Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 森林環境暨資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83552
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor曲芳華(Fang-Hua Chu)
dc.contributor.authorChi-Chun Linen
dc.contributor.author林其駿zh_TW
dc.date.accessioned2023-03-19T21:10:19Z-
dc.date.copyright2022-09-12
dc.date.issued2022
dc.date.submitted2022-08-30
dc.identifier.citation吳采蓉 (2022)。臺灣扁柏雙?合成?功能鑑定與柏科雙?合成?演化途徑分析。國立臺灣大學森林環境暨資源學系碩士論文,臺北市。 陳廷瑋 (2022)。臺灣扁柏枝條之揮發性?類合成?基因選殖與功能鑑定。國立臺灣大學森林環境暨資源學系碩士論文,臺北市。 馬莉婷 (2020)。臺灣杉?類合成?的演化與生化功能探討。國立臺灣大學森林環境暨資源學系博士論文,臺北市。 Abdelhameed, M. F., Asaad, G. F., Ragab, T. I. M., Ahmed, R. F., El Gendy, A. E. N. G., Abd El Rahman, S. S., Elgamal, A. M., & Elshamy, A. I. (2021). Oral and topical anti inflammatory and antipyretic potentialities of Araucaria bidiwillii shoot essential oil and its nanoemulsion in relation to chemical composition. Molecules, 26(19), 5833. Ahn, C., Jang, Y. J., Kim, J. W., Park, M. J., Yoo, Y. M., & Jeung, E. B. (2018). Anti asthmatic effects of volatile organic compounds from Chamaecyparis obtusa, Pinus densiflora, Pinus koraiensis, or Larix kaempferi wood panels. Journal of Physiology and Pharmacology, 69(6), 933–941. Alfieri, M., Vaccaro, M. C., Cappetta, E., Ambrosone, A., De Tommasi, N., & Leone, A. (2018). Coactivation of MEP biosynthetic genes and accumulation of abietane diterpenes in Salvia sclarea by heterologous expression of WRKY and MYC2 transcription factors. Scientific Reports, 8(1), 11009. Alonso Gutierrez, J., Chan, R., Batth, T. S., Adams, P. D., Keasling, J. D., Petzold, C. J., & Lee, T. S. (2013). Metabolic engineering of Escherichia coli for limonene and perillyl alcohol production. Metabolic Engineering, 19, 33–41. Bai, L., Wang, W., Hua, J., Guo, Z., & Luo, S. (2020). Defensive functions of volatile organic compounds and essential oils from northern white cedar in China. BMC Plant Biology, 20(1), 500. Beena, K., Udgaonkar, J. B., & Varadarajan, R. (2004). Effect of signal peptide on the stability and folding kinetics of maltose binding protein. Biochemistry, 43(12), 3608–3619. Bienert, S., Waterhouse, A., de Beer, T. A. P., Tauriello, G., Studer, G., Bordoli, L., & Schwede, T. (2017). The SWISS MODEL Repository—New features and functionality. Nucleic Acids Research, 45(D1), D313–D319. Brito da Costa, A. M., Dias da Silva, D., Gomes, N. G. M., Dinis Oliveira, R. J., & Madureira Carvalho, ?. (2021). Pharmacokinetics and pharmacodynamics of salvinorin a and Salvia divinorum: Clinical and forensic aspects. Pharmaceuticals, 14(2), 116. Chang, S., Puryear, J., & Cairney, J. (1993). A simple and efficient method for isolating RNA from pine trees. Plant Molecular Biology Reporter, 11(2), 113–116. Chen, C. J., Kumar, K. J. S., Chen, Y. T., Tsao, N. W., Chien, S. C., Chang, S. T., Chu, F. H., & Wang, S. Y. (2015a). Effect of hinoki and meniki essential oils on human autonomic nervous system activity and mood states. Natural Product Communications, 10(7), 1305-1308. Chen, Y. J., Lin, C. Y., Cheng, S. S., & Chang, S. T. (2015b). Rapid discrimination and feature extraction of three Chamaecyparis species by static HS/GC–MS. Journal of Agricultural and Food Chemistry, 63(3), 810–820. Coates, R. M., & Kang, H. Y. (1987). Synthesis and evaluation of cyclobutylcarbinyl derivatives as potential intermediates in diterpene biosynthesis. The Journal of Organic Chemistry, 52(10), 2065–2074. Davi?re, J. M., & Achard, P. (2013). Gibberellin signaling in plants. Development, 