Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83580
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林沛群zh_TW
dc.contributor.advisorPei-Chun Linen
dc.contributor.author陳亮傑zh_TW
dc.contributor.authorLiang-Jie Chenen
dc.date.accessioned2023-03-19T21:11:02Z-
dc.date.available2023-12-26-
dc.date.copyright2022-09-08-
dc.date.issued2022-
dc.date.submitted2002-01-01-
dc.identifier.citation[1]Wikipedia. "Jaquet-Droz automata." https://en.wikipedia.org/wiki/Jaquet-Droz_automata (accessed 13 March, 2022).

[2]K. R. GmbH. "KUKA uses two machine tools to manufacture 14 different components – for and with KUKA robots." https://www.kuka.com/en-de/industries/solutions-database/2016/07/solution-robotics-hall-10 (accessed 13, March, 2022).

[3]Tesla. "Model X." https://www.tesla.com/modelx (accessed 13, March, 2022).

[4]NASA. "Mars Curiousity Rover, Mars Exploration Program, NASA Science." https://mars.nasa.gov/msl/home/ (accessed 13, March, 2022).

[5]SONY. "aibo, Robotic puppy, powered by AI." https://us.aibo.com/ (accessed 13, March, 2022).

[6]KRATOS. "XQ-58A Valkyrie, Tactical UAVs." https://www.kratosdefense.com/systems-and-platforms/unmanned-systems/aerial/tactical-uavs#XQ58A (accessed 13, March, 2022).

[7]M. H. Raibert, Legged robots that balance. MIT press, 1986.

[8]S. Hirose and K. Kato, "Study on quadruped walking robot in Tokyo Institute of Technology-past, present and future," in Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065), 24-28 April 2000 2000, vol. 1, pp. 414-419 vol.1, doi: 10.1109/ROBOT.2000.844091.

[9]R. Mosher, "Test and evaluation of a versatile walking truck," in Proceedings of Off-Road Mobility Research Symposium, Washington DC, 1968, 1968, pp. 359-379.

[10]D. J. Todd, Walking machines: an introduction to legged robots. Springer Science & Business Media, 2013.

[11]C. Semini et al., "Design of the Hydraulically Actuated, Torque-Controlled Quadruped Robot HyQ2Max," IEEE/ASME Transactions on Mechatronics, vol. 22, no. 2, pp. 635-646, 2017, doi: 10.1109/TMECH.2016.2616284.

[12]C. Semini, N. G. Tsagarakis, B. Vanderborght, Y. Yang, and D. G. Caldwell, "HyQ - Hydraulically actuated quadruped robot: Hopping leg prototype," in 2008 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, 19-22 Oct. 2008 2008, pp. 593-599, doi: 10.1109/BIOROB.2008.4762913.

[13]I. I. d. T. (IIT). "HyQReal." https://dls.iit.it/web/dynamic-legged-systems/hyqreal (accessed.

[14]P. M. Wensing, A. Wang, S. Seok, D. Otten, J. Lang, and S. Kim, "Proprioceptive Actuator Design in the MIT Cheetah: Impact Mitigation and High-Bandwidth Physical Interaction for Dynamic Legged Robots," IEEE Transactions on Robotics, vol. 33, no. 3, pp. 509-522, 2017, doi: 10.1109/TRO.2016.2640183.

[15]G. Bledt, M. J. Powell, B. Katz, J. D. Carlo, P. M. Wensing, and S. Kim, "MIT Cheetah 3: Design and Control of a Robust, Dynamic Quadruped Robot," in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 1-5 Oct. 2018 2018, pp. 2245-2252, doi: 10.1109/IROS.2018.8593885.

[16]B. Katz, J. D. Carlo, and S. Kim, "Mini Cheetah: A Platform for Pushing the Limits of Dynamic Quadruped Control," in 2019 International Conference on Robotics and Automation (ICRA), 20-24 May 2019 2019, pp. 6295-6301, doi: 10.1109/ICRA.2019.8793865.

[17]S. Seok, A. Wang, C. Meng Yee, D. Otten, J. Lang, and S. Kim, "Design principles for highly efficient quadrupeds and implementation on the MIT Cheetah robot," in 2013 IEEE International Conference on Robotics and Automation, 6-10 May 2013 2013, pp. 3307-3312, doi: 10.1109/ICRA.2013.6631038.

[18]B. Dynamics. "SPOT® Automate sensing and inspection, capture limitless data, and explore without boundaries." https://www.bostondynamics.com/products/spot (accessed.

[19]S. Conseil, S. Bourennane, and L. Martin, "Comparison of fourier descriptors and Hu moments for hand posture recognition," in 2007 15th European Signal Processing Conference, 3-7 Sept. 2007 2007, pp. 1960-1964.

[20]陳宣妤, "具快速變換與跳耀能力之輪腳模組開發," 碩士論文, 機械工程學研究所, 國立臺灣大學, 2020.

[21]H. Kimura, Y. Fukuoka, and A. Cohen, "Adaptive Dynamic Walking of a Quadruped Robot on Natural Ground Based on Biological Concepts," I. J. Robotic Res., vol. 26, pp. 475-490, 05/01 2007, doi: 10.1177/0278364907078089.

[22]C. Tarin, H. Brugger, E. P. Hofer, and B. Tibken, "Combining trajectory control and position control for autonomous mobile robot navigation," in 2001 European Control Conference (ECC), 4-7 Sept. 2001 2001, pp. 1804-1809, doi: 10.23919/ECC.2001.7076183.

[23]沈宣諭, "輪腳雙模式運動平台之研發," 碩士論文, 機械工程學研究所, 國立臺灣大學, 2009.

[24]陳為熙, "輪腳快速變換平台及其仿生控制架構之開發," 碩士論文, 機械工程學研究所, 國立臺灣大學, 2013.

[25]H. Kimura, S. Akiyama, and K. Sakurama, "Realization of Dynamic Walking and Running of the Quadruped Using Neural Oscillator," Autonomous Robots, vol. 7, no. 3, pp. 247-258, 1999/11/01 1999, doi: 10.1023/A:1008924521542.

[26]M. Raibert, K. Blankespoor, G. Nelson, and R. Playter, "BigDog, the Rough-Terrain Quadruped Robot," IFAC Proceedings Volumes, vol. 41, no. 2, pp. 10822-10825, 2008/01/01/ 2008, doi: https://doi.org/10.3182/20080706-5-KR-1001.01833.

[27]P. Biswal and P. K. Mohanty, "Development of quadruped walking robots: A review," Ain Shams Engineering Journal, vol. 12, no. 2, pp. 2017-2031, 2021/06/01/ 2021, doi: https://doi.org/10.1016/j.asej.2020.11.005.

[28]M. Hutter et al., "ANYmal - a highly mobile and dynamic quadrupedal robot," in 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 9-14 Oct. 2016 2016, pp. 38-44, doi: 10.1109/IROS.2016.7758092.

[29]K. Čapek, "Rossum's Universal Robot's," ed. Czech, 2 January 1921.

[30]M. Sipser, "Introduction to the Theory of Computation," ACM Sigact News, vol. 27, no. 1, pp. 27-29, 1996.

[31]H. Hultborn and J. B. Nielsen, "Spinal control of locomotion--from cat to man," (in eng), Acta Physiol (Oxf), vol. 189, no. 2, pp. 111-21, Feb 2007, doi: 10.1111/j.1748-1716.2006.01651.x.

[32]A. J. Ijspeert, "Central pattern generators for locomotion control in animals and robots: A review," Neural Networks, vol. 21, no. 4, pp. 642-653, 2008/05/01/ 2008, doi: https://doi.org/10.1016/j.neunet.2008.03.014.

[33]K. Matsuoka, "Sustained oscillations generated by mutually inhibiting neurons with adaptation," Biological Cybernetics, vol. 52, no. 6, pp. 367-376, 1985/10/01 1985, doi: 10.1007/BF00449593.

[34]J. Yu, M. Tan, J. Chen, and J. Zhang, "A Survey on CPG-Inspired Control Models and System Implementation," IEEE Transactions on Neural Networks and Learning Systems, vol. 25, no. 3, pp. 441-456, 2014, doi: 10.1109/TNNLS.2013.2280596.

[35]A. A. Saputra and N. Kubota, "Synthesis of Neural Oscillator based Dynamic Rhythmic Generation in Quadruped Robot Locomotion," in 2018 International Electronics Symposium on Knowledge Creation and Intelligent Computing (IES-KCIC), 29-30 Oct. 2018 2018, pp. 184-191, doi: 10.1109/KCIC.2018.8628481.

[36]C. Bick, M. Goodfellow, C. R. Laing, and E. A. Martens, "Understanding the dynamics of biological and neural oscillator networks through exact mean-field reductions: a review," The Journal of Mathematical Neuroscience, vol. 10, no. 1, p. 9, 2020/05/27 2020, doi: 10.1186/s13408-020-00086-9.

[37]H. Liu, W. Jia, and L. Bi, "Hopf oscillator based adaptive locomotion control for a bionic quadruped robot," in 2017 IEEE International Conference on Mechatronics and Automation (ICMA), 6-9 Aug. 2017 2017, pp. 949-954, doi: 10.1109/ICMA.2017.8015944.

[38]L. Chengju, C. Qijun, and Z. Jiaqi, "Coupled Van Der Pol oscillators utilised as Central pattern generators for quadruped locomotion," in 2009 Chinese Control and Decision Conference, 17-19 June 2009 2009, pp. 3677-3682, doi: 10.1109/CCDC.2009.5192385.

[39]Y. Kuramoto, "Self-entrainment of a population of coupled non-linear oscillators," in International Symposium on Mathematical Problems in Theoretical Physics, Berlin, Heidelberg, H. Araki, Ed., 1975// 1975: Springer Berlin Heidelberg, pp. 420-422.

[40]W. Chen, H. Lin, Y. Lin, and P. Lin, "TurboQuad: A Novel Leg–Wheel Transformable Robot With Smooth and Fast Behavioral Transitions," IEEE Transactions on Robotics, vol. 33, no. 5, pp. 1025-1040, 2017, doi: 10.1109/TRO.2017.2696022.

[41]A. J. Ijspeert, A. Crespi, D. Ryczko, and j.-m. Cabelguen, "From Swimming to Walking with a Salamander Robot Driven by a Spinal Cord Model," Science (New York, N.Y.), vol. 315, pp. 1416-20, 04/01 2007, doi: 10.1126/science.1138353.

[42]S. Rutishauser, A. Sprowitz, L. Righetti, and A. J. Ijspeert, "Passive compliant quadruped robot using Central Pattern Generators for locomotion control," in 2008 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, 19-22 Oct. 2008 2008, pp. 710-715, doi: 10.1109/BIOROB.2008.4762878.

[43]L. Righetti and I. Auke Jan, "Programmable central pattern generators: an application to biped locomotion control," in Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006., 15-19 May 2006 2006, pp. 1585-1590, doi: 10.1109/ROBOT.2006.1641933.

[44]V. Barasuol, J. Buchli, C. Semini, M. Frigerio, E. R. D. Pieri, and D. G. Caldwell, "A reactive controller framework for quadrupedal locomotion on challenging terrain," in 2013 IEEE International Conference on Robotics and Automation, 6-10 May 2013 2013, pp. 2554-2561, doi: 10.1109/ICRA.2013.6630926.

[45]I. M. Koo et al., "Biologically inspired gait transition control for a quadruped walking robot," Autonomous Robots, vol. 39, no. 2, pp. 169-182, 2015/08/01 2015, doi: 10.1007/s10514-015-9433-4.

[46]A. W. Winkler, C. D. Bellicoso, M. Hutter, and J. Buchli, "Gait and Trajectory Optimization for Legged Systems Through Phase-Based End-Effector Parameterization," IEEE Robotics and Automation Letters, vol. 3, no. 3, pp. 1560-1567, 2018, doi: 10.1109/LRA.2018.2798285.

[47]D. Owaki and A. Ishiguro, "A Quadruped Robot Exhibiting Spontaneous Gait Transitions from Walking to Trotting to Galloping," Scientific Reports, vol. 7, no. 1, p. 277, 2017/03/21 2017, doi: 10.1038/s41598-017-00348-9.

[48]K. Inagaki and H. Kobayashi, "A gait transition for quadruped walking machine," in Proceedings of 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '93), 26-30 July 1993 1993, vol. 1, pp. 525-531 vol.1, doi: 10.1109/IROS.1993.583159.

[49]C. P. Santos and V. Matos, "Gait transition and modulation in a quadruped robot: A brainstem-like modulation approach," Robotics and Autonomous Systems, vol. 59, no. 9, pp. 620-634, 2011/09/01/ 2011, doi: https://doi.org/10.1016/j.robot.2011.05.003.

[50]T. Fukui, H. Fujisawa, K. Otaka, and Y. Fukuoka, "Autonomous gait transition and galloping over unperceived obstacles of a quadruped robot with CPG modulated by vestibular feedback," Robotics and Autonomous Systems, vol. 111, pp. 1-19, 2019/01/01/ 2019, doi: https://doi.org/10.1016/j.robot.2018.10.002.

[51]S. Kajita, F. Kanehiro, K. Kaneko, K. Yokoi, and H. Hirukawa, "The 3D linear inverted pendulum mode: A simple modeling for a biped walking pattern generation," in Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No. 01CH37180), 2001, vol. 1: IEEE, pp. 239-246.

[52]M. Vukobratovic and D. Juricic, "Contribution to the Synthesis of Biped Gait," IEEE Transactions on Biomedical Engineering, vol. BME-16, no. 1, pp. 1-6, 1969, doi: 10.1109/TBME.1969.4502596.

[53]J. Xu, L. Ge, J. Wang, Q. Wei, and H. Ma, "ZMP preview control based compliance control for a walking quadruped robot," in 2015 IEEE International Conference on Information and Automation, 8-10 Aug. 2015 2015, pp. 7-12, doi: 10.1109/ICInfA.2015.7279250.

[54]B. Wang, L. Jia, S. Liu, H. Zhang, and Z. Yin, "A Position-Control-Based Framework for Dynamic and Robust Quadrupedal Trotting," in 2021 6th International Conference on Mechanical Engineering and Robotics Research (ICMERR), 11-13 Dec. 2021 2021, pp. 22-29, doi: 10.1109/ICMERR54363.2021.9680860.

[55]M. H. Raibert, "Trotting, pacing and bounding by a quadruped robot," Journal of Biomechanics, vol. 23, pp. 79-98, 1990/01/01/ 1990, doi: https://doi.org/10.1016/0021-9290(90)90043-3.

[56]H. M. Herr and T. A. McMahon, "A Trotting Horse Model," The International Journal of Robotics Research, vol. 19, no. 6, pp. 566-581, 2000/06/01 2000, doi: 10.1177/027836490001900602.

[57]I. E. Sutherland and M. K. Ullner, "Footprints in the Asphalt," The International Journal of Robotics Research, vol. 3, no. 2, pp. 29-36, 1984/06/01 1984, doi: 10.1177/027836498400300203.

[58]M. Focchi, A. del Prete, I. Havoutis, R. Featherstone, D. G. Caldwell, and C. Semini, "High-slope terrain locomotion for torque-controlled quadruped robots," Autonomous Robots, vol. 41, no. 1, pp. 259-272, 2017/01/01 2017, doi: 10.1007/s10514-016-9573-1.

[59]J. Xu, L. Lang, H. Ma, and Q. Wei, "Contact force based compliance control for a trotting quadruped robot," in The 27th Chinese Control and Decision Conference (2015 CCDC), 23-25 May 2015 2015, pp. 5144-5149, doi: 10.1109/CCDC.2015.7162790.

[60]M. Bennani and F. Giri, "Dynamic modelling of a four-legged robot," Journal of Intelligent and Robotic Systems, vol. 17, no. 4, pp. 419-428, 1996/12/01 1996, doi: 10.1007/BF00571701.

[61]K. Takaba, A tutorial on preview control systems. 2003, pp. 1388-1393 Vol.2.

[62]E. F. Camacho and C. B. Alba, Model predictive control. Springer science & business media, 2013.

[63]M. Neunert et al., "Whole-Body Nonlinear Model Predictive Control Through Contacts for Quadrupeds," IEEE Robotics and Automation Letters, vol. 3, no. 3, pp. 1458-1465, 2018, doi: 10.1109/LRA.2018.2800124.

[64]Y. Ding, A. Pandala, C. Li, Y. H. Shin, and H. W. Park, "Representation-Free Model Predictive Control for Dynamic Motions in Quadrupeds," IEEE Transactions on Robotics, vol. 37, no. 4, pp. 1154-1171, 2021, doi: 10.1109/TRO.2020.3046415.

[65]R. Grandia, F. Farshidian, R. Ranftl, and M. Hutter, "Feedback MPC for Torque-Controlled Legged Robots," in 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 3-8 Nov. 2019 2019, pp. 4730-4737, doi: 10.1109/IROS40897.2019.8968251.

[66]M. Ajallooeian, S. Pouya, A. Sproewitz, and A. J. Ijspeert, "Central Pattern Generators augmented with virtual model control for quadruped rough terrain locomotion," in 2013 IEEE International Conference on Robotics and Automation, 6-10 May 2013 2013, pp. 3321-3328, doi: 10.1109/ICRA.2013.6631040.

[67]E. Persoon and K. Fu, "Shape Discrimination Using Fourier Descriptors," IEEE Transactions on Systems, Man, and Cybernetics, vol. 7, no. 3, pp. 170-179, 1977, doi: 10.1109/TSMC.1977.4309681.

[68]MATLAB. (2021). The MathWorks Inc.

[69]R. A. Finkel and J. L. Bentley, "Quad trees a data structure for retrieval on composite keys," Acta Informatica, vol. 4, no. 1, pp. 1-9, 1974/03/01 1974, doi: 10.1007/BF00288933.

[70]N. Dantam, Quaternion Computation. 2014.

[71]S. Wright and J. Nocedal, "Numerical optimization," Springer Science, vol. 35, no. 67-68, p. 7, 1999.

[72]F. A. Potra and S. J. Wright, "Interior-point methods," Journal of Computational and Applied Mathematics, vol. 124, no. 1, pp. 281-302, 2000/12/01/ 2000, doi: https://doi.org/10.1016/S0377-0427(00)00433-7.

[73]C. Feller and C. Ebenbauer, "Relaxed Logarithmic Barrier Function Based Model Predictive Control of Linear Systems," IEEE Transactions on Automatic Control, vol. 62, 03/11 2015, doi: 10.1109/TAC.2016.2582040.

[74]R. Foundation. "Raspberry Pi 4B." https://www.raspberrypi.com/products/raspberry-pi-4-model-b/ (accessed.

[75]N. Instruments. "sbRIO-9629." https://www.ni.com/zh-tw/support/model.sbrio-9629.html (accessed.

[76]Intel. "Intel® RealSense™ Tracking Camera T265." https://www.intelrealsense.com/tracking-camera-t265/ (accessed.

[77]J. Fuentes-Pacheco, J. Ruiz-Ascencio, and J. M. Rendón-Mancha, "Visual simultaneous localization and mapping: a survey," Artificial intelligence review, vol. 43, no. 1, pp. 55-81, 2015.

[78]NVIDIA. "Jetson Nano 2GB Developer Kit." https://developer.nvidia.com/embedded/jetson-nano-2gb-developer-kit (accessed.

[79]A. Goldenberg, B. Benhabib, and R. Fenton, "A complete generalized solution to the inverse kinematics of robots," IEEE Journal on Robotics and Automation, vol. 1, no. 1, pp. 14-20, 1985, doi: 10.1109/JRA.1985.1086995.

[80]V. M. Systems. "Vicon." https://www.vicon.com/ (accessed.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83580-
dc.description.abstract在不平坦的地面上移動一直是在機器人領域中的一個重要議題,因為在地球上絕大多數的地表都是輪式機器人無法到達的。不過,在大自然當中,許許多多的動物都能輕易地征服這些地表。因此利用機器人效仿這些動物的移動方式,便是一個能讓機器人也有此等移動能力的明顯做法,而四足機器人便是在這個理念下誕生的產物。由於四足機器人的移動方式相當的複雜,四隻腳隨著出腳的順序與抬起落地的時間比例的不同,分成許多種步態。每種步態都有其所適合的地形與情境,若能夠讓機器人如同動物般,連續且自由的在不同的步態間進行變換,那麼就能使得機器人更好的適應不同地形之間的變換,使得讓機器人在使用上更有彈性。

本研究專注於設計能使得四足機器人得在步態之間連續平滑變換之控制系統,並保證在變換的過程中,不會出現其他之步態或觸地情形。為了使步態能夠連續的變換,使用中樞模式發生器輸出代表各腳抬起落地時間順序之週期性相位訊號。利用中樞模式發生器其極限圈的特性,變換極限圈就能透過連續動態系統之特性使步態連續且平滑的變換。本研究所提出之中樞模式發生器分為三個部分,振盪器,協調器與位能牆。振盪器產生週期性訊號,協調器負責動態耦合,位能牆則是阻止不穩定步態的出現。若機器人在一步態之觸地情形筆直站立,足尖皆落於髖關節之正下方,重心在地面之投影並不落在踏地點所形成之區域或連線中,則視該步態為不穩定之步態。若重心之投影不落在踏地點所形成之區域或連線中,重力會以踏地點為支點,形成一個無法以各腳出力抵銷之力矩,造成機器人翻倒。經由數值模擬與實際實驗,本研究所提出之中樞模式發生器能夠在步態變換時有效避開這些不穩定步態。

只決定步態並無法使機器人移動。配合線性化離散三維剛體做為機器人之動力學模型,將各腳與地面間之作用力作為系統輸入,機身之位置、速度、姿態與角速度做為系統輸出,利用最佳化的方式在系統表現與效率之間權衡,並考慮作用力方向與摩擦力等物理限制,求得最佳之系統輸入。再來,利用最佳系統輸入,推算下一刻機器人之理想狀態後,計算各腳足尖所需移動至的位置,進而控制機器人的機身狀態,穩定機身的位置與姿態。

在不穩定的步態外,有兩種常用的步態,行走與快步。行走為同時三腳著地之步態,理想上任何時刻皆為靜穩定。快步步態則為交叉之兩對腳交替落地之步態,並非靜態穩定的步態。為了使機器人能在快步步態下穩定向前,利用線性倒單擺模型作為依據進行踏點規劃,使得在快步步態下能動態穩定的向前移動。

最後,在本實驗室所開發之新型輪角複合四足機器人上,實際驗證本研究所提出之控制系統。結果顯示本研究所提出之控制系統能夠有效控制機身之狀態,並在行走與快步兩種步態間進行連續且穩定的步態變換。
zh_TW
dc.description.abstractLocomotion through uneven terrain has always been a main focus in the field of robotics. Since most of the land on earth is unreachable by wheels but can easily be conquered by animals, imitating the animals becomes an obvious method of obtaining such a capability. Quadruped robots were born under this concept and have been proven to be an effective solution by the hard work of many research teams in recent years. Due to the fact that the locomotion of quadruped robots are quite complex, different sequences of stepping legs and different stance-swing ratios divides into numerous kind of gaits. Each gait is suitable for different terrains and situations, thus if we can make the robots to be able to change the using gait freely and continuously like a living animal, then it can better adapt to the transition of different terrains, increasing the flexibility of the robot.

This study focuses on designing a novel control system that enables a quadruped robot to continuously and smoothly change between these two gait patterns, and ensures that no other unstable gait or grounding occurs during the transition. In order to change the gait continuously, a central pattern generator is used to output a periodic phase signal representing the swing and stance of each foot. Using the limit circle characteristic of the central pattern generator, it is able to achieve continuous and smooth transition of different gaits. The central pattern generator consists of three major parts, oscillator, synchronizer and potential wall. The oscillator generates the periodic signal, the synchronizer is responsible for the dynamic coupling of the phase signals, and the potential wall prevents the appearance of unstable gaits. If a robot is standing straight under the contact scenario of a gait, the projection point of the center of mass on the ground does not locate inside the support polygon or the support line constructed by the feet on the ground, then the specific gait is considered to be unstable. This is due to the gravity would form a torque that cannot be offset by the legs, and makes the robot fall. With numerical simulations and experiments, the proposed central pattern generator is guaranteed to avoid the unstable gaits during the transition of gaits.

However, only determining the gait is not sufficient for stable locomotion of the robot. Using linearized three-dimensional rigid body model as the dynamic model of the robot and treating contact forces between the feet and the ground as the system input. States such as position, velocity, orientation and angular velocity are regarded as system output, optimization techniques can be utilized to calculate the optimal system input, weighting between system performance or efficiency and with respect to physical constraints such as friction. Furthermore, since the system output of the next time step can be obtained by the result of optimization, the position of the legs can also be calculated using the system output. With the position of the legs, the robot can be controlled and stabilized.
As the trotting gait is not a statically stable gait, foothold planning of each foot is added by considering the robot as a linear inverted pendulum, this allow the robot to be dynamically stable under both the trotting gait and the walking gait.

At last, the proposed control system of this work is tested and validated on a real quadruped robot. The results shows the proposed control system is able to control the states of the robot and achieve stable continuous transition between walking and trotting.
en
dc.description.provenanceMade available in DSpace on 2023-03-19T21:11:02Z (GMT). No. of bitstreams: 1
U0001-2908202211570100.pdf: 14402649 bytes, checksum: faf428b111e4639521f828645d485d22 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents目錄
(審定書) i
誌謝 ii
中文摘要 iii
ABSTRACT v
目錄 viii
圖目錄 xii
符號表 xix
第一章 緒論 1
1.1 前言 1
1.2 研究動機 3
1.3 文獻探討 5
1.3.1 四足機器人發展回顧 5
1.3.2 實驗室四足輪腳複合機器人回顧 11
1.3.3 中樞模式發生器 15
1.3.4 機器人之狀態控制 18
1.4 貢獻 21
1.5 論文架構 21
第二章 中樞模式發生器 23
2.1 初期設計理念與開發 23
2.1.1 霍普夫振盪器 23
2.1.2 極限圈變形 24
2.1.3 藏本模型配合線性內插法 30
2.2 基於二維位能場之中樞模式發生器設計 43
2.2.1 使用藏本模型在行走與快步兩種步態之間變換 43
2.2.2 重新理解在相位空間中之步態 53
2.2.3 利用二維位能牆避免不穩定區域 56
2.2.4 利用二維位能谷避免不穩定區域 64
2.3 基於四維位能場之中樞模式發生器設計 72
2.3.1 相位協調器之設計推導過程 74
2.3.2 相位協調器特性之驗證 81
2.3.3 正交協調相位振盪器 89
第三章 機身狀態之控制 96
3.1 離散三維剛體系統 97
3.1.1 剛體位置與速度 98
3.1.2 剛體姿態與角速度 99
3.1.3 線性化之離散三維剛體 105
3.2 建立最佳化問題 106
3.2.1 控制代價 106
3.2.2 系統輸入之約束 107
3.3 最佳化問題求解 112
3.3.1 內點法配合線性約束條件檢查 113
3.3.2 數值驗證求得之解 117
3.4 動態軌跡規劃與位置控制 120
3.4.1 機身狀態之動態軌跡規劃 121
3.4.2 各腳足尖位置推算 122
第四章 足部位置控制器 124
4.1 足尖滯空軌跡 124
4.1.1 映射軌跡 124
4.1.2 變換步態時配合映射軌跡之相位變換 125
4.2 行走步態之踏點規劃 126
4.3 快步步態之踏點規劃 127
4.4 機器人之整體控制系統 131
第五章 實驗驗證與探討 133

5.1 實驗平台 133
5.1.1 新型四足輪腳複合機器人之簡介 133
5.1.2 控制器硬體架構 134
5.1.3 連桿式輪腳機構之順逆向運動學 137
5.1.4 測程法與感測器整合 139
5.2 實驗結果與討論 140
5.2.1 機身狀態控制之階躍響應 140
5.2.2 機身狀態控制之頻率響應 143
5.2.3 行走步態 145
5.2.4 離地高度變化之行走步態 150
5.2.5 快步步態 152
5.2.6 行走步態與快步步態間之動態變換 158
第六章 結論與未來之展望 170
6.1 結論 170
6.2 未來之展望 172
REFERENCE 174
-
dc.language.isozh_TW-
dc.subject步態變換zh_TW
dc.subject四足機器人zh_TW
dc.subject中樞模式產生器zh_TW
dc.subject最佳化zh_TW
dc.subject中樞模式產生器zh_TW
dc.subject最佳化zh_TW
dc.subject最佳控制zh_TW
dc.subject步態變換zh_TW
dc.subject最佳控制zh_TW
dc.subject四足機器人zh_TW
dc.subjectGait transitionen
dc.subjectquadruped roboten
dc.subjectCentral Pattern Generatoren
dc.subjectOptimizationen
dc.subjectOptimal Controlen
dc.subjectGait transitionen
dc.subjectquadruped roboten
dc.subjectCentral Pattern Generatoren
dc.subjectOptimizationen
dc.subjectOptimal Controlen
dc.title以中樞模式發生器結合踏點力最佳化進行四足機器人之步態生成控制與變換zh_TW
dc.titleGait Generation, Control, and Transition of a Quadruped Robot using a Central Pattern Generator and Foot Contact Force Optimizationen
dc.typeThesis-
dc.date.schoolyear110-2-
dc.description.degree碩士-
dc.contributor.advisor-orcid林沛群(0000-0001-9146-3817)
dc.contributor.oralexamcommittee連豊力;顏炳郎;田維誠zh_TW
dc.contributor.oralexamcommitteeFeng-Li Lian;Ping-Lang Yen;Wei-Cheng Tianen
dc.contributor.oralexamcommittee-orcid連豊力(0000-0002-1260-4894),顏炳郎(0000-0001-8020-6241)
dc.subject.keyword四足機器人,中樞模式產生器,最佳化,最佳控制,步態變換,zh_TW
dc.subject.keywordquadruped robot,Central Pattern Generator,Optimization,Optimal Control,Gait transition,en
dc.relation.page180-
dc.identifier.doi10.6342/NTU202202916-
dc.rights.note未授權-
dc.date.accepted2022-08-29-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-110-2.pdf
  未授權公開取用
14.07 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved