請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83560完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李世光 | zh_TW |
| dc.contributor.advisor | Chih-Kung Lee | en |
| dc.contributor.author | 呂昱霖 | zh_TW |
| dc.contributor.author | Yu-Lin Lu | en |
| dc.date.accessioned | 2023-03-19T21:10:31Z | - |
| dc.date.available | 2023-12-27 | - |
| dc.date.copyright | 2022-09-05 | - |
| dc.date.issued | 2022 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | [1] C. Kulkarni, H. Karhade, S. Gupta, P. Bhende, and S. Bhandare, "Health companion device using IoT and wearable computing," in 2016 International Conference on Internet of Things and Applications (IOTA), 2016: IEEE, pp. 152-156. [2] Internet of business, "Healthcare applications to drive wearable device boom," Source from market intelligence company Tractica[Online]. Available: https://internetofbusiness.com/healthcare-applications-wearable-device/. [3] M. Cheng et al., "A review of flexible force sensors for human health monitoring," Journal of advanced research,, pp. 53-68, 2020. [4] D. Lee, Computational modeling and analysis of complex muscle architecture. Doctoral thesis, University of Toronto (Canada), 2015. [5] K. Xu, Y. Lu, and K. Takei, "Multifunctional skin‐inspired flexible sensor systems for wearable electronics," Advanced Materials Technologies, 2019. [6] J.-w. Zhang, Y. Zhang, Y.-y. Li, and P. Wang, "Textile-based flexible pressure sensors: A review," Polymer Reviews, pp. 65-94, 2022. [7] C. L. Choong et al., "Highly stretchable resistive pressure sensors using a conductive elastomeric composite on a micropyramid array," Advanced materials, pp. 3451-3458, 2014. [8] M. L. Hammock, A. Chortos, B. C. K. Tee, J. B. H. Tok, and Z. Bao, "25th anniversary article: the evolution of electronic skin (e‐skin): a brief history, design considerations, and recent progress," Advanced materials, pp. 5997-6038, 2013. [9] Y. Zang, F. Zhang, C.-a. Di, and D. Zhu, "Advances of flexible pressure sensors toward artificial intelligence and health care applications," Materials Horizons, pp. 140-156, 2015. [10] M. Ha, J. Park, Y. Lee, and H. Ko, "Triboelectric generators and sensors for self-powered wearable electronics," Acs Nano, pp. 3421-3427, 2015. [11] F. Pizarro, P. Villavicencio, D. Yunge, M. Rodríguez, G. Hermosilla, and A. Leiva, "Easy-to-build textile pressure sensor," Sensors, pp. 1190, 2018. [12] K.-H. Kim, S. K. Hong, N.-S. Jang, S.-H. Ha, H. W. Lee, and J.-M. Kim, "Wearable resistive pressure sensor based on highly flexible carbon composite conductors with irregular surface morphology," ACS applied materials & interfaces, pp. 17499-17507, 2017. [13] P. Peng, R. Rajamani, and A. G. Erdman, "Flexible tactile sensor for tissue elasticity measurements," Journal of microelectromechanical systems, pp. 1226-1233, 2009. [14] A. Gurarslan, B. Özdemir, İ. H. Bayat, M. B. Yelten, and G. Karabulut Kurt, "Silver nanowire coated knitted wool fabrics for wearable electronic applications," Journal of Engineered Fibers and Fabrics, 2019. [15] A. Wang, M. Hu, L. Zhou, and X. Qiang, "Self-powered wearable pressure sensors with enhanced piezoelectric properties of aligned P (VDF-TrFE)/MWCNT composites for monitoring human physiological and muscle motion signs," Nanomaterials, pp. 1021, 2018. [16] Y. Du et al., "Hybrid printing of wearable piezoelectric sensors," Nano Energy, 2021. [17] P. S. Das, A. Chhetry, P. Maharjan, M. S. Rasel, and J. Y. Park, "A laser ablated graphene-based flexible self-powered pressure sensor for human gestures and finger pulse monitoring," Nano Research, pp. 1789-1795, 2019. [18] T. Q. Trung, T. M. L. Dang, S. Ramasundaram, P. T. Toi, S. Y. Park, and N.-E. Lee, "A stretchable strain-insensitive temperature sensor based on free-standing elastomeric composite fibers for on-body monitoring of skin temperature," ACS applied materials & interfaces, pp. 2317-2327, 2018. [19] Z. Han, "Using Adaptive Wireless Transmission of Wearable Sensor Device for Target Heart Rate Monitoring of Sports Information," IEEE Sensors Journal, pp. 25027-25034, 2020. [20] G. Li and D. Wen, "Sensing nanomaterials of wearable glucose sensors," Chinese Chemical Letters, pp. 221-228, 2021. [21] H. Saito, T. Watanabe, and A. Arifin, "Ankle and knee joint angle measurements during gait with wearable sensor system for rehabilitation," in World Congress on Medical Physics and Biomedical Engineering, Munich, Germany, Springer, pp. 506-509, 2009. [22] C. Cummins, R. Orr, H. O’Connor, and C. West, "Global positioning systems (GPS) and microtechnology sensors in team sports: a systematic review," Sports medicine, pp. 1025-1042, 2013. [23] Y. K. Fuh and B. S. Wang, "Near field sequentially electrospun three-dimensional piezoelectric fibers arrays for self-powered sensors of human gesture recognition," Nano Energy, pp. 677-683, 2016. [24] R. Xu, S. Zhou, and W. J. Li, "MEMS accelerometer based nonspecific-user hand gesture recognition," IEEE sensors journal, pp. 1166-1173, 2011. [25] A. Stamm, D. V. Thiel, B. Burkett, and D. A. James, "Towards determining absolute velocity of freestyle swimming using 3-axis accelerometers," Procedia Engineering, pp. 120-125, 2011. [26] E. P. Doheny, T. G. Foran and B. R. Greene, "A single gyroscope method for spatial gait analysis," 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, 2010, pp. 1300-1303, doi: 10.1109/IEMBS.2010.5626397. [27] K. S. Kuang, W. J. Cantwell, and P. J. Scully, "An evaluation of a novel plastic optical fibre sensor for axial strain and bend measurements," Measurement Science and Technology, p. 1523, 2002. [28] C. C. Vu, S. J. Kim, and J. Kim, "Flexible wearable sensors-an update in view of touch-sensing," Science and Technology of Advanced Materials, pp. 26-36, 2021. [29] Meghji, M., Balloch, A., Habibi, D., Ahmad, I., Hart, N., Newton, R., Weber, J. & Waqar, A. "An algorithm for the automatic detection and quantification of athletes` change of direction incidents using IMU sensor data". IEEE Sensors Journal, pp. 4518-4527, 2019. [30] M. Krehel, M. Schmid, R. M. Rossi, L. F. Boesel, G.-L. Bona, and L. J. Scherer, "An optical fibre-based sensor for respiratory monitoring," Sensors, pp. 13088-13101, 2014. [31] N. Rizaldy, F. Ferryanto, A. Sugiharto, and A. Mahyuddin, "Evaluation of action sport camera optical motion capture system for 3D gait analysis," IOP Conference Series: Materials Science and Engineering, IOP Publishing,2021 [32] Noiumkar, Siriporn, and Suwich Tirakoat. "Use of optical motion capture in sports science: A case study of golf swing." International Conference on Informatics and Creative Multimedia. IEEE, pp. 310-313, 2013. [33] M. Botwicz, W. Klembowski, K. Kulpa, P. Samczyński, J. Misiurewicz, and D. Gromek, "The concept of an RF system for the detection and tracking of the ball and players in ball sports: An extended abstract for poster presentation," in 2017 Signal Processing Symposium (SPSympo), 2017: IEEE, pp. 1-3. [34] X. Wu, Y. Han, X. Zhang, Z. Zhou, and C. Lu, "Large‐area compliant, low‐cost, and versatile pressure‐sensing platform based on microcrack‐designed carbon Black@polyurethane sponge for human–machine interfacing," Advanced Functional Materials, pp. 6246-6256, 2016. [35] D. J. Cohen, D. Mitra, K. Peterson, and M. M. Maharbiz, "A highly elastic, capacitive strain gauge based on percolating nanotube networks," Nano letters, pp. 1821-1825, 2012. [36] A. Wang et al., "Hydrogen-bonded network enables semi-interpenetrating ionic conductive hydrogels with high stretchability and excellent fatigue resistance for capacitive/resistive bimodal sensors,"Chemical Engineering Journal, 411, 128506., 2021. [37] R. Sun et al., "Stretchable piezoelectric sensing systems for self‐powered and wireless health monitoring," Advanced Materials Technologies, 2019. [38] M. S. Rasel et al., "An impedance tunable and highly efficient triboelectric nanogenerator for large-scale, ultra-sensitive pressure sensing applications," Nano Energy, pp. 603-613, 2018. [39] Y.-H. Hsu, P.-C. Liu, T.-T. Lin, S.-W. Huang, and Y.-C. Lai, "Development of an Elastic Piezoelectric Yarn for the Application of a Muscle Patch Sensor," ACS omega, pp. 29427-29438, 2020. [40] 劉柏辰, "可應用於人體肌肉量測的可撓式壓電感測貼布之開發," 碩士論文, 應用力學研究所, 國立臺灣大學, 台北市, 2018. [41] 賴怡靜, "以壓電肌肉感應貼布監測肌肉疲勞行為之分析方法開發與驗證," 碩士論文, 應用力學研究所, 國立臺灣大學, 台北市, 2021. [42] M. Kazamel and P. P. Warren, "History of electromyography and nerve conduction studies: A tribute to the founding fathers," Journal of Clinical Neuroscience, pp. 54-60, 2017. [43] M. B. I. Reaz, M. S. Hussain, and F. Mohd-Yasin, "Techniques of EMG signal analysis: detection, processing, classification and applications," Biological procedures online, pp. 11-35, 2006. [44] J. R. Daube and D. I. Rubin, "Needle electromyography," Muscle & Nerve: Official Journal of the American Association of Electrodiagnostic Medicine, pp. 244-270, 2009. [45] M. R. Al-Mulla, F. Sepulveda, and M. Colley, "A review of non-invasive techniques to detect and predict localised muscle fatigue," Sensors, pp. 3545-3594, 2011. [46] Z. Bayram-Weston, "Nervous system 1: introduction to the nervous system," Nursing Times, pp. 40-44, 2022. [47] G. J. Tortora and B. H. Derrickson, Principles of anatomy and physiology. John Wiley & Sons, 2018. [48] S. Ahmed, S. Ahmad, M. O. Faruqe, and M. R. Islam, "EMG signal decomposition using wavelet transformation with respect to different wavelet and a comparative study," in Proceedings of the 2nd International Conference on Interaction Sciences: Information Technology, Culture and Human, 2009, pp. 730-735. [49] G. H. Pollack, "The cross-bridge theory," Physiological reviews, pp. 1049-1113, 1983. [50] A. Fletcher, "Action potential: generation and propagation," Anaesthesia & Intensive Care Medicine, pp. 258-262, 2011. [51] Nazmi, N., Abdul Rahman, M. A., Yamamoto, S., Ahmad, S. A., Zamzuri, H., & Mazlan, S. A. (2016). A Review of Classification Techniques of EMG Signals during Isotonic and Isometric Contractions. Sensors (Basel, Switzerland), 16(8), 1304. https://doi.org/10.3390/s16081304 [52] J. R. Karp, "Muscle fiber types and training," Strength & Conditioning Journal, pp21, 2001. [53] R. Drake, A. W. Vogl, and A. W. Mitchell, Gray's Anatomy for Students Flash Cards E-Book. Elsevier Health Sciences, 2019. [54] D. G. Allen, G. D. Lamb, and H. Westerblad, "Skeletal muscle fatigue: cellular mechanisms," Physiological reviews, 2008. [55] B. Bigland‐Ritchie and J. Woods, "Changes in muscle contractile properties and neural control during human muscular fatigue," Muscle & Nerve: Official Journal of the American Association of Electrodiagnostic Medicine, pp. 691-699, 1984. [56] M. M. Lorist, D. Kernell, T. F. Meijman, and I. Zijdewind, "Motor fatigue and cognitive task performance in humans," The Journal of physiology, pp. 313-319, 2002. [57] S. D. Mair, A. V. Seaber, R. R. Glisson, and W. E. Garrett Jr, "The role of fatigue in susceptibility to acute muscle strain injury," The American Journal of Sports Medicine, pp. 137-143, 1996. [58] X. Song, H. Li, and W. Gao, "MyoMonitor: Evaluating muscle fatigue with commodity smartphones," Smart Health, p. 100175, 2021. [59] J. Gajewski, "Fatigue-induced changes in tremor caused by physical efforts of different volume and intensity," Acta of Bioengineering and Biomechanics, p. 103, 2006. [60] M. Hagberg, "Work load and fatigue in repetitive arm elevations," Ergonomics, pp. 543-555, 1981. [61] Tichauer, E. R. The biomechanical basis of ergonomics: Anatomy applied to the design of work stations. New York, NY: John Wiley and Sons, 1978. [62] J. J. Chen and D. M. Swope, "Essential tremor: diagnosis and treatment," Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy, pp. 1105-1122, 2003. [63] J. Gajewski, D. Sitkowski, and Z. Obminski, "Changes in tremor and hormonal responses to high-intensity exercise on kayak ergometer," BIOLOGY OF SPORT, pp. 237, 2006. [64] S. Morrison, J. Kavanagh, S. Obst, J. Irwin, and L. Haseler, "The effects of unilateral muscle fatigue on bilateral physiological tremor," Experimental brain research, pp. 609-621, 2005. [65] S. Strachan and R. Murray-Smith, "Muscle tremor as an input mechanism," Proc. UIST, pp. 482, 2004. [66] C. J. De Luca, "Surface electromyography: Detection and recording," DelSys Incorporated, pp. 1-10, 2002. [67] P. Kaplanis, C. S. Pattichis, L. Hadjileontiadis, and V. Roberts, "Surface EMG analysis on normal subjects based on isometric voluntary contraction," Journal of Electromyography and Kinesiology, pp. 157-171, 2009. [68] A. Phinyomark, P. Phukpattaranont, and C. Limsakul, "Feature reduction and selection for EMG signal classification," Expert systems with applications, pp. 7420-7431, 2012. [69] A. Luttmann, M. Jäger, and W. Laurig, "Electromyographical indication of muscular fatigue in occupational field studies," International journal of Industrial ergonomics, pp. 645-660, 2000. [70] G. M. Hägg, A. Luttmann, and M. Jäger, "Methodologies for evaluating electromyographic field data in ergonomics," Journal of electromyography and kinesiology, pp. 301-312, 2000. [71] S. Morrison and K. M. Newell, "Postural and resting tremor in the upper limb," Clinical neurophysiology, pp. 651-663, 2000. [72] J. Viitasalo and J. Gajewski, "Effects of strength training-induced fatigue on tremor spectrum in elbow flexion," Human movement science, pp. 129-141, 1994. [73] S. Katzir, "The discovery of the piezoelectric effect," in The beginnings of piezoelectricity: Springer, 2006, pp. 15-64. [74] A. Ballato, "Piezoelectricity: history and new thrusts," in 1996 IEEE Ultrasonics Symposium. Proceedings, 1996, vol. 1: IEEE, pp. 575-583. [75] A. Manbachi and R. S. Cobbold, "Development and application of piezoelectric materials for ultrasound generation and detection," Ultrasound, pp. 187-196, 2011. [76] C. W. Guyton, "Method of maintaining electric currents of constant frequency," ed: Google Patents, 1923. [77] A. Von Hippel, "Ferroelectricity, domain structure, and phase transitions of barium titanate," Reviews of Modern Physics, pp. 221, 1950. [78] G. Shirane, E. Sawaguchi, and Y. Takagi, "Dielectric properties of lead zirconate," Physical Review, pp. 476, 1951. [79] H. Kawai, "The piezoelectricity of poly (vinylidene fluoride)," Japanese journal of applied physics, pp. 975, 1969. [80] S. Tadigadapa and K. Mateti, "Piezoelectric MEMS sensors: state-of-the-art and perspectives," Measurement Science and technology, 2009. [81] H. Khanbareh, "Expanding the functionality of piezo-particulate composites," 2016. [82] T. Furukawa, "Piezoelectricity and pyroelectricity in polymers," IEEE transactions on electrical insulation, pp. 375-394, 1989. [83] J. G. Kirkwood, "On the theory of dielectric polarization," The Journal of Chemical Physics, pp. 592-601, 1936. [84] X. Li, "Nonlinearity of piezoelectric resonator based on Ca3TaGa3Si2O14 and YCa4O (BO3) 3 single crystals under DC bias field," University of Pittsburgh, 2018. [85] B. Jaffe, "Chapters 5-7 in Piezoelectric Ceramics, Vol. 3," ed: Elsevier, Amsterdam, Netherlands, 2012. [86] R. A. Kishore and S. Priya, "A review on low-grade thermal energy harvesting: Materials, methods and devices," Materials, pp. 1433, 2018. [87] W. Känzig, "Ferroelectrics and antiferroeletrics," in Solid State Physics, Elsevier, pp. 1-197, 1957. [88] M. Stewart, M. G. Cain, and D. Hall, Ferroelectric hysteresis measurement and analysis. National Physical Laboratory Teddington, 1999. [89] R. C. Smith, Smart material systems: model development. SIAM, 2005. [90] K. S. Ramadan, D. Sameoto, and S. Evoy, "A review of piezoelectric polymers as functional materials for electromechanical transducers," Smart Materials and Structures, p. 033001, 2014. [91] A. Meitzler, H. Tiersten, A. Warner, D. Berlincourt, G. Couqin, and F. Welsh III, "IEEE standard on piezoelectricity," ed: Society, 1988. [92] T. Wu et al., "A flexible film bulk acoustic resonator based on β-phase polyvinylidene fluoride polymer," Sensors, pp. 1346, 2020. [93] A. J. Lovinger, “Poly(Vinylidene fluoride),” In: D. C. Bassett, Ed., Development in Crystalline Polymers, Applied Science Publisher, London, 1982, pp. 195-261. [94] C.-H. Du, B.-K. Zhu, and Y.-Y. Xu, "The effects of quenching on the phase structure of vinylidene fluoride segments in PVDF-HFP copolymer and PVDF-HFP/PMMA blends," Journal of materials science, pp. 417-421, 2006. [95] Y. Higashihata, J. Sako, and T. Yagi, "Piezoelectricity of vinylidene fluoride-trifluoroethylene copolymers," Ferroelectrics, pp. 85-92, 1981. [96] D. Mao, B. E. Gnade, and M. A. Quevedo-Lopez, "Ferroelectric properties and polarization switching kinetic of poly (vinylidene fluoride-trifluoroethylene) copolymer," Ferroelectrics-Physical Effects, pp. 78-100, 2011. [97] H. Ohigashi and K. Koga, "Ferroelectric copolymers of vinylidenefluoride and trifluoroethylene with a large electromechanical coupling factor," Japanese journal of applied physics, pp. L455, 1982. [98] G. Ren, F. Cai, B. Li, J. Zheng, and C. Xu, "Flexible pressure sensor based on a poly (VDF‐TrFE) nanofiber web," Macromolecular Materials and Engineering, pp. 541-546, 2013. [99] L. Rayleigh, "XX. On the equilibrium of liquid conducting masses charged with electricity," The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, pp. 184-186, 1882. [100] J. Zeleny, "The electrical discharge from liquid points, and a hydrostatic method of measuring the electric intensity at their surfaces," Physical Review, pp. 69, 1914. [101] Z.-M. Huang, Y.-Z. Zhang, M. Kotaki, and S. Ramakrishna, "A review on polymer nanofibers by electrospinning and their applications in nanocomposites," Composites science and technology, pp. 2223-2253, 2003. [102] V. G. Drozin, "The electrical dispersion of liquids as aerosols," Journal of colloid science, pp. 158-164, 1955. [103] E. Yang et al., "Nanofibrous smart fabrics from twisted yarns of electrospun piezopolymer," ACS applied materials & interfaces, pp. 24220-24229, 2017. [104] D. Li and Y. Xia, "Electrospinning of nanofibers: reinventing the wheel?," Advanced materials, pp. 1151-1170, 2004. [105] A. Haider, S. Haider, and I.-K. Kang, "A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology," Arabian Journal of Chemistry, pp. 1165-1188, 2018. [106] D. H. Reneker and A. L. Yarin, "Electrospinning jets and polymer nanofibers," Polymer, pp. 2387-2425, 2008. [107] M. M. Hohman, M. Shin, G. Rutledge, and M. P. Brenner, "Electrospinning and electrically forced jets. I. Stability theory," Physics of fluids, pp. 2201-2220, 2001. [108] S. Park, K. Park, H. Yoon, J. Son, T. Min, and G. Kim, "Apparatus for preparing electrospun nanofibers: designing an electrospinning process for nanofiber fabrication," Polymer International, pp. 1361-1366, 2007. [109] X. Lu, C. Wang, and Y. Wei, "One‐dimensional composite nanomaterials: Synthesis by electrospinning and their applications," Small, pp. 2349-2370, 2009. [110] D. Li, Y. Wang, and Y. Xia, "Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays," Nano letters, pp. 1167-1171, 2003. [111] M. Marti, A. Sharma, D. Sakaguchi, and S. Mallapragada, "Nanomaterials for neural tissue engineering," Nanomaterials in tissue engineering,pp. 275-301, 2013. [112] Z. Zhou et al., "Graphitic carbon nanofibers developed from bundles of aligned electrospun polyacrylonitrile nanofibers containing phosphoric acid," Polymer, pp. 2360-2367, 2010. [113] M. S. Khil, S. R. Bhattarai, H. Y. Kim, S. Z. Kim, and K. H. Lee, "Novel fabricated matrix via electrospinning for tissue engineering," Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, pp. 117-124, 2005. [114] W. Grassi and D. Testi, "Induction of waves on a horizontal water film by an impinging corona wind," IEEE Transactions on Dielectrics and Electrical Insulation, pp. 377-385, 2009. [115] 朱信融, "以靜電紡絲研製高排列性聚 (偏氟乙烯-三氟乙烯) 薄膜及相關複合膜應用之研究," 碩士論文, 應用力學研究所, 國立臺灣大學, 台北市, 2016. [116] T. Ohmi, S. Sudoh, and H. Mishima, "Static charge removal with IPA solution," IEEE Transactions on semiconductor manufacturing, pp. 440-446, 1994. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83560 | - |
| dc.description.abstract | 本論文旨在開發壓電肌肉感應貼布在量測肌肉疲勞行為時的分析方法,壓電肌肉感應貼布屬一應變感測器,量測肌肉收縮與舒張時造成肌束周長變化連帶造成皮膚表面產生之形變。壓電肌肉感應貼布內部感測材料為聚(偏氯乙烯-三氯乙烯),此高分子壓電聚合物具有良好的力電耦合特性,本研究使用靜電紡絲製程製作出具壓電絲線,絲線是由奈微米結構的纖維排列形成,其具備可撓性及壓電效應。當肌肉收縮施力造成壓電肌肉感應貼布中的壓電絲線受到來自皮膚表面不同程度的張力時,絲線將所受到之變形會轉成電訊號輸出。本研究進行人體試驗,依受試者能力分群探討不同肌力大小受試者之疲勞差異。實驗中以肌電訊號做為肌肉疲勞之參考指標來與肌肉感應貼布做對照,從肌肉疲勞與肌肉震顫的相關性來得知肌肉實際表現與疲勞機制。經實驗電刺激之平均激活量與平均肌肉收縮變化量兩者為高度相關,相關係數達0.9896,證明了肌電訊號與肌肉感應貼布在時域上的相似特徵。在肌肉疲勞實驗中驗證肌肉感應貼布可直接量測到肌肉疲勞資訊,其時域訊號平均振幅會上升,頻域上則會在高頻8Hz至12Hz之間產生一個額外的峰值,肌肉震顫強度會上升而肌肉震顫頻率則會下降,複合肌電訊號量測結果,從所開發之分析方法亦發現在肌肉疲勞時,肌力較大之受試者發生震顫之強度會小於肌力較小的受試者,且肌肉震顫上升幅度也較小,肌肉震顫頻率則在肌力較小的受試者中呈現微幅遞減情形,而肌力較大的受試者在屈指淺肌及肱二頭肌中隨肌肉負荷量遞增而震顫頻率上升,整體較無呈現頻率下降之趨勢,可能原因為每人使用肌肉習慣的不同,造成快縮肌與慢縮肌比例不同,交換施力的程度也不同,影響快縮肌及慢縮肌的使用比例,造成肌肉震顫頻率出現上升趨勢。實驗結果也顯示非慣用手疲勞現象會較慣用手明顯,非慣用手中的疲勞人數比例增加快速,肌肉震顫強度提升幅度大且震顫行為更強烈,由於天生肌力的差異,隨肌肉負荷愈大時慣用手與非慣用手之震顫頻率皆呈下降趨勢,肌纖維傳遞速率的改變是影響震顫頻率的主因。此研究實際驗證壓電肌肉感應貼布具有監測肌肉疲勞行為之能力並具有極高之可靠度,將可作為運動員技巧提升之個人化穿戴裝置。 | zh_TW |
| dc.description.abstract | The aim of this study is to develop an analysis method to use a piezoelectric muscle patch sensor (MPS) to monitor muscle fatigue. The MPS is a type of strain sensor. It measures the circumference change of a muscle during muscle contractions. It uses electrospun P(VEF-TrFE) piezoelectric fiber bundle to measure the mechanical strain induced by muscle activities. It is a wearable device with an excellent flexibility, which can convert mechanical strain to electrical signal. To verify the performance of the MPS, human studies are conducted to understand the behaviors of muscle fatigue of subject with different levels of muscle strength. The EMG is also used to monitor muscle activities and is used as the reference signal. Experimental results demonstrate that the mean absolute value of electrical EMG stimulation and the average of integrated MPS are highly correlated, the r value is 0.9896, and similar characteristics profiles of the time domain signals were observed. It is also verified that MPS can directly measure muscle fatigue. The average amplitude of the MPS increases under a higher fatigue level, and additional peaks occur between 8Hz and 12Hz. The muscle tremor intensity increases along with a decreasing of the tremor frequency. The tremor frequency of muscle shows a slight decrease in the subjects with smaller muscle strength, while the subjects with greater muscle strength show an increasing trend in the flexor superficialis and biceps brachii. The overall frequency does not show a downward trend. The possible reason is that every person has different muscles usage habits, resulting in different ratios of fast-twitch muscle and slow-twitch muscle and in an upward trend in the frequency of muscle tremors. Lastly, the experimental results show that the fatigue phenomenon of non-dominant hands occurs earlier than that of dominant hands. The proportion of fatigued people in the non-dominant hand increases rapidly, the muscle tremor intensity increases greatly, and the tremor behavior is more intense. The tremor frequency of the dominant hand and the non-dominant hand both shift to lower frequency. It suggests that the change of the muscle fiber transmission rate was the main factor affecting the tremor frequency. In summary, the performance of the MPS is verified, and it can be applied to monitor muscle fatigue. It can potentially be applied as a wearable device for athlete self-trainig. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T21:10:31Z (GMT). No. of bitstreams: 1 U0001-2508202215200500.pdf: 12328509 bytes, checksum: 1e109befd1abad76838411e640e8cb02 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 目錄 誌謝 i 中文摘要 ii ABSTRACT iii 目錄 iv 圖目錄 vii 表目錄 xiii 第1章 緒論 1 1.1 研究背景與動機 1 1.1.1 可撓式壓力感測器簡介 3 1.1.2 運動性感測器應用 7 1.2 研究目標 10 1.3 論文架構 12 第2章 肌肉做動與肌電訊號 14 2.1 肌電訊號簡介 14 2.1.1 電刺激與EMG 14 2.1.2 神經系統與肌肉纖維 15 2.1.3 動作電位 16 2.2 肌肉運動情形與分類 17 2.2.1 肌肉收縮 17 2.2.2 肌肉分類:快縮肌與慢縮肌 17 2.2.3 手臂肌群簡介 18 2.2.4 肌肉疲勞 21 2.2.5 肌肉震顫 22 2.3 肌電訊號擷取及分析方法 24 2.3.1 肌電訊號擷取及訊號預處理 24 2.3.2 時域及頻域分析 24 2.3.3 振幅頻率聯合分析法 28 第3章 壓電肌肉感應貼布分析理論開發及壓電材料與靜電紡絲 30 3.1 壓電肌肉感應貼布分析理論 30 3.1.1 MPS訊號擷取及訊號預處理 30 3.1.2 MPS時域及頻域分析 30 3.2 壓電材料介紹 32 3.2.1 壓電效應與壓電材料背景介紹 32 3.2.2 介電效應、壓電效應、焦電效應及鐵電效應 33 3.2.3 壓電材料種類 37 3.2.4 壓電本構方程式 38 3.2.5 肌肉感應貼布理論推導 40 3.3 高分子壓電材料 43 3.3.1 PVDF 43 3.3.2 P(VDF-TrFE) 45 3.4 壓電絲線製程及原理 46 3.4.1 靜電紡絲 46 3.4.2 靜電紡絲原理與技術 48 3.4.3 靜電紡絲機械及環境參數 51 3.4.4 靜電紡絲纖維線性化製程 52 3.4.5 極化製程 53 第4章 研究方法與實驗流程 55 4.1 靜電紡絲製程 55 4.1.1 壓電高分子溶液配製 55 4.1.2 靜電紡絲實驗架設 55 4.1.3 製程控制變數 56 4.1.4 靜電紡絲後處理 59 4.2 肌肉感應貼布製程及原理 59 4.2.1 靜電紡絲表面形貌與纖維排列性 59 4.2.2 肌肉感應貼布製程 60 4.2.3 肌肉感應貼布纖維線性化 62 4.2.4 肌肉感應貼布量測原理 62 4.3 實驗架設與流程 63 4.3.1 MPS與EMG相關性驗證實驗 63 4.3.2 手臂肌肉疲勞實驗 64 4.3.3 手臂肌肉疲勞之前置作業與實驗架設 66 4.3.4 手臂肌肉疲勞之實驗流程 68 第5章 實驗結果與討論 71 5.1 量測訊號處理及實驗分群 71 5.1.1 EMG訊號分析 71 5.1.2 MPS訊號分析 74 5.1.3 人體實驗設計 76 5.2 實驗結果 77 5.2.1 EMG與MPS相關性分析 77 5.2.2 慣用手肌肉於不同負荷比例下之疲勞實驗量測 80 5.2.3 慣用手與非慣用手於不同負荷比例之疲勞實驗量測 87 5.3 肌肉疲勞分群評估 99 5.3.1 實驗受試者分群 99 5.3.2 EMG與MPS相關性分群分析結果 103 5.3.3 慣用手於不同負荷比例下之疲勞實驗分群分析結果 105 5.3.4 慣用手與非慣用手於不同負荷比例之疲勞實驗分群結果 113 第6章 結論與未來展望 122 6.1 結論 122 6.2 未來展望 123 REFERENCE 124 附錄 131 圖目錄 圖 1.1 物聯網下的資訊交互傳遞[1] 1 圖 1.2 2016-2022 年全球穿戴式裝置出貨量與總收益預估表[2] 2 圖 1.3 可撓式感測器(a)壓阻式[7] (b)電容式[8] (c)壓電式[9] (d)摩擦起電式[10] 3 圖 1.4 奈米碳管複合體壓阻式感測器用於人體脈搏與關節運動[12] 4 圖 1.5 電容式感測器量測應用[14] 5 圖 1.6 壓電式感測器量測脈搏、呼吸、吞嚥及咀嚼訊號[15] 6 圖 1.7 印刷壓電式感測器量測不同手勢之訊號[16] 6 圖 1.8 摩擦起電示壓力感測器用於人體手勢檢測 7 圖 1.9 肌肉疲勞研究示意圖 (a)實驗架設圖 (b)MPS濾波後時域訊號 (c) MPS量測之頻域訊號(d) EMG濾波後時域訊號 (e)EMG時域分析 (f)EMG頻域分析 (g)EMG 振幅頻率聯合分析 11 圖 1.10 研究架構圖 13 圖 2.1 運動神經元傳送訊號至肌肉纖維[48] 15 圖 2.2 動作電位產生原理[48] 16 圖 2.3 肌肉收縮型態與肌肉長度關係[51] 17 圖 2.4 上手臂與前臂[53] 18 圖 2.5 (a)手臂上方肌肉位置圖 (b)前臂肌肉解剖圖 19 圖 2.6 (a)上手臂動作 (b)手腕動作 (c)手指動作[53] 19 圖 2.7 肌肉顫震原理[58] 21 圖 2.8 肌肉震顫幅度與疲勞程度[59] 22 圖 2.9 運動後肌肉等長性震顫之 (a)時域圖 (b)頻譜圖[64] 23 圖 2.10 EMG頻譜示意圖[66] 24 圖 2.11 右側斜方肌在40分鐘施力期間之RMS斜率與MF斜率分析圖[70] 29 圖 2.12 JASA四象限關係圖[69] 29 圖 3.1 介電質中的四種特性[81] 33 圖 3.2 壓電性質與焦電性質各常數交互關係示意圖[82] 33 圖 3.3 介電質電極化[84] 34 圖 3.4 正壓電效應(a)平衡狀態 (b)受壓縮力產生偏壓 (c)受拉伸力產生反向偏壓 34 圖 3.5 逆壓電效應(a)平衡狀態 (b)受正向電位差而壓縮 (c)受反向電位差而拉伸 35 圖 3.6 焦電效應示意圖(a)焦電材料偶極矩的自發性極化 (b)焦電材料於溫度不變之兩電極中,此時無電流產生 (c)溫度上升降低自發性極化 (d)溫度下降增加自發性極化[86] 35 圖 3.7 遲滯曲線示意圖 (a)(d)飽和極化量Psat (b)(e)殘餘極化量Pr 36 圖 3.8 壓電聚合物示意圖[90] 38 圖 3.9 壓電組成方程式各物理量轉換關係圖 40 圖 3.10 單軸壓電絲線之座標系統 41 圖 3.11 PVDF各晶相之結構示意圖 (a) α相 (b) β相 (c) γ相[92] 43 圖 3.12 PVDF之四種晶相轉換製程圖[93] 44 圖 3.13 PVDF-HFP薄膜之XRD光譜(a)淬火前 (b)焠火後[94] 45 圖 3.14 P(VDF-TrFE)原子排列示意圖[96] 46 圖 3.15 PVDF與不同比例P(VDF-TrFE)之XRD光譜[98] 46 圖 3.16 靜電紡絲架設圖[104] 47 圖 3.17 靜電紡絲電荷排斥力射出絲線過程[105] 48 圖 3.18 靜電紡絲受鞭動不穩定性示意圖[106] 49 圖 3.19 射流不穩定性示意圖(a)軸對稱不穩定性 (b)非軸對稱不穩定[107] 49 圖 3.20 自製連桿拉伸系統(a)示意圖 (b)實際架設圖 52 圖 3.21 不同小時纖維線性化的絲線(a)線徑 (b)絲線角度[41] 53 圖 3.22 接觸式極化示意圖[90] 54 圖 3.23 電暈極化示意圖 (a)正電壓電暈極化 (b)負電壓電暈極化[114] 54 圖 4.1 靜電紡絲實驗架設示意圖 56 圖 4.2 在針尖與收集器不同距離與不同轉速下壓電絲線之表面形貌 58 圖 4.3 絲線不同小時纖維線性化之放大 2000 倍之表面形貌[41] 59 圖 4.4 肌肉感應貼布MPS (a)示意圖 (b)實際圖 60 圖 4.5 MPS壓克力模板 (a)固定壓電絲線 (b)固定BNC線 61 圖 4.6 MPS製程流程圖(a)第一步 (b)第二步 61 圖 4.7 40%形變下不同小時之MPS纖維線性化 (a)SSE (b)Vpp[41] 62 圖 4.8 握力計驗證MPS與EMG相關性示意圖 63 圖 4.9 施力與時間關係圖 63 圖 4.10 肌肉疲勞實驗(a)動作示意圖 (b)量測肌肉位置圖 64 圖 4.11 手臂施力分析圖 65 圖 4.12 感測器黏貼位置示意圖 67 圖 4.13 感測器實際黏貼位置圖 67 圖 4.14 實驗架設示意圖 68 圖 4.15 慣用手疲勞實驗時間軸 69 圖 4.16 非慣用手及慣用手疲勞實驗時間軸 69 圖 4.17 實驗流程圖 70 圖 5.1 肱二頭肌EMG訊號 (a)61°_1X之時域訊號 (b)61°_1X之FFT頻譜 71 圖 5.2 手臂61°_1X及23°_3X之EMG訊號比較(a)MAV (b)RMS (c)MF 72 圖 5.3 JASA分析 (a) 61°_1X之RMS迴歸斜率 (b) 61°_1X之MF迴歸斜率 73 圖 5.4 肱二頭肌之MPS訊號(a)61°_1X之時域訊號 (b) 61°_1X之FFT頻譜 74 圖 5.5 不同負荷之MPS訊號分析(a)IMPSa (b) MPS-TP7~15Hz (c) MPS-MF7~15Hz 75 圖 5.6 受試者1之EMG與MPS相關性比對(a)時域訊號 (b)平均積分值 77 圖 5.7 受試者1之EMG與MPS相關性分析 78 圖 5.8 Subject.3之EMG與MPS比對(a)時域訊號 (b)平均積分 (c)相關性分析 78 圖 5.9 Subject.4之EMG與MPS比對(a)時域訊號 (b)平均積分 (c)相關性分析 78 圖 5.10 Subject.5之EMG與MPS比對(a)時域訊號 (b)平均積分 (c)相關性分析 79 圖 5.11 統整18位受試者之EMG與MPS相關性 79 圖 5.12 21位受試者在61°_1X之JASA圖(a)FDS (b)FCR (c)Biceps 81 圖 5.13 21位受試者在37°_2X之JASA圖(a)FDS (b)FCR (c)Biceps 81 圖 5.14 21位受試者在23°_3X之JASA圖(a)FDS (b)FCR (c)Biceps 82 圖 5.15 21位受試者在14°_4X之JASA圖(a)FDS (b)FCR (c)Biceps 82 圖 5.16 慣用手於不同角度之疲勞人數比例 83 圖 5.17 21位受試者於7~15Hz之震顫強度比值分布(a)FDS (b)FCR (c)Biceps 84 圖 5.18 21位受試者於7~15Hz之震顫頻率分布(a)FDS (b)FCR (c)Biceps 85 圖 5.19 21位受試者之平均值分佈(a) MPS-TP7~15Hz (b) MPS-MF7~15Hz 85 圖 5.20 21位受試者於4~7Hz之震顫強度比值分布(a)FDS (b)FCR (c)Biceps 86 圖 5.21 21位受試者於4~7Hz之震顫頻率分布(a)FDS (b)FCR (c)Biceps 86 圖 5.22 21位受試者之平均值分佈(a) MPS-TP4~7Hz (b) MPS-MF4~7Hz 87 圖 5.23 10位男性受試者慣用手在45°_1X之JASA圖(a)FDS (b)FCR (c)Biceps 89 圖 5.24 10位男性受試者慣用手在30°_1.5X之JASA圖(a)FDS (b)FCR (c)Biceps 89 圖 5.25 10位男性受試者慣用手在15°_2.4X之JASA圖(a)FDS (b)FCR (c)Biceps 90 圖 5.26 10位男性受試者非慣用手在45°_1X之JASA圖(a)FDS (b)FCR (c)Biceps 90 圖 5.27 10位男性受試者非慣用手在30°_1.5X之JASA圖(a)FDS (b)FCR (c)Biceps 91 圖 5.28 10位男性受試者非慣用手在15°_2.4X之JASA圖(a)FDS (b)FCR (c)Biceps 91 圖 5.29 10位男性慣用手與非慣用手之疲勞比例 92 圖 5.30 10位男性受試者於7~15Hz之震顫強度比值分布(a)FDS (b)FCR (c)Biceps 93 圖 5.31 10位男性受試者於7~15Hz之震顫頻率分布(a)FDS (b)FCR (c)Biceps 93 圖 5.32 10位男性受試者MPS-TP7~15Hz平均值分佈(a)FDS (b)FCR (c)Biceps 94 圖 5.33 10位男性受試者MPS-MF7~15Hz平均值分佈(a)FDS (b)FCR (c)Biceps 94 圖 5.34 10位男性受試者於4~7Hz之震顫強度比值分布(a)FDS (b)FCR (c)Biceps 95 圖 5.35 10位男性受試者於4~7Hz之震顫頻率分布(a)FDS (b)FCR (c)Biceps 95 圖 5.36 10位男性受試者MPS-TP4~7Hz平均值分佈(a)FDS (b)FCR (c)Biceps 96 圖 5.37 10位男性受試者MPS-MF4~7Hz平均值分佈(a)FDS (b)FCR (c)Biceps 96 圖 5.38 10位女性慣用手與非慣用手之疲勞比例 97 圖 5.39 10位女性受試者於三角度之震顫強度比值分布(a)FDS (b)FCR (c)Biceps 97 圖 5.40 10位女性受試者於三角度之震顫頻率分布(a)FDS (b)FCR (c)Biceps 98 圖 5.41 10位女性受試者MPS-TP7~15Hz平均值分佈(a)FDS (b)FCR (c)Biceps 98 圖 5.42 10位女性受試者MPS-MF7~15Hz平均值分佈(a)FDS (b)FCR (c)Biceps 99 圖 5.43 受試者低強度群之EMG與MPS相關性分析 104 圖 5.44 受試者中強度群之EMG與MPS相關性分析 104 圖 5.45 受試者高強度群之EMG與MPS相關性分析 104 圖 5.46 低強度受試者之震顫強度比值分布(a)FDS (b)FCR (c)Biceps 108 圖 5.47 中強度受試者之震顫強度比值分布(a)FDS (b)FCR (c)Biceps 108 圖 5.48 高強度受試者之震顫強度比值分布(a)FDS (b)FCR (c)Biceps 108 圖 5.49 低強度受試者之震顫頻率分布(a)FDS (b)FCR (c)Biceps 109 圖 5.50 中強度受試者之震顫頻率分布(a)FDS (b)FCR (c)Biceps 109 圖 5.51 高強度受試者之震顫頻率分布(a)FDS (b)FCR (c)Biceps 109 圖 5.52 FDS分三群統計(a)疲勞人數比例 (b)平均震顫強度 (c)平均震顫頻率 111 圖 5.53 FCR分三群統計(a)疲勞人數比例 (b)平均震顫強度 (c)平均震顫頻率 112 圖 5.54 Biceps分三群統計(a)疲勞人數比例 (b)平均震顫強度 (c)平均震顫頻率 112 圖 5.55 8位男性受試者於三角度中之震顫強度分布(a)FDS (b)FCR (c)Biceps 114 圖 5.56 8位男性受試者於三角度中之震顫頻率分布(a)FDS (b)FCR (c)Biceps 115 圖 5.57 慣用手與非慣用手之FDS (a)疲勞人數比例 116 圖 5.58 慣用手與非慣用手之FCR (a)疲勞人數比例 116 圖 5.59 慣用手與非慣用手之Biceps (a)疲勞人數比例 116 圖 5.60 MPS分析結果-FDS (a)震顫強度-男性 (b)震顫強度-女性 120 圖 5.61 MPS分析結果-FCR (a)震顫強度-男性 (b)震顫強度-女性 120 圖 5.62 MPS分析結果-Biceps (a)震顫強度-男性 (b)震顫強度-女性 120 表目錄 表 1 1 傳統運動感測器種類 8 表 1 2 可撓式感測器於運動感測之應用 9 表 2 1 EMG雜訊干擾來源[43] 14 表 2 2 快縮肌與慢縮肌比較[52] 18 表 2 3 手臂肌肉簡介[53] 20 表 2 4 各式肌肉震顫分類[62] 23 表 3 1 MPS與EMG分析公式 31 表 3 2 壓電材料之分類[89] 37 表 3 3 壓電組成方程式之符號意義與單位[91] 39 表 3 4 IEEE compact matrix notation[91] 40 表 3 5 射流之不穩定性[107] 49 表 3 6 各式靜電紡絲收集器架設圖及其優缺點[108] 50 表 3 7 靜電紡絲製程參數比較 51 表 3 8續 靜電紡絲製程參數比較 52 表 4 1 P(VDF-TrFE)之物理性質 55 表 4 2 靜電紡絲實驗參數統整 57 表 4 3 SilSkin材料特性 61 表 4 4 使用肌群介紹 64 表 4 5 慣用手疲勞實驗之肌肉負荷量與手臂角度 66 表 4 6 非慣用手及慣用手疲勞實驗之肌肉負荷量與手臂角度 66 表 5 1 EMG與MPS疲勞特徵 76 表 5 2 實驗量測人數 76 表 5 3 21位受試者於61°_1X中三肌肉之疲勞比例 81 表 5 4 21位受試者於37°_2X中三肌肉之疲勞比例 81 表 5 5 21位受試者於23°_3X中三肌肉之疲勞比例 82 表 5 6 21位受試者於14°_4X中三肌肉之疲勞比例 82 表 5 7 10 位男性受試者於45°_1X中慣用手肌肉之疲勞比例 89 表 5 8 10 位男性受試者於30°_1.5X中慣用手肌肉之疲勞比例 89 表 5 9 10 位男性受試者於15°_2.4X中慣用手肌肉之疲勞比例 90 表 5 10 10 位男性受試者於45°_1X中非慣用手肌肉之疲勞比例 90 表 5 11 10 位男性受試者於30°_1.5X中非慣用手肌肉之疲勞比例 91 表 5 12 10 位男性受試者於15°_2.4X中非慣用手肌肉之疲勞比例 91 表 5 13 21位受試者握力分群結果 100 表 5 14 21位受試者拉力分群結果 100 表 5 15 10位男性受試者握力分群結果(排除sub-3及sub-8,共8位) 101 表 5 16 10位男性受試者拉力分群結果(排除sub-3及sub-8,共8位) 101 表 5 17 10位女性受試者握力分群結果 102 表 5 18 10位女性受試者拉力分群結果 102 表 5 19 受試者三強度群之FDS 疲勞人數比例 105 表 5 20 受試者三強度群之FCR 疲勞人數比例 105 表 5 21 受試者三強度群之Biceps 疲勞人數比例 105 表 5 22 各強度群肌肉疲勞之MPS顯著參數統整 113 表 5 23 8位男性受試者慣用手與非慣用手各肌肉疲勞人數比例 113 表 5 24 男性受試者慣用手與非慣用手45°_1X至15°_2.4X之MPS參數變化比 117 表 5 25 男性8位受試者之力量比值 118 表 5 26 女性10位受試者之力量比值 118 表 5 27 肌肉疲勞MPS參數比較表 121 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 應變感測器 | zh_TW |
| dc.subject | 肌肉疲勞 | zh_TW |
| dc.subject | 壓電肌肉感應貼布 | zh_TW |
| dc.subject | 肌肉疲勞 | zh_TW |
| dc.subject | 靜電紡絲 | zh_TW |
| dc.subject | 聚(偏氯乙烯-三氯乙烯) | zh_TW |
| dc.subject | 靜電紡絲 | zh_TW |
| dc.subject | 肌肉震顫 | zh_TW |
| dc.subject | 應變感測器 | zh_TW |
| dc.subject | 肌肉震顫 | zh_TW |
| dc.subject | 壓電肌肉感應貼布 | zh_TW |
| dc.subject | 聚(偏氯乙烯-三氯乙烯) | zh_TW |
| dc.subject | muscle tremor | en |
| dc.subject | muscle fatigue | en |
| dc.subject | muscle patch sensor | en |
| dc.subject | strain sensor | en |
| dc.subject | P(VDF-TrFE) | en |
| dc.subject | electrospinning | en |
| dc.subject | piezoelectric fiber | en |
| dc.subject | muscle tremor | en |
| dc.subject | muscle fatigue | en |
| dc.subject | muscle patch sensor | en |
| dc.subject | strain sensor | en |
| dc.subject | P(VDF-TrFE) | en |
| dc.subject | electrospinning | en |
| dc.subject | piezoelectric fiber | en |
| dc.title | 壓電肌肉感應貼布分析方法開發及其在肌肉疲勞行為監測之應用 | zh_TW |
| dc.title | Development of an analysis method for a piezoelectric muscle patch sensor and its application to muscle fatigue | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 110-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 許聿翔 | zh_TW |
| dc.contributor.coadvisor | Yu-Hsiang Hsu | en |
| dc.contributor.oralexamcommittee | 林哲宇;湯文慈 | zh_TW |
| dc.contributor.oralexamcommittee | Che-Yu Lin;Wen-Tzu Tang | en |
| dc.subject.keyword | 壓電肌肉感應貼布,肌肉疲勞,應變感測器,聚(偏氯乙烯-三氯乙烯),靜電紡絲,肌肉震顫, | zh_TW |
| dc.subject.keyword | muscle fatigue,muscle patch sensor,strain sensor,P(VDF-TrFE),electrospinning,piezoelectric fiber,muscle tremor, | en |
| dc.relation.page | 149 | - |
| dc.identifier.doi | 10.6342/NTU202202811 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2022-08-30 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 應用力學研究所 | - |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-110-2.pdf 未授權公開取用 | 12.04 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