140(6), 1147–1151. Edgar, R. C. (2004). MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32(5), 1792–1797. Elkady, W. M., & Ayoub, I. M. (2018). Chemical profiling and antiproliferative effect of essential oils of two Araucaria species cultivated in Egypt. Industrial Crops and Products, 118, 188–195. Eseverri, ?., Baysal, C., Medina, V., Capell, T., Christou, P., Rubio, L. M., & Caro, E. (2020). Transit peptides from photosynthesis related proteins mediate import of a marker protein into different plastid types and within different species. Frontiers in Plant Science, 11, 560701. Fordjour, E., Mensah, E. O., Hao, Y., Yang, Y., Liu, X., Li, Y., Liu, C. L., & Bai, Z. (2022). Toward improved terpenoids biosynthesis: Strategies to enhance the capabilities of cell factories. Bioresources and Bioprocessing, 9(1), 6. F?chtner, S., Brock Nannestad, T., Smeds, A., Fredriksson, M., Pilg?rd, A., & Thygesen, L. G. (2020). Hydrophobic and hydrophilic extractives in Norway spruce and Kurile larch and their role in brown rot degradation. Frontiers in Plant Science, 11, 855. Gao, H. Y., Wu, L. J., Muto, N., Fuchino, H., Nakane, T., Shirota, O., Sano, T., & Kuroyanagi, M. (2008). Beyerane derivatives and a sesquiterpene dimer from Japanese cypress (Chamaecyparis obtusa). Chemical and Pharmaceutical Bulletin, 56(7), 1030–1034. Gonz?lez, M. A. (2015). Aromatic abietane diterpenoids: Their biological activity and synthesis. Natural Product Reports, 32(5), 684–704. Guex, N., Peitsch, M. C., & Schwede, T. (2009). Automated comparative protein structure modeling with SWISS MODEL and Swiss PdbViewer: A historical perspective. ELECTROPHORESIS, 30(S1), S162–S173. Gutbrod, K., Romer, J., & D?rmann, P. (2019). Phytol metabolism in plants. Progress in Lipid Research, 74, 1–17. Gutbrod, P., Yang, W., Grujicic, G. V., Peisker, H., Gutbrod, K., Du, L. F., & D?rmann, P. (2021). Phytol derived from chlorophyll hydrolysis in plants is metabolized via phytenal. Journal of Biological Chemistry, 296, 100530. Hall, D. E., Zerbe, P., Jancsik, S., Quesada, A. L., Dullat, H., Madilao, L. L., Yuen, M., & Bohlmann, J. (2013). Evolution of conifer diterpene synthases: Diterpene resin acid biosynthesis in lodgepole pine and jack pine involves monofunctional and bifunctional diterpene synthases. Plant Physiology, 161(2), 600–616. Hanari, N., Yamamoto, H., & Kuroda, K. (2002). Comparison of terpenes in extracts from the resin and the bark of the resinous stem canker of Chamaecyparis obtusa and Thujopsis dolabrata var. hondae. Journal of Wood Science, 48(1), 56–63. Hanh, T. T. H., My, N. T. T., Cham, P. T., Quang, T. H., Cuong, N. X., Huong, T. T., Nam, N. H., & Minh, C. V. (2020). Diterpenoids and flavonoids from Andrographis paniculata. Chemical and Pharmaceutical Bulletin, 68(1), 96–99. Hedden, P., & Sponsel, V. (2015). A century of gibberellin research. Journal of Plant Growth Regulation, 34(4), 740–760. Hern?ndez Alvarado, R. B., Madariaga Maz?n, A., Ortega, A., & Martinez Mayorga, K. (2020). Dark classics in chemical neuroscience: Salvinorin A. ACS Chemical Neuroscience, 11(23), 3979–3992. Hong, Y. J., & Tantillo, D. J. (2010). Formation of beyerene, kaurene, trachylobane, and atiserene diterpenes by rearrangements that avoid secondary carbocations. Journal of the American Chemical Society, 132(15), 5375–5386. Hsu, C. Y., Lin, G. M., & Chang, S. T. (2020). Hypoglycemic activity of extracts of Chamaecyparis obtusa var. Formosana leaf in rats with hyperglycemia induced by high fat diets and streptozotocin. Journal of Traditional and Complementary Medicine, 10(4), 389–395. Hu, B., Jin, J., Guo, A. Y., Zhang, H., Luo, J., & Gao, G. (2015). GSDS 2.0: An upgraded gene feature visualization server. Bioinformatics, 31(8), 1296–1297. Hudgins, J. W., Christiansen, E., & Franceschi, V. R. (2004). Induction of anatomically based defense responses in stems of diverse conifers by methyl jasmonate: A phylogenetic perspective. Tree Physiology, 24(3), 251–264. Jackson, A. J., Hershey, D. M., Chesnut, T., Xu, M., & Peters, R. J. (2014). Biochemical characterization of the castor bean ent kaurene synthase( like) family supports quantum chemical view of diterpene cyclization. Phytochemistry, 103, 13–21. Jia, M., Zhou, K., Tufts, S., Schulte, S., & Peters, R. J. (2017). A pair of residues that interactively affect diterpene synthase product outcome. ACS Chemical Biology, 12(3), 862–867. Jia, Q., Brown, R., K?llner, T. G., Fu, J., Chen, X., Wong, G. K. S., Gershenzon, J., Peters, R. J., & Chen, F. (2022). Origin and early evolution of the plant terpene synthase family. Proceedings of the National Academy of Sciences, 119(15), e2100361119. Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., ??dek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera Paredes, B., Nikolov, S., Jain, R., Adler, J., … Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583–589. Karunanithi, P. S., & Zerbe, P. (2019). Terpene synthases as metabolic gatekeepers in the evolution of plant terpenoid chemical diversity. Frontiers in Plant Science, 10, 1166. Keeling, C. I., & Bohlmann, J. (2006). Diterpene resin acids in conifers. Phytochemistry, 67(22), 2415–2423. Keeling, C. I., Weisshaar, S., Lin, R. P. C., & Bohlmann, J. (2008). Functional plasticity of paralogous diterpene synthases involved in conifer defense. Proceedings of the National Academy of Sciences, 105(3), 1085–1090. Kim, E. M., Woo, H. M., Tian, T., Yilmaz, S., Javidpour, P., Keasling, J. D., & Lee, T. S. (2017). Autonomous control of metabolic state by a quorum sensing (QS) mediated regulator for bisabolene production in engineered E. coli. Metabolic Engineering, 44, 325–336. Kim, E. S., Kang, S. Y., Kim, Y. H., Lee, Y. E., Choi, N. Y., You, Y. O., & Kim, K. J. (2015). Chamaecyparis obtusa essential oil inhibits methicillin resistant staphylococcus aureus biofilm formation and expression of virulence factors. Journal of Medicinal Food, 18(7), 810–817. Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547–1549. K?peli Akkol, E., ?lhan, M., Ay?e Demirel, M., Kele?, H., T?men, I., & S?ntar, ?. (2015). Thuja occidentalis L. and its active compound, α thujone: Promising effects in the treatment of polycystic ovary syndrome without inducing osteoporosis. Journal of Ethnopharmacology, 168, 25–30. Kusumoto, N., Ashitani, T., Hayasaka, Y., Murayama, T., Ogiyama, K., & Takahashi, K. (2009). Antitermitic activities of abietane type diterpenes from Taxodium distichum cones. Journal of Chemical Ecology, 35(6), 635–642. Kusumoto, N., Ashitani, T., Murayama, T., Ogiyama, K., & Takahashi, K. (2010). Antifungal abietane type diterpenes from the cones of Taxodium distichum Rich. Journal of Chemical Ecology, 36(12), 1381–1386. Lee, K. C., Chang, H. H., Chung, Y. H., & Lee, T. Y. (2011). Andrographolide acts as an anti inflammatory agent in LPS stimulated RAW264.7 macrophages by inhibiting STAT3 mediated suppression of the NF κB pathway. Journal of Ethnopharmacology, 135(3), 678–684. Letunic, I., & Bork, P. (2021). Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Research, 49(W1), W293–W296. Li, J., Zhang, D., & Donoghue, M. J. (2003). Phylogeny and biogeography of Chamaecyparis (Cupressaceae) inferred from DNA sequences of the nuclear ribosomal ITS region. Rhodora, 105(922), 106–117. Lu, X., Tang, K., & Li, P. (2016). Plant metabolic engineering strategies for the production of pharmaceutical terpenoids. Frontiers in Plant Science, 7, 1647. Ma, L. T., Lee, Y. R., Tsao, N. W., Wang, S. Y., Zerbe, P., & Chu, F. H. (2019). Biochemical characterization of diterpene synthases of Taiwania cryptomerioides expands the known functional space of specialized diterpene metabolism in gymnosperms. The Plant Journal, 100(6), 1254–1272. Ma, L. T., Wang, C. H., Hon, C. Y., Lee, Y. R., & Chu, F. H. (2021). Discovery and characterization of diterpene synthases in Chamaecyparis formosensis Matsum. which participated in an unprecedented diterpenoid biosynthesis route in conifer. Plant Science, 304, 110790. Mafu, S., Karunanithi, P. S., Palazzo, T. A., Harrod, B. L., Rodriguez, S. M., Mollhoff, I. N., O’Brien, T. E., Tong, S., Fiehn, O., Tantillo, D. J., Bohlmann, J., & Zerbe, P. (2017). Biosynthesis of the microtubule destabilizing diterpene pseudolaric acid B from golden larch involves an unusual diterpene synthase. Proceedings of the National Academy of Sciences, 114(5), 974–979. Martin, V. J. J., Pitera, D. J., Withers, S. T., Newman, J. D., & Keasling, J. D. (2003). Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nature Biotechnology, 21(7), 796–802. Meraj, T. A., Fu, J., Raza, M. A., Zhu, C., Shen, Q., Xu, D., & Wang, Q. (2020). Transcriptional factors regulate plant stress responses through mediating secondary metabolism. Genes, 11(4), 346. Miyamoto, K., Okuda, S., Inagaki, Y., Noguchi, M., & Itou, T. (2013). Within and between site variations in leaf longevity in hinoki cypress (Chamaecyparis obtusa) plantations in southwestern Japan. Journal of Forest Research, 18(3), 256–269. Morikawa, T., Ashitani, T., Kofujita, H., & Takahashi, K. (2014). Antitermitic activity of extracts from Chamaecyparis obtusa branch heartwood. European Journal of Wood and Wood Products, 72(5), 651–657. Murata, K., Tanaka, K., Akiyama, R., Noro, I., Nishio, A., Nakagawa, S., Matsumura, S., & Matsuda, H. (2018). Anti cholinesterase activity of crude drugs selected from the ingredients of incense sticks and heartwood of Chamaecyparis obtusa. Natural Product Communications, 13(7), 803–806. Murphy, K. M., & Zerbe, P. (2020). Specialized diterpenoid metabolism in monocot crops: Biosynthesis and chemical diversity. Phytochemistry, 172, 112289. Nagegowda, D. A., & Gupta, P. (2020). Advances in biosynthesis, regulation, and metabolic engineering of plant specialized terpenoids. Plant Science, 294, 110457. Nikoli?, B. M., Milanovi?, S. D., Milenkovi?, I. Lj., Todosijevi?, M. M., ?or?evi?, I. ?., Brki?, M. Z., Miti?, Z. S., Marin, P. D., & Te?evi?, V. V. (2022). Bioactivity of Chamaecyparis lawsoniana (A. Murray) Parl. and Thuja plicata Donn ex D. Don essential oils on Lymantria dispar (Linnaeus, 1758) (Lepidoptera: Erebidae) larvae and Phytophthora de Bary 1876 root pathogens. Industrial Crops and Products, 178, 114550. Olate, V. R., V?lez, M. L., Greslebin, A., & Schmeda Hirschmann, G. (2015). Phytophthora austrocedri elicitates changes in diterpene profile of Austrocedrus chilensis. Molecules, 20(8), 15084–15097. Pal? Pa?l, J., Usano Alemany, J., Granda, E., & Soria, A. C. (2012). Antifungal and antibacterial activity of the essential oil of Chamaecyparis lawsoniana from Spain. Natural Product Communications, 7(10), 1383–1386. Parra, T., Benites, J., Ruiz, L. M., Sepulveda, B., Simirgiotis, M., & Areche, C. (2015). Gastroprotective activity of ent beyerene derivatives in mice: Effects on gastric secretion, endogenous prostaglandins and non protein sulfhydryls. Bioorganic & Medicinal Chemistry Letters, 25(14), 2813–2817. Peng, B., Nielsen, L. K., Kampranis, S. C., & Vickers, C. E. (2018). Engineered protein degradation of farnesyl pyrophosphate synthase is an effective regulatory mechanism to increase monoterpene production in Saccharomyces cerevisiae. Metabolic Engineering, 47, 83–93. Peters, R. J. (2010). Two rings in them all: The labdane related diterpenoids. Natural Product Reports, 27(11), 1521–1530. Peters, R. J., Flory, J. E., Jetter, R., Ravn, M. M., Lee, H. J., Coates, R. M., & Croteau, R. B. (2000). Abietadiene synthase from grand fir (Abies grandis): Characterization and mechanism of action of the “pseudomature” recombinant enzyme. Biochemistry, 39(50), 15592–15602. Qu, J., Liu, Q., You, G., Ye, L., Jin, Y., Kong, L., Guo, W., Xu, Q., & Sun, Y. (2022). Advances in ameliorating inflammatory diseases and cancers by andrographolide: Pharmacokinetics, pharmacodynamics, and perspective. Medicinal Research Reviews, 42(3), 1147–1178. Quaglio, D., Mangoni, M. L., Stefanelli, R., Corradi, S., Casciaro, B., Vergine, V., Lucantoni, F., Cavinato, L., Cammarone, S., Loffredo, M. R., Cappiello, F., Calcaterra, A., Erazo, S., Ghirga, F., Mori, M., Imperi, F., Ascenzioni, F., & Botta, B. (2020). Ent beyerane diterpenes as a key platform for the development of arnt mediated colistin resistance inhibitors. The Journal of Organic Chemistry, 85(16), 10891–10901. Redding Johanson, A. M., Batth, T. S., Chan, R., Krupa, R., Szmidt, H. L., Adams, P. D., Keasling, J. D., Soon Lee, T., Mukhopadhyay, A., & Petzold, C. J. (2011). Targeted proteomics for metabolic pathway optimization: Application to terpene production. Metabolic Engineering, 13(2), 194–203. Shao, J., Sun, Y., Liu, H., & Wang, Y. (2021). Pathway elucidation and engineering of plant derived diterpenoids. Current Opinion in Biotechnology, 69, 10–16. Shen, B. R., Zhu, C. H., Yao, Z., Cui, L. L., Zhang, J. J., Yang, C. W., He, Z. H., & Peng, X. X. (2017). An optimized transit peptide for effective targeting of diverse foreign proteins into chloroplasts in rice. Scientific Reports, 7(1), 46231. Su, Y. C., Ho, C. L., & Wang, E. I. C. (2006). Analysis of leaf essential oils from the indigenous ve conifers of Taiwan. Flavour and Fragrance Journal, 21(3), 447–452. Takahashi, K., Nagahama, S., Nakashima, T., & Suenaga, H. (2001). Chemotaxonomy on the leaf constituents of Thujopsis dolabrata Sieb. Et Zucc.—Analysis of neutral extracts (diterpene hydrocarbon). Biochemical Systematics and Ecology, 29(8), 839–848. Tasnim, S., Gries, R., & Mattsson, J. (2020). Identification of three monofunctional diterpene synthases with specific enzyme activities expressed during heartwood formation in western redcedar (Thuja plicata) trees. Plants, 9(8), 1018. Tezuka, D., Ito, A., Mitsuhashi, W., Toyomasu, T., & Imai, R. (2015). The rice ent KAURENE SYNTHASE LIKE 2 encodes a functional ent beyerene synthase. Biochemical and Biophysical Research Communications, 460(3), 766–771. Trapp, S. C., & Croteau, R. B. (2001). Genomic organization of plant terpene synthases and molecular evolutionary implications. Genetics, 158(2), 811–832. Tsiri, D., Graikou, K., Pob?ocka Olech, L., Krauze Baranowska, M., Spyropoulos, C., & Chinou, I. (2009). Chemosystematic value of the essential oil composition of Thuja species cultivated in poland—Antimicrobial activity. Molecules, 14(11), 4707–4715. Tungcharoen, P., Wattanapiromsakul, C., Tansakul, P., Nakamura, S., Matsuda, H., & Tewtrakul, S. (2020). Anti inflammatory effect of isopimarane diterpenoids from Kaempferia galanga. Phytotherapy Research, 34(3), 612–623. Ullah, A., Munir, S., Mabkhot, Y., & Badshah, S. L. (2019). Bioactivity profile of the diterpene isosteviol and its derivatives. Molecules, 24(4), 678. Van Puyvelde, L., Aissa, A., Panda, S. K., De Borggraeve, W. M., Mukazayire, M. J., & Luyten, W. (2021). Bioassay guided isolation of antibacterial compounds from the leaves of Tetradenia riparia with potential bactericidal effects on food borne pathogens. Journal of Ethnopharmacology, 273, 113956. Van Puyvelde, L., Liu, M., Veryser, C., De Borggraeve, W. M., Mungarulire, J., Mukazayire, M. J., & Luyten, W. (2018). Active principles of Tetradenia riparia. IV. Anthelmintic activity of 8(14),15 sandaracopimaradiene 7α,18 diol. Journal of Ethnopharmacology, 216, 229–232. Vandenbussche, F., Fierro, A. C., Wiedemann, G., Reski, R., & Van Der Straeten, D. (2007). Evolutionary conservation of plant gibberellin signalling pathway components. BMC Plant Biology, 7(1), 65. Wang, L. W., Su, H. J., Day, S. H., Tsao, L. T., Yang, S. Z., Wang, J. P., & Lin, C. N. (2005). New phenylpropane and anti inflammatory diterpene derivatives from Amentotaxus formosana. Planta Medica, 71(04), 344–348. Wang, P., Zhang, Q., Chen, Y., Zhao, Y., Ren, F., Shi, H., & Wu, X. (2020). Comprehensive identification and analysis of DELLA genes throughout the plant kingdom. BMC Plant Biology, 20(1), 372. Wang, W. P., Hwang, C. Y., Lin, T. P., & Hwang, S. Y. (2003). Historical biogeography and phylogenetic relationships of the genus Chamaecyparis (Cupressaceae) inferred from chloroplast DNA polymorphism. Plant Systematics and Evolution, 241(1), 13–28. Wang, X., Pereira, J. H., Tsutakawa, S., Fang, X., Adams, P. D., Mukhopadhyay, A., & Lee, T. S. (2021). Efficient production of oxidized terpenoids via engineering fusion proteins of terpene synthase and cytochrome P450. Metabolic Engineering, 64, 41–51. Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., de Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). SWISS MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Research, 46(W1), W296–W303. Wilderman, P. R., & Peters, R. J. (2007). A single residue switch converts abietadiene synthase into a pimaradiene specific cyclase. Journal of the American Chemical Society, 129(51), 15736–15737. Wu, M. D., Cheng, M. J., Chen, J. J., Khamthong, N., Lin, W. W., & Kuo, Y. H. (2022). Secondary metabolites with antimicrobial activities from Chamaecyparis obtusa var. Formosana. Molecules, 27(2), 429. Xu, M., Wilderman, P. R., & Peters, R. J. (2007). Following evolution’s lead to a single residue switch for diterpene synthase product outcome. Proceedings of the National Academy of Sciences, 104(18), 7397–7401. Xu, S., & Liu, P. (2013). Tanshinone II A: New perspectives for old remedies. Expert Opinion on Therapeutic Patents, 23(2), 149–153. Yamada, T., Hasegawa, E., & Miyashita, S. I. (2003). Resinous stem canker development during the growing season of Chamaecyparis obtusa (Hinoki cypress) inoculated with pathogenic fungus Cistella japonica. Forest Pathology, 33(3), 181–189. Yamada, T., Nagashima, M., Kawaguchi, C., Ootsuki, K., & Yanagita, N. (2002). Seasonal resin canal formation and necroses expansion in resinous stem canker affected Chamaecyparis obtusa. Forest Pathology, 32(4–5), 213–224. Yang, Z. Y., Ran, J. H., & Wang, X. Q. (2012). Three genome based phylogeny of Cupressaceae s.l.: Further evidence for the evolution of gymnosperms and Southern Hemisphere biogeography. Molecular Phylogenetics and Evolution, 64(3), 452–470. Yasutomi, R., Anzawa, R., Urakawa, M., & Usuki, T. (2021). Effective extraction of limonene and hibaene from hinoki (Chamaecyparis obtusa) using ionic liquid and deep eutectic solvent. Molecules, 26(14), 4271. Zeng, B., Wei, A., Zhou, Q., Yuan, M., Lei, K., Liu, Y., Song, J., Guo, L., & Ye, Q. (2022). Andrographolide: A review of its pharmacology, pharmacokinetics, toxicity and clinical trials and pharmaceutical researches. Phytotherapy Research, 36(1), 336–364. Zhang, C., Zhang, W., Ren, G., Li, D., Cahoon, R. E., Chen, M., Zhou, Y., Yu, B., & Cahoon, E. B. (2015). Chlorophyll synthase under epigenetic surveillance is critical for vitamin E synthesis, and altered expression affects tocopherol levels in Arabidopsis. Plant Physiology, 168(4), 1503–1511. Zhou, K., Gao, Y., Hoy, J. A., Mann, F. M., Honzatko, R. B., & Peters, R. J. (2012a). Insights into diterpene cyclization from structure of bifunctional abietadiene synthase from Abies grandis. Journal of Biological Chemistry, 287(9), 6840–6850. Zhou, K., Xu, M., Tiernan, M., Xie, Q., Toyomasu, T., Sugawara, C., Oku, M., Usui, M., Mitsuhashi, W., Chono, M., Chandler, P. M., & Peters, R. J. (2012b). Functional characterization of wheat ent kaurene( like) synthases indicates continuing evolution of labdane related diterpenoid metabolism in the cereals. Phytochemistry, 84, 47–55. Zhu, L., & Chen, L. (2019). Progress in research on paclitaxel and tumor immunotherapy. Cellular & Molecular Biology Letters, 24(1), 40.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83552-
dc.description.abstract日本扁柏 (Chamaecyparis obtusa) 和臺灣扁柏 (Chamaecyparis obtusa var. formosana) 的木材因為優異的耐久性受到歡迎,其木材的抗腐朽能力往往與萃取物成分中的特殊代謝物 (specialized metabolites) 有關,其中又以雙?類化合物 (diterpenoid) 扮演重要的功用。從前驅物 geranylgeranyl diphosphate (GGPP) 轉變成雙?骨架大多需要經過兩步驟反應,由雙?合成? (diterpene synthase) 催化,class II 雙?合成?負責第一步,class I 雙?合成?負責第二步。過去的研究當中,裸子植物雙?特殊代謝物的生合成,通常由單一個具有雙功能 class II/I 的雙?合成?完成兩步驟的反應,然而近期發現,柏科植物特殊代謝物的生合成與被子植物的生合成模式相同,皆是以兩個單功能的雙?合成?配合達成雙?生合成。由於有關柏科雙?代謝的生合成模式不同於松科,但截至目前其研究相當有限,為證實其確實是柏科獨特的生合成方式,本研究以扁柏屬植物闡明柏科雙?合成?的催化功能和演化關係。本研究建構日本扁柏轉錄組資料,從中獲得 5 條完整雙?合成?基因序列,同時也從臺灣扁柏中選殖 4 條雙?合成?。所有扁柏雙?合成?皆為單功能,親緣關係分析表明柏科雙?合成?經歷多次單功能化。對單功能雙?合成?進行功能鑑定,CovfKSL3 產生 ( ) sandaracopimaradiene,CoKSL2、CovfKSL2 1 和 CovfKSL2 3 能夠產生 ( ) beyerene。( ) beyerene 存在日本扁柏與其他柏科植物萃取物中,而能夠生合成 ( ) beyerene 的雙?合成?在此初次被鑑定。zh_TW
dc.description.abstractOwnig to the excellent durability, the wood of Chamaecyparis obtusa and Chamaecyparis obtusa var. formosana is popular in timber production. The contribution of specialized metabolites to decay resistance of Chamaecyparis wood is well known, where diterpenoid plays an important role. The transformation from the precursor, geranylgeranyl diphosphate (GGPP), to majority of the diterpene scaffold goes through dual reactions carried out by diterpene synthases (diTPS). Class II diTPSs initiates the first step, and class I diTPSs finishes the next step. While Class II/I bifunctional diTPSs participate in most of the specialized diterpenoids metabolism in gymnosperms, it was recently discovered that the diterpene biosynthesis in Cupressaceae is completed by collocation of two monofunctional diTPSs. Despite the specificity of diterpenoid metabolism pattern in Cupressaceae, the researches remain limited. More investigation into the catalytic function and evolutionary relationship of the diterpene synthases in Cupressaceae is needed. The transcriptome of C. obtusa is established here, and 5 complete diTPSs were obtained from it. Four diTPSs from C. obtusa var. formosana were cloned as well. All of the Chamaecyparis diTPSs are monofunctional, with phylogenetics analysis suggesting the multiple time monofunctionalization of diTPSs in Cupressaceae. Functional characterization of the monofunctional diTPSs was performed. CovfKSL3 produces ( ) sandaracopimaradiene, while CoKSL2, CovfKSL2 1, and CovfKSL2 3 produces ( ) beyerene, which is found in the extract of C. obtusa and other Cupressaceae species. DiTPSs capable of synthesizing ( ) beyerene were discovered for the first time here.en
dc.description.provenanceMade available in DSpace on 2023-03-19T21:10:19Z (GMT). No. of bitstreams: 1
U0001-2508202215215100.pdf: 6078398 bytes, checksum: 039ca512a66300b76ab72a1494303b1e (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents口試委員審定書 i 致謝 ii 摘要 iii Abstract iv 目錄 v 圖目錄 viii 表目錄 x 一、 緒論 1 二、 文獻回顧 3 2.1 雙?類化合物介紹 3 2.1.1 Labdane型雙? 3 2.1.2 其他雙? 4 2.2. 雙?類化合物之植物生理功能 5 2.2.1吉貝素對植物的生長調節 5 2.2.2 裸子植物樹脂防禦 7 2.3 植物雙?類化合物的生物活性 11 2.3.1 雙?類化合物的白蟻與真菌的抗性 11 2.3.2 穿心蓮內酯 (andrographolide) 12 2.3.3 Salvinorin A 14 2.4 植物?類化合物生合成 16 2.4.1 前驅物生合成 16 2.4.2 ?類合成?形成?類骨架 20 2.4.3 ?類化合物的官能基修飾 22 2.5 植物?類化合物代謝工程 23 2.5.1 異源 MVA 途徑 23 2.5.2 轉錄因子的調控 26 2.5.3 蛋白質融合 27 2.5.4 動態調控 (dynamic regulation) 29 三、 材料方法 32 3.1 植物材料 32 3.2 RNA萃取 32 3.3 轉錄體定序與組裝 32 3.4 候選基因篩選與全長序列選殖 33 3.5 親緣關係分析 34 3.6 表現型質體構築 34 3.7 西方墨點法 (western blot) 35 3.8 大腸桿菌共表現系統 (co expression) 36 3.9 化合物分析 36 3.9.1 氣相層析質譜儀(GC MS)分析 36 3.9.2 核磁共振 (Nuclear Magnetic Resonance, NMR) 分析 37 3.9.3 比旋光度測量 37 3.10 植物基因體 DNA萃取及內含子序列獲取 37 3.11 蛋白質結構模擬 37 四、 結果 38 4.1 日本扁柏轉錄體資料庫 38 4.2 雙?合成?序列 39 4.2.1 雙?合成?選殖資訊 39 4.2.2 胺基酸序列分析 43 4.2.3 雙?合成?內含子分布 46 4.3 親緣關係分析 49 4.4 西方墨點法之分析 51 4.5 雙?合成?大腸桿菌共表現產物分析 54 五、 研究討論 65 5.1 日本扁柏和臺灣扁柏雙?合成?序列與蛋白質特性 65 5.2 Co3171 西方墨點結果之可能原因推測 66 5.3 扁柏屬雙?合成?親緣關係與演化 69 5.4 柏科特殊代謝的單功能雙?合成? 71 5.4 sandaracopimaradiene 和 beyerene 生合成機制及可能影響反應的殘基 73 5.5 雙?合成?產物的潛在生物活性 77 六、 結論 78 七、參考文獻 79 附錄 93
dc.language.isozh-TW
dc.subject雙?zh_TW
dc.subject日本扁柏zh_TW
dc.subject臺灣扁柏zh_TW
dc.subjectbeyerenezh_TW
dc.subjectChamaecyparis obtusa var. formosanaen
dc.subjectbeyereneen
dc.subjectditerpeneen
dc.subjectChamaecyparis obtusaen
dc.title扁柏屬 Beyerene 與 Sandaracopimaradiene 合成?功能鑑定zh_TW
dc.titleFunctional Identification of Beyerene and Sandaracopimaradiene Synthases in Genus Chamaecyparisen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王升陽(Sheng-Yang Wang),孫英玄(Ying-Hsuan Sun),何振隆(Chen-Lung Ho),吳家禎(Chia-Chen Wu)
dc.subject.keyword日本扁柏,臺灣扁柏,beyerene,雙?,zh_TW
dc.subject.keywordChamaecyparis obtusa,Chamaecyparis obtusa var. formosana,beyerene,diterpene,en
dc.relation.page105
dc.identifier.doi10.6342/NTU202202812
dc.rights.note未授權
dc.date.accepted2022-08-31
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept森林環境暨資源學研究所zh_TW
顯示於系所單位:森林環境暨資源學系

文件中的檔案:
檔案 大小格式 
U0001-2508202215215100.pdf
  未授權公開取用
5.94 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved