure-Driven Fusion of Amorphous Particles into Integrated Monoliths. Science. 2021, 372 (6549), 1466–1470. (91) Yu, Y.; Stevensson, B.; Pujari-Palmer, M.; Guo, H.; Engqvist, H.; Ed?n, M. The Monetite Structure Probed by Advanced Solid-State NMR Experimentation at Fast Magic-Angle Spinning. Int. J. Mol. Sci. 2019, 20 (24), 6356. (92) Lu, B.-Q.; Garcia, N. A.; Chevrier, D. M.; Zhang, P.; Raiteri, P.; Gale, J. D.; Gebauer, D. Short-Range Structure of Amorphous Calcium Hydrogen Phosphate. Cryst. Growth Des. 2019, 19 (5), 3030–3038. (93) Tsai, T. W. T.; Chan, J. C. C. Recent Progress in the Solid-State NMR Studies of Biomineralization. Annual Reports on NMR Spectroscopy. Elsevier, 2011, Vol. 73, pp 1–61. (94) Huang, Y.-C.; Rao, A.; Huang, S.-J.; Chang, C.-Y.; Drechsler, M.; Knaus, J.; Chan, J. C. C.; Raiteri, P.; Gale, J. D.; Gebauer, D. Uncovering the Role of Bicarbonate in Calcium Carbonate Formation at Near-Neutral pH. Angew. Chem. Int. Ed. 2021, 60 (30), 16707–16713. (95) Tseng, Y.-H.; Tsai, Y.-L.; Tsai, T. W. T.; Chao, J. C. H.; Lin, C.-P.; Huang, S.-H.; Mou, C.-Y.; Chan, J. C. C. Characterization of the Phosphate Units in Rat Dentin by Solid-State NMR Spectroscopy. Chem. Mater. 2007, 19 (25), 6088–6094. (96) Hou, G.; Byeon, I.-J. L.; Ahn, J.; Gronenborn, A. M.; Polenova, T. 1H–13C/1H–15N Heteronuclear Dipolar Recoupling by R-Symmetry Sequences Under Fast Magic Angle Spinning for Dynamics Analysis of Biological and Organic Solids. J. Am. Chem. Soc. 2011, 133 (46), 18646–18655. (97) Aue, W. P.; Roufosse, A. H.; Glimcher, M. J.; Griffin, R. G. Solid-State Phosphorus-31 Nuclear Magnetic Resonance Studies of Synthetic Solid Phases of Calcium Phosphate: Potential Models of Bone Mineral. Biochemistry. 1984, 23 (25), 6110–6114. (98) Sudarsanan, K.; Young, R. A. Significant Precision in Crystal Structural Details. Holly Springs Hydroxyapatite. Acta Crystallogr. B. 1969, 25 (8), 1534–1543. (99) Catti, M.; Ferraris, G.; Mason, S. A. Low-Temperature Ordering of Hydrogen-Atoms in CaHPO4 (Monetite) - X-Ray and Neutron-Diffraction Study at 145 K. Acta Crystallogr Sect B-Struct Commun. 1980, 36, 254–259. (100) V. Dorozhkin, S. Amorphous Calcium Orthophosphates: Nature, Chemistry and Biomedical Applications. Int. J. Mater. Chem. 2012, 2 (1), 19–46. (101) Tropp, J.; Blumenthal, N. C.; Waugh, J. S. Phosphorus NMR Study of Solid Amorphous Calcium Phosphate. J. Am. Chem. Soc. 1983, 105 (1), 22–26. (102) Jaeger, C.; Maltsev, S.; Karrasch, A. Progress of Structural Elucidation of Amorphous Calcium Phosphate (ACP) and Hydroxyapatite (HAp): Disorder and Surfaces as Seen by Solid State NMR. Key Engineering Materials. 2006, 309–311, 69–72. (103) Habraken, W. J. E. M.; Tao, J.; Brylka, L. J.; Friedrich, H.; Bertinetti, L.; Schenk, A. S.; Verch, A.; Dmitrovic, V.; Bomans, P. H. H.; Frederik, P. M.; Laven, J.; van der Schoot, P.; Aichmayer, B.; de With, G.; DeYoreo, J. J.; Sommerdijk, N. A. J. M. Ion-Association Complexes Unite Classical and Non-Classical Theories for the Biomimetic Nucleation of Calcium Phosphate. Nat. Commun. 2013, 4, 1507. (104) Shellis, R. P. Effects of a Supersaturated Pulpal Fluid on the Formation of Caries-Like Lesions on the Roots of Human Teeth. Caries Res. 1994, 28 (1), 14–20. (105) Coffey, C. T.; Ingram, M. J.; Bjorndal, A. M. Analysis of Human Dentinal Fluid. Oral Surg. Oral Med. Oral Pathol. 1970, 30 (6), 835–837. (106) ?zok, A. R.; Wu, M.-K.; Ten Cate, J. M.; Wesselink, P. R. Effect of Dentinal Fluid Composition on Dentin Demineralization in Vitro. J. Dent. Res. 2004, 83 (11), 849–853. (107) Bala, W. A.; Benitha, V. S.; Jeyasubramanian, K.; Hikku, G. S.; Sankar, P.; Kumar, S. V. Investigation of Anti-Bacterial Activity and Cytotoxicity of Calcium Fluoride Nanoparticles. J. Fluor. Chem. 2017, 193, 38–44. (108) Koeser, J.; Carvalho, T. S.; Pieles, U.; Lussi, A. Preparation and Optimization of Calcium Fluoride Particles for Dental Applications. J. Mater. Sci. Mater. Med. 2014, 25 (7), 1671–1677. (109) Hanauer, M.; Pierrat, S.; Zins, I.; Lotz, A.; S?nnichsen, C. Separation of Nanoparticles by Gel Electrophoresis According to Size and Shape. Nano Lett. 2007, 7 (9), 2881–2885. (110) Singh, E.; Davidson, I. E. Utilization of Line Surge Arrestors to Improve Overhead EHV DC Line Performance under Lightning Conditions. Int. J. Appl. Eng. Res. 2019, 14 (21), 4030–4041.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83596-
dc.description.abstract磷酸鈣在生物醫學應用中具有良好的特性,例如生物相容性、生物可降解性、對藥物的高親和力和骨誘導性。磷酸鈣的磷灰石相與人體硬組織的主要無機成分非常相似,因此,其已被普遍用於骨科和牙科研究的系統模型。與磷酸鈣生物礦化相關的各種蛋白質都富含羧基,其中,聚丙烯酸因其高生物相容性而非常適合仿生礦化研究,聚丙烯酸不僅能有效延緩磷酸鈣的沈澱,且能抑制磷酸鈣的相轉,使其維持非晶相。結晶性樣品多呈粉末狀,因其抗斷裂能力較差,而非晶相態不具備特定生長方向,因此較易形成塊材,並具有較佳的機械強度。近年來,已有學者研發出在非水溶液環境中製備非晶相磷酸鈣的塊材。而在本研究中,我們在水溶液環境下利用聚丙烯酸製備膠狀磷酸鈣,透過不同的乾燥固化過程,既可以改變樣品的表面形貌,使其形成規則的圖案,也可以使樣品成為透明的塊材,此塊材為具有良好機械性質的有機無機複合材料。本研究亦透過固態核磁共振光譜鑑定以不同方法製備的磷酸鈣,證明磷酸鈣中的磷酸鹽種類具有顯著的結構多樣性,並能與水分子形成氫鍵。最後,我們也將磷酸鈣凝膠用於治療牙本質敏感症,該結果說明了磷酸鈣凝膠作為生物材料的多功能性,可用於脊椎動物的硬組織修復。zh_TW
dc.description.abstractCalcium phosphate (CaP) exhibits favorable properties for biomedical applications such as biocompatibility, biodegradability, high affinity for drugs, and osteoinductivity. Apatitic phase of CaP resembles closely the main inorganic constituent of human hard tissues. Therefore, it has been commonly used as a model of system for the studies of orthopedics and dentistry. Various proteins relevant to the biomineralization of CaP are rich in carboxylic acids. As a result, polyacrylic acid (PAA) is well suited for biomimetic mineralization studies because of its high biocompatibility. PAA not only can effectively retard the precipitation of CaP, but also inhibit the phase transformation of amorphous CaP (ACP). Compared to crystallized powders with a poor ability to resist fracture, monolithic amorphous state has superior mechanical strength owing to its continuous internal structure. Very recently, a novel non-aqueous protocol has been developed to prepare monoliths of ACP. In this study, gel-like CaP was prepared with PAA in aqueous solution. Through various dehydration process, we can either modify the surface morphology of the samples to form a regular pattern, or make the samples become transparent monolith. The glassy monolith is homogenous organic-inorganic composite material with superior mechanical property. We also used solid-state NMR spectroscopy to probe the chemical states of various ACP samples and showed that the phosphate species in ACPs had a remarkable structural versatility. Furthermore, the CaP gel was used for treating dentin hypersensitivity. The results illustrate the versatility of CaP gel as biomaterials, which may be exploited for hard tissue repair in vertebrates.en
dc.description.provenanceMade available in DSpace on 2023-03-19T21:11:28Z (GMT). No. of bitstreams: 1
U0001-2508202213541900.pdf: 62738699 bytes, checksum: 6f0b184120f510a55ae4523c43557671 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents口試委員會審定書 I 謝誌 II 中文摘要 VIII Abstract IX 縮寫表 X 目錄 XII 圖目錄 XVI 表目錄 XXI 第一章 緒論 1 1.1 聚合物誘導液相前驅物 1 1.2 無機離子寡聚物 5 1.3 牙本質敏感症 8 1.3.1 牙本質敏感症的成因 10 1.3.1.1 牙本質暴露 10 1.3.1.2 牙本質小管開口暢通 10 1.3.2 牙本質敏感症的機制 11 1.3.2.1 造牙本質細胞感覺接受器理論 11 1.3.2.2 神經支配理論 12 1.3.2.3 流體力學理論 12 1.3.3 牙本質敏感症的治療 13 1.3.3.1 硝酸鉀 13 1.3.3.2 鍶鹽 13 1.3.3.3 氟化物 13 1.3.3.4 草酸鹽 14 1.3.3.5 戊二醛 14 1.3.3.6 生物玻璃 15 1.3.3.7 精胺酸 15 1.3.3.8 雷射 16 1.3.3.9 中孔洞二氧化矽 17 1.4 研究動機 17 第二章 化學藥品與鑑定方法 18 2.1 化學藥品與使用儀器 18 2.2 鑑定方法 21 2.2.1 掃描式電子顯微鏡 21 2.2.2 穿透式電子顯微鏡 23 2.2.3 X 光能量色散光譜儀 23 2.2.4 X 光粉末繞射 23 2.2.5 傅立葉轉換紅外線光譜儀 24 2.2.6 動態光散射粒徑分析儀 25 2.2.7 界達電位 26 2.2.8 熱重分析儀 27 2.2.9 感應耦合電漿質譜儀 27 2.2.10 固態核磁共振光譜 28 2.2.10.1 基本原理 28 2.2.10.2 交叉極化 29 2.2.10.3 異核相關二維圖譜 31 2.2.10.4 磷酸鈣標準樣品之 31P{1H} 異核相關二維圖譜及交叉極化動態 32 2.2.10.5 對稱旋轉回波飽和脈衝雙共振 33 第三章 以聚合物穩定之磷酸鈣的製備與鑑定 35 3.1 以聚合物穩定之磷酸鈣的製備 35 3.2 調控 P/Ca 濃度比與 PAA 濃度之差異 37 3.2.1 結構分析 37 3.2.2 形貌分析 41 3.3 乾燥方法之差異 46 3.3.1 結構分析 46 3.3.2 形貌分析 48 3.4 磷酸氫根之鑑定 52 第四章 牙本質小管之填充 62 4.1 以細菌纖維素薄膜擴散離子填充牙本質小管 62 4.1.1 以細菌纖維素薄膜擴散磷酸根離子 62 4.1.1.1 實驗流程 62 4.1.1.2 填充結果鑑定 65 4.1.2 以細菌纖維素薄膜擴散鈣離子與磷酸根離子 66 4.1.2.1 實驗流程 66 4.1.2.2 填充結果鑑定 70 4.2 以氟化鈣填充牙本質小管 71 4.2.1 氟化鈣之製備與鑑定 71 4.2.2 電泳實驗流程 74 4.2.3 填充結果鑑定 75 4.3 以磷酸鈣填充牙本質小管 81 4.3.1 CaP5PAA4.5% 膠狀樣品之製備與鑑定 81 4.3.2 電泳實驗流程 82 4.3.3 填充結果鑑定 82 第五章 結論與未來展望 87 參考文獻 89 附錄 102 附錄 A 不同磷酸鈣樣品之 IR 鑑定 102 附錄 B 交叉極化動態擬合結果 105 附錄 C 拉曼光譜鑑定 CaP5PAA4.5% 113 附錄 D 細菌纖維素薄膜之培養 114
dc.language.isozh-TW
dc.subject牙本質敏感症zh_TW
dc.subject非晶相磷酸鈣zh_TW
dc.subject聚丙烯酸zh_TW
dc.subject塊材zh_TW
dc.subject聚合物誘導液相前驅物zh_TW
dc.subject無機離子寡聚物zh_TW
dc.subjectmonolithen
dc.subjectdentin hypersensitivityen
dc.subjectamorphous calcium phosphateen
dc.subjectpolymer-induced liquid-precursoren
dc.subjectpolyacrylic aciden
dc.subjectinorganic ionic oligomeren
dc.title在水溶液中以聚合物穩定之磷酸鈣的製備與應用zh_TW
dc.titlePreparation and Application of Polymer-Stabilized Calcium Phosphate in Aqueous Solutionen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee廖尉斯(Wei-Ssu Liao),江建文(Kien-Voon Kong),李度(Tu Lee),林俊彬(Chun-Pin Lin)
dc.subject.keyword非晶相磷酸鈣,聚丙烯酸,塊材,聚合物誘導液相前驅物,無機離子寡聚物,牙本質敏感症,zh_TW
dc.subject.keywordamorphous calcium phosphate,polyacrylic acid,monolith,polymer-induced liquid-precursor,inorganic ionic oligomer,dentin hypersensitivity,en
dc.relation.page115
dc.identifier.doi10.6342/NTU202202804
dc.rights.note未授權
dc.date.accepted2022-08-26
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
U0001-2508202213541900.pdf
  未授權公開取用
61.27 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved