請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83550完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄭如忠 | zh_TW |
| dc.contributor.advisor | Ru-Jong Jeng | en |
| dc.contributor.author | 陳軾文 | zh_TW |
| dc.contributor.author | Shi-Wen Chen | en |
| dc.date.accessioned | 2023-03-19T21:10:16Z | - |
| dc.date.available | 2024-04-03 | - |
| dc.date.copyright | 2022-09-05 | - |
| dc.date.issued | 2022 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | 1. Geyer, R.; Jambeck, J. R.; Law, K. L., Production, use, and fate of all plastics ever made. Science Advances 2017, 3 (7), e1700782. 2. Brahney, J.; Hallerud, M.; Heim, E.; Hahnenberger, M.; Sukumaran, S., Plastic rain in protected areas of the United States. Science 2020, 368 (6496), 1257-1260. 3. Moore, C. J., Synthetic polymers in the marine environment: A rapidly increasing, long-term threat. Environmental Research 2008, 108 (2), 131-139. 4. Jawahir, I. S.; Bradley, R., Technological Elements of Circular Economy and the Principles of 6R-Based Closed-loop Material Flow in Sustainable Manufacturing. Procedia CIRP 2016, 40, 103-108. 5. Lai, Y.-Y.; Lee, Y.-M., Management strategy of plastic wastes in Taiwan. Sustainable Environment Research 2022, 32 (1), 11. 6. Brunelle, D. J., Advances in polycarbonates: An overview. 2005. 7. Kim, J. G., Chemical recycling of poly(bisphenol A carbonate). Polymer Chemistry 2020, 11 (30), 4830-4849. 8. Fukuoka, S.; Fukawa, I.; Adachi, T.; Fujita, H.; Sugiyama, N.; Sawa, T., Industrialization and Expansion of Green Sustainable Chemical Process: A Review of Non-phosgene Polycarbonate from CO2. Organic Process Research & Development 2019, 23 (2), 145-169. 9. The Global Polycarbonates Market to 2023. Associated Press News 2018, https://apnews.com/pressrelease/business. 10. Fukuoka, S.; Kawamura, M.; Komiya, K.; Tojo, M.; Hachiya, H.; Hasegawa, K.; Aminaka, M.; Okamoto, H.; Fukawa, I.; Konno, S., A novel non-phosgene polycarbonate production process using by-product CO 2 as starting material. Green Chemistry 2003, 5 (5), 497-507. 11. Fukuoka, S.; Tojo, M.; Hachiya, H.; Aminaka, M.; Hasegawa, K., Green and Sustainable Chemistry in Practice: Development and Industrialization of a Novel Process for Polycarbonate Production from CO2 without Using Phosgene. Polymer Journal 2007, 39 (2), 91-114. 12. McClellan, P. P. (Jefferson Chemical) Catalytic process for producing alkylene carbonates, USP 2,873,282 (Apr. 5, 1952), Feb. 10, 1959. 13. Fukuoka, S.; Fukawa, I.; Tojo, M.; Oonishi, K.; Hachiya, H.; Aminaka, M.; Hasegawa, K.; Komiya, K., A Novel Non-Phosgene Process for Polycarbonate Production from CO2: Green and Sustainable Chemistry in Practice. Catalysis Surveys from Asia 2010, 14 (3), 146-163. 14. Tucker, D. K.; Hayes Bouknight, S.; Brar, S. S.; Kissling, G. E.; Fenton, S. E., Evaluation of Prenatal Exposure to Bisphenol Analogues on Development and Long-Term Health of the Mammary Gland in Female Mice. Environ Health Perspect 2018, 126 (8), 087003. 15. Vandenberg, L. N.; Hauser, R.; Marcus, M.; Olea, N.; Welshons, W. V., Human exposure to bisphenol A (BPA). Reproductive Toxicology 2007, 24 (2), 139-177. 16. Idowu, G. A.; David, T. L.; Idowu, A. M., Polycarbonate plastic monomer (bisphenol-A) as emerging contaminant in Nigeria: Levels in selected rivers, sediments, well waters and dumpsites. Marine Pollution Bulletin 2022, 176, 113444. 17. Tagaya, H.; Katoh, K.; Kadokawa, J.-i.; Chiba, K., Decomposition of polycarbonate in subcritical and supercritical water. Polymer Degradation and Stability 1999, 64 (2), 289-292. 18. Iannone, F.; Casiello, M.; Monopoli, A.; Cotugno, P.; Sportelli, M. C.; Picca, R. A.; Cioffi, N.; Dell’Anna, M. M.; Nacci, A., Ionic liquids/ZnO nanoparticles as recyclable catalyst for polycarbonate depolymerization. Journal of Molecular Catalysis A: Chemical 2017, 426, 107-116. 19. Quaranta, E., Rare Earth metal triflates M(O3SCF3)3 (M=Sc, Yb, La) as Lewis acid catalysts of depolymerization of poly-(bisphenol A carbonate) via hydrolytic cleavage of carbonate moiety: Catalytic activity of La(O3SCF3)3. Applied Catalysis B: Environmental 2017, 206, 233-241. 20. Taguchi, M.; Ishikawa, Y.; Kataoka, S.; Naka, T.; Funazukuri, T., CeO2 nanocatalysts for the chemical recycling of polycarbonate. Catalysis Communications 2016, 84, 93-97. 21. Kim, D.; Kim, B.-k.; Cho, Y.; Han, M.; Kim, B.-S., Kinetics of Polycarbonate Methanolysis by a Consecutive Reaction Model. Industrial & Engineering Chemistry Research 2009, 48 (14), 6591-6599. 22. Jie, H.; Ke, H.; Qing, Z.; Lei, C.; Yongqiang, W.; Zibin, Z., Study on depolymerization of polycarbonate in supercritical ethanol. Polymer Degradation and Stability 2006, 91 (10), 2307-2314. 23. Hu, L.-C.; Oku, A.; Yamada, E., Alkali-catalyzed methanolysis of polycarbonate. A study on recycling of bisphenol A and dimethyl carbonate. Polymer 1998, 39 (16), 3841-3845. 24. Quaranta, E.; Sgherza, D.; Tartaro, G., Depolymerization of poly(bisphenol A carbonate) under mild conditions by solvent-free alcoholysis catalyzed by 1,8-diazabicyclo[5.4.0]undec-7-ene as a recyclable organocatalyst: a route to chemical recycling of waste polycarbonate. Green Chemistry 2017, 19 (22), 5422-5434. 25. Quaranta, E.; Minischetti, C. C.; Tartaro, G., Chemical Recycling of Poly(bisphenol A carbonate) by Glycolysis under 1,8-Diazabicyclo[5.4.0]undec-7-ene Catalysis. ACS Omega 2018, 3 (7), 7261-7268. 26. Do, T.; Baral, E. R.; Kim, J. G., Chemical recycling of poly(bisphenol A carbonate): 1,5,7-Triazabicyclo[4.4.0]-dec-5-ene catalyzed alcoholysis for highly efficient bisphenol A and organic carbonate recovery. Polymer 2018, 143, 106-114. 27. Alberti, C.; Enthaler, S., Depolymerization of End-of-Life Poly(bisphenol A carbonate) via 4-Dimethylaminopyridine-Catalyzed Methanolysis. Waste and Biomass Valorization 2020, 11 (9), 4621-4629. 28. Oku, A.; Tanaka, S.; Hata, S., Chemical conversion of poly(carbonate) to bis(hydroxyethyl) ether of bisphenol A. An approach to the chemical recycling of plastic wastes as monomers. Polymer 2000, 41 (18), 6749-6753. 29. Nakano, S.; Kato, T., A new process for producing polyamide from polyester. Journal of Polymer Science Part A: Polymer Chemistry 1999, 37 (10), 1413-1423. 30. Hata, S.; Goto, H.; Yamada, E.; Oku, A., Chemical conversion of poly(carbonate) to 1,3-dimethyl-2-imidazolidinone (DMI) and bisphenol A: a practical approach to the chemical recycling of plastic wastes. Polymer 2002, 43 (7), 2109-2116. 31. Singh, S.; Lei, Y.; Schober, A., Direct extraction of carbonyl from waste polycarbonate with amines under environmentally friendly conditions: scope of waste polycarbonate as a carbonylating agent in organic synthesis. RSC Advances 2015, 5 (5), 3454-3460. 32. Quaranta, E.; Dibenedetto, A.; Nocito, F.; Fini, P., Chemical recycling of poly-(bisphenol A carbonate) by diaminolysis: A new carbon-saving synthetic entry into non-isocyanate polyureas (NIPUreas). J Hazard Mater 2021, 403, 123957. 33. Wu, C.-H.; Chen, L.-Y.; Jeng, R.-J.; Dai, S. A., 100% Atom-Economy Efficiency of Recycling Polycarbonate into Versatile Intermediates. ACS Sustainable Chemistry & Engineering 2018, 6 (7), 8964-8975. 34. Huang, Y.-C.; Huang, Y.-H.; Chen, L.-Y.; Dai, C.-A.; Dai, S. A.; Chen, Y.-H.; Wu, C.-H.; Jeng, R.-J., Robust thermoplastic polyurethane elastomers prepared from recycling polycarbonate. Polymer 2021, 212, 123296. 35. Winne, J. M.; Leibler, L.; Du Prez, F. E., Dynamic covalent chemistry in polymer networks: a mechanistic perspective. Polymer Chemistry 2019, 10 (45), 6091-6108. 36. Boutelle, R. C.; Northrop, B. H., Substituent Effects on the Reversibility of Furan–Maleimide Cycloadditions. The Journal of Organic Chemistry 2011, 76 (19), 7994-8002. 37. Capelot, M.; Unterlass, M. M.; Tournilhac, F.; Leibler, L., Catalytic Control of the Vitrimer Glass Transition. ACS Macro Letters 2012, 1 (7), 789-792. 38. Elizalde, F.; Aguirresarobe, R. H.; Gonzalez, A.; Sardon, H., Dynamic polyurethane thermosets: tuning associative/dissociative behavior by catalyst selection. Polymer Chemistry 2020, 11 (33), 5386-5396. 39. Fortman, D. J.; Brutman, J. P.; Hillmyer, M. A.; Dichtel, W. R., Structural effects on the reprocessability and stress relaxation of crosslinked polyhydroxyurethanes. Journal of Applied Polymer Science 2017, 134 (45), 44984. 40. Gamardella, F.; Muñoz, S.; De la Flor, S.; Ramis, X.; Serra, A., Recyclable Organocatalyzed Poly(Thiourethane) Covalent Adaptable Networks. Polymers 2020, 12 (12), 2913. 41. Li, Q.; Ma, S.; Lu, N.; Qiu, J.; Ye, J.; Liu, Y.; Wang, S.; Han, Y.; Wang, B.; Xu, X.; Feng, H.; Zhu, J., Concurrent thiol–ene competitive reactions provide reprocessable, degradable and creep-resistant dynamic–permanent hybrid covalent networks. Green Chemistry 2020, 22 (22), 7769-7777. 42. Chakma, P.; Morley, C. N.; Sparks, J. L.; Konkolewicz, D., Exploring How Vitrimer-like Properties Can Be Achieved from Dissociative Exchange in Anilinium Salts. Macromolecules 2020, 53 (4), 1233-1244. 43. Obadia, M. M.; Mudraboyina, B. P.; Serghei, A.; Montarnal, D.; Drockenmuller, E., Reprocessing and Recycling of Highly Cross-Linked Ion-Conducting Networks through Transalkylation Exchanges of C-N Bonds. J Am Chem Soc 2015, 137 (18), 6078-83. 44. Obadia, M. M.; Jourdain, A.; Cassagnau, P.; Montarnal, D.; Drockenmuller, E., Tuning the Viscosity Profile of Ionic Vitrimers Incorporating 1,2,3-Triazolium Cross-Links. Advanced Functional Materials 2017, 27 (45), 1703258. 45. Chen, Y.; Yang, L.; Zheng, W.; Ouyang, P.; Zhang, H.; Ruan, Y.; Weng, W.; He, X.; Xia, H., Dynamic Polymer Network System Mediated by Radically Exchangeable Covalent Bond and Carbolong Complex. ACS Macro Letters 2020, 9 (3), 344-349. 46. Debnath, S.; Tiwary, S. K.; Ojha, U., Dynamic Carboxylate Linkage Based Reprocessable and Self-Healable Segmented Polyurethane Vitrimers Displaying Creep Resistance Behavior and Triple Shape Memory Ability. ACS Applied Polymer Materials 2021, 3 (4), 2166-2177. 47. Solouki Bonab, V.; Karimkhani, V.; Manas-Zloczower, I., Ultra-Fast Microwave Assisted Self-Healing of Covalent Adaptive Polyurethane Networks with Carbon Nanotubes. Macromolecular Materials and Engineering 2019, 304 (1), 1800405. 48. Ning Zheng, Z. F., Weike Zou, Qian Zhao,* and Tao Xie*, Thermoset Shape-Memory Polyurethane with Intrinsic Plasticity Enabled by Transcarbamoylation. Angewandte Chemie 2016, 55, 11421-11425. 49. Hu, J.; Yang, R.; Zhang, L.; Chen, Y.; Sheng, X.; Zhang, X., Robust, transparent, and self-healable polyurethane elastomer via dynamic crosslinking of phenol-carbamate bonds. Polymer 2021, 222, 123674. 50. Fortman, D. J.; Sheppard, D. T.; Dichtel, W. R., Reprocessing Cross-Linked Polyurethanes by Catalyzing Carbamate Exchange. Macromolecules 2019, 52 (16), 6330-6335. 51. Yan, P.; Zhao, W.; Fu, X.; Liu, Z.; Kong, W.; Zhou, C.; Lei, J., Multifunctional polyurethane-vitrimers completely based on transcarbamoylation of carbamates: thermally-induced dual-shape memory effect and self-welding. RSC Advances 2017, 7 (43), 26858-26866. 52. Brutman, J. P.; Fortman, D. J.; De Hoe, G. X.; Dichtel, W. R.; Hillmyer, M. A., Mechanistic Study of Stress Relaxation in Urethane-Containing Polymer Networks. J Phys Chem B 2019, 123 (6), 1432-1441. 53. Shi, J.; Zheng, T.; Zhang, Y.; Guo, B.; Xu, J., Cross-linked polyurethane with dynamic phenol-carbamate bonds: properties affected by the chemical structure of isocyanate. Polymer Chemistry 2021, 12 (16), 2421-2432. 54. Zheng, N.; Hou, J.; Xu, Y.; Fang, Z.; Zou, W.; Zhao, Q.; Xie, T., Catalyst-Free Thermoset Polyurethane with Permanent Shape Reconfigurability and Highly Tunable Triple-Shape Memory Performance. ACS Macro Letters 2017, 6 (4), 326-330. 55. Yan, P.; Zhao, W.; Wang, Y.; Jiang, Y.; Zhou, C.; Lei, J., Carbon Nanotubes-Polyurethane Vitrimer Nanocomposites with the Ability of Surface Welding Controlled by Heat and Near-Infrared Light. Macromolecular Chemistry and Physics 2017, 218 (20), 1700265. 56. Sun, Y.; Sheng, D.; Wu, H.; Tian, X.; Xie, H.; Shi, B.; Liu, X.; Yang, Y., Bio-based vitrimer-like polyurethane based on dynamic imine bond with high-strength, reprocessability, rapid-degradability and antibacterial ability. Polymer 2021, 233, 124208. 57. Li, J.; Yang, W.; Ning, Z.; Yang, B.; Zeng, Y., Sustainable Polyurethane Networks Based on Rosin with Reprocessing Performance. Polymers 2021, 13 (20), 3538. 58. Xie, D.-M.; Lu, D.-X.; Zhao, X.-L.; Li, Y.-D.; Zeng, J.-B., Sustainable and malleable polyurethane networks from castor oil and vanillin with tunable mechanical properties. Industrial Crops and Products 2021, 174, 114198. 59. Shi, J.; Zheng, T.; Guo, B.; Xu, J., Solvent-free thermo-reversible and self-healable crosslinked polyurethane with dynamic covalent networks based on phenol-carbamate bonds. Polymer 2019, 181, 121788. 60. Yan, P.; Zhao, W.; Jiang, L.; Wu, B.; Hu, K.; Yuan, Y.; Lei, J., Reconfiguration and shape memory triggered by heat and light of carbon nanotube–polyurethane vitrimer composites. Journal of Applied Polymer Science 2018, 135 (5), 45784. 61. Denissen, W.; Winne, J. M.; Du Prez, F. E., Vitrimers: permanent organic networks with glass-like fluidity. Chem Sci 2016, 7 (1), 30-38. 62. Zhang, Z. P.; Rong, M. Z.; Zhang, M. Q., Polymer engineering based on reversible covalent chemistry: A promising innovative pathway towards new materials and new functionalities. Progress in Polymer Science 2018, 80, 39-93. 63. Scott, T. F.; Schneider, A. D.; Cook, W. D.; Bowman, C. N., Photoinduced Plasticity in Cross-Linked Polymers. Science 2005, 308 (5728), 1615-1617. 64. Amamoto, Y.; Kamada, J.; Otsuka, H.; Takahara, A.; Matyjaszewski, K., Repeatable Photoinduced Self-Healing of Covalently Cross-Linked Polymers through Reshuffling of Trithiocarbonate Units. Angewandte Chemie International Edition 2011, 50 (7), 1660-1663. 65. Montarnal, D.; Capelot, M.; Tournilhac, F.; Leibler, L., Silica-like malleable materials from permanent organic networks. Science 2011, 334 (6058), 965-8. 66. Demongeot, A.; Mougnier, S. J.; Okada, S.; Soulié-Ziakovic, C.; Tournilhac, F., Coordination and catalysis of Zn2+ in epoxy-based vitrimers. Polymer Chemistry 2016, 7 (27), 4486-4493. 67. Xu, Y.-z.; Fu, P.; Dai, S.-l.; Zhang, H.-b.; Bi, L.-w.; Jiang, J.-x.; Chen, Y.-x., Catalyst-free self-healing fully bio-based vitrimers derived from tung oil: Strong mechanical properties, shape memory, and recyclability. Industrial Crops and Products 2021, 171, 113978. 68. Pei, Z.; Yang, Y.; Chen, Q.; Terentjev, E. M.; Wei, Y.; Ji, Y., Mouldable liquid-crystalline elastomer actuators with exchangeable covalent bonds. Nature Materials 2014, 13 (1), 36-41. 69. Li, Y.; Liu, T.; Zhang, S.; Shao, L.; Fei, M.; Yu, H.; Zhang, J., Catalyst-free vitrimer elastomers based on a dimer acid: robust mechanical performance, adaptability and hydrothermal recyclability. Green Chemistry 2020, 22 (3), 870-881. 70. Nicolas, S.; Richard, T.; Dourdan, J.; Lemiègre, L.; Audic, J.-L., Shape memory epoxy vitrimers based on waste frying sunflower oil. Journal of Applied Polymer Science 2021, 138 (36), 50904. 71. Jouyandeh, M.; Tikhani, F.; Hampp, N.; Akbarzadeh Yazdi, D.; Zarrintaj, P.; Reza Ganjali, M.; Reza Saeb, M., Highly curable self-healing vitrimer-like cellulose- modified halloysite nanotube/epoxy nanocomposite coatings. Chemical Engineering Journal 2020, 396, 125196. 72. Yue, L.; Guo, H.; Kennedy, A.; Patel, A.; Gong, X.; Ju, T.; Gray, T.; Manas-Zloczower, I., Vitrimerization: Converting Thermoset Polymers into Vitrimers. ACS Macro Letters 2020, 9 (6), 836-842. 73. Lorwanishpaisarn, N.; Kasemsiri, P.; Srikhao, N.; Son, C.; Kim, S.; Theerakulpisut, S.; Chindaprasirt, P., Carbon fiber/epoxy vitrimer composite patch cured with bio-based curing agents for one-step repair metallic sheet and its recyclability. Journal of Applied Polymer Science 2021, 138 (47), 51406. 74. Demongeot, A.; Groote, R.; Goossens, H.; Hoeks, T.; Tournilhac, F.; Leibler, L., Cross-Linking of Poly(butylene terephthalate) by Reactive Extrusion Using Zn(II) Epoxy-Vitrimer Chemistry. Macromolecules 2017, 50 (16), 6117-6127. 75. Altuna, F. I.; Hoppe, C. E.; Williams, R. J. J., Epoxy vitrimers with a covalently bonded tertiary amine as catalyst of the transesterification reaction. European Polymer Journal 2019, 113, 297-304. 76. Capelot, M.; Montarnal, D.; Tournilhac, F.; Leibler, L., Metal-catalyzed transesterification for healing and assembling of thermosets. J Am Chem Soc 2012, 134 (18), 7664-7. 77. Wu, J.; Gao, L.; Guo, Z.; Zhang, H.; Zhang, B.; Hu, J.; Li, M.-H., Natural glycyrrhizic acid: improving stress relaxation rate and glass transition temperature simultaneously in epoxy vitrimers. Green Chemistry 2021, 23 (15), 5647-5655. 78. Yue, L.; Amirkhosravi, M.; Gong, X.; Gray, T. G.; Manas-Zloczower, I., Recycling Epoxy by Vitrimerization: Influence of an Initial Thermoset Chemical Structure. ACS Sustainable Chemistry & Engineering 2020, 8 (33), 12706-12712. 79. Liu, T.; Hao, C.; Zhang, S.; Yang, X.; Wang, L.; Han, J.; Li, Y.; Xin, J.; Zhang, J., A Self-Healable High Glass Transition Temperature Bioepoxy Material Based on Vitrimer Chemistry. Macromolecules 2018, 51 (15), 5577-5585. 80. Chabert, E.; Vial, J.; Cauchois, J. P.; Mihaluta, M.; Tournilhac, F., Multiple welding of long fiber epoxy vitrimer composites. Soft Matter 2016, 12 (21), 4838-45. 81. Denissen, W.; Rivero, G.; Nicolaÿ, R.; Leibler, L.; Winne, J. M.; Du Prez, F. E., Vinylogous Urethane Vitrimers. Advanced Functional Materials 2015, 25 (16), 2451-2457. 82. Stukenbroeker, T.; Wang, W.; Winne, J. M.; Du Prez, F. E.; Nicolaÿ, R.; Leibler, L., Polydimethylsiloxane quenchable vitrimers. Polymer Chemistry 2017, 8 (43), 6590-6593. 83. Denissen, W.; Droesbeke, M.; Nicolay, R.; Leibler, L.; Winne, J. M.; Du Prez, F. E., Chemical control of the viscoelastic properties of vinylogous urethane vitrimers. Nat Commun 2017, 8, 14857. 84. Markwart, J. C.; Battig, A.; Urbaniak, T.; Haag, K.; Koschek, K.; Schartel, B.; Wurm, F. R., Intrinsic flame retardant phosphonate-based vitrimers as a recyclable alternative for commodity polymers in composite materials. Polymer Chemistry 2020, 11 (30), 4933-4941. 85. Fortman, D. J.; Brutman, J. P.; Cramer, C. J.; Hillmyer, M. A.; Dichtel, W. R., Mechanically activated, catalyst-free polyhydroxyurethane vitrimers. J Am Chem Soc 2015, 137 (44), 14019-22. 86. Wu, H.; Jin, B.; Wang, H.; Wu, W.; Cao, Z.; Wu, J.; Huang, G., A Degradable and Self-Healable Vitrimer Based on Non-isocyanate Polyurethane. Frontiers in Chemistry 2020, 8 (894). 87. Zheng, P.; McCarthy, T. J., A surprise from 1954: siloxane equilibration is a simple, robust, and obvious polymer self-healing mechanism. J Am Chem Soc 2012, 134 (4), 2024-7. 88. Wu, X.; Yang, X.; Yu, R.; Zhao, X.-J.; Zhang, Y.; Huang, W., A facile access to stiff epoxy vitrimers with excellent mechanical properties via siloxane equilibration. Journal of Materials Chemistry A 2018, 6 (22), 10184-10188. 89. Lu, Y. X.; Tournilhac, F.; Leibler, L.; Guan, Z., Making insoluble polymer networks malleable via olefin metathesis. J Am Chem Soc 2012, 134 (20), 8424-7. 90. Röttger, M.; Domenech, T.; Weegen, R. v. d.; Breuillac, A.; Nicolaÿ, R.; Leibler, L., High-performance vitrimers from commodity thermoplastics through dioxaborolane metathesis. Science 2017, 356 (6333), 62-65. 91. Chao, A.; Negulescu, I.; Zhang, D., Dynamic Covalent Polymer Networks Based on Degenerative Imine Bond Exchange: Tuning the Malleability and Self-Healing Properties by Solvent. Macromolecules 2016, 49 (17), 6277-6284. 92. Taynton, P.; Yu, K.; Shoemaker, R. K.; Jin, Y.; Qi, H. J.; Zhang, W., Heat- or Water-Driven Malleability in a Highly Recyclable Covalent Network Polymer. Advanced Materials 2014, 26 (23), 3938-3942. 93. Zhang, J.; Lei, Z.; Luo, S.; Jin, Y.; Qiu, L.; Zhang, W., Malleable and Recyclable Conductive MWCNT-Vitrimer Composite for Flexible Electronics. ACS Applied Nano Materials 2020, 3 (5), 4845-4850. 94. Ying, H.; Zhang, Y.; Cheng, J., Dynamic urea bond for the design of reversible and self-healing polymers. Nat Commun 2014, 5, 3218. 95. Ying, H.; Cheng, J., Hydrolyzable Polyureas Bearing Hindered Urea Bonds. Journal of the American Chemical Society 2014, 136 (49), 16974-16977. 96. Zhang, Q.; Wang, S.; Rao, B.; Chen, X.; Ma, L.; Cui, C.; Zhong, Q.; Li, Z.; Cheng, Y.; Zhang, Y., Hindered urea bonds for dynamic polymers: An overview. Reactive and Functional Polymers 2021, 159, 104807. 97. Zhang, Y.; Ying, H.; Hart, K. R.; Wu, Y.; Hsu, A. J.; Coppola, A. M.; Kim, T. A.; Yang, K.; Sottos, N. R.; White, S. R.; Cheng, J., Malleable and Recyclable Poly(urea-urethane) Thermosets bearing Hindered Urea Bonds. Advanced Materials 2016, 28 (35), 7646-7651. 98. Bayer, O., Das di‐isocyanat‐polyadditionsverfahren (polyurethane). Angewandte Chemie 1947, 59 (9), 257-272. 99. Polyurethane Market Size, Share & Trends Analysis Report By Product (Flexible Foam, Rigid Foam), By End Use (Construction, Electronics & Appliances), By Region (APAC, North America), And Segment Forecasts, 2021 - 2028. 100. Wang, Y.; Yu, Y.; Guo, J.; Zhang, Z.; Zhang, X.; Zhao, Y., Bio-Inspired Stretchable, Adhesive, and Conductive Structural Color Film for Visually Flexible Electronics. Advanced Functional Materials 2020, 30 (32), 2000151. 101. Guo, Y.; Yang, L.; Zhang, L.; Chen, S.; Sun, L.; Gu, S.; You, Z., A Dynamically Hybrid Crosslinked Elastomer for Room-Temperature Recyclable Flexible Electronic Devices. Advanced Functional Materials 2021, 31 (50), 2106281. 102. Talakesh, M. M.; Sadeghi, M.; Chenar, M. P.; Khosravi, A., Gas separation properties of poly(ethylene glycol)/poly(tetramethylene glycol) based polyurethane membranes. Journal of Membrane Science 2012, 415-416, 469-477. 103. Sardon, H.; Pascual, A.; Mecerreyes, D.; Taton, D.; Cramail, H.; Hedrick, J. L., Synthesis of Polyurethanes Using Organocatalysis: A Perspective. Macromolecules 2015, 48 (10), 3153-3165. 104. Engels, H.-W.; Pirkl, H.-G.; Albers, R.; Albach, R. W.; Krause, J.; Hoffmann, A.; Casselmann, H.; Dormish, J., Polyurethanes: Versatile Materials and Sustainable Problem Solvers for Today’s Challenges. Angewandte Chemie International Edition 2013, 52 (36), 9422-9441. 105. Hentschel, T.; Münstedt, H., Kinetics of the molar mass decrease in a polyurethane melt: a rheological study. Polymer 2001, 42 (7), 3195-3203. 106. Chattopadhyay, D. K.; Webster, D. C., Thermal stability and flame retardancy of polyurethanes. Progress in Polymer Science 2009, 34 (10), 1068-1133. 107. Delebecq, E.; Pascault, J. P.; Boutevin, B.; Ganachaud, F., On the versatility of urethane/urea bonds: reversibility, blocked isocyanate, and non-isocyanate polyurethane. Chem Rev 2013, 113 (1), 80-118. 108. Yue, H.; Zhou, J.; Huang, M.; Hao, C.; Hao, R.; Dong, C.; He, S.; Liu, H.; Liu, W.; Zhu, C., Recyclable, reconfigurable, thermadapt shape memory polythiourethane networks with multiple dynamic bonds for recycling of carbon fiber-reinforced composites. Polymer 2021, 237, 124358. 109. Simon, J.; Barla, F.; Kelemen-Haller, A.; Farkas, F.; Kraxner, M., Thermal stability of polyurethanes. Chromatographia 1988, 25 (2), 99-106. 110. Auvergne, R.; Caillol, S.; David, G.; Boutevin, B.; Pascault, J.-P., Biobased Thermosetting Epoxy: Present and Future. Chemical Reviews 2014, 114 (2), 1082-1115. 111. Chen, Q.; Yu, X.; Pei, Z.; Yang, Y.; Wei, Y.; Ji, Y., Multi-stimuli responsive and multi-functional oligoaniline-modified vitrimers. Chemical science 2017, 8 (1), 724-733. 112. Niu, X.; Wang, F.; Li, X.; Zhang, R.; Wu, Q.; Sun, P., Using Zn2+ Ionomer To Catalyze Transesterification Reaction in Epoxy Vitrimer. Industrial & Engineering Chemistry Research 2019, 58 (14), 5698-5706. 113. Guadagno, L.; Vertuccio, L.; Naddeo, C.; Calabrese, E.; Barra, G.; Raimondo, M.; Sorrentino, A.; Binder, W. H.; Michael, P.; Rana, S., Reversible Self-Healing Carbon-Based Nanocomposites for Structural Applications. Polymers 2019, 11 (5), 903. 114. Yadav, J.; Reddy, B.; Krishna, A.; Reddy, C. S.; Narsaiah, A., Triphenylphosphine: An efficient catalyst for transesterification of β-ketoesters. Journal of Molecular Catalysis A: Chemical 2007, 261 (1), 93-97. 115. Kiesewetter, M. K.; Scholten, M. D.; Kirn, N.; Weber, R. L.; Hedrick, J. L.; Waymouth, R. M., Cyclic Guanidine Organic Catalysts: What Is Magic About Triazabicyclodecene? The Journal of Organic Chemistry 2009, 74 (24), 9490-9496. 116. Myers, R. R.; Long, J. S., Treatise on coatings. M. Dekker: 1967. 117. Ravey, M.; Pearce, E. M., Flexible polyurethane foam. I. Thermal decomposition of a polyether-based, water-blown commercial type of flexible polyurethane foam. Journal of Applied Polymer Science 1997, 63 (1), 47-74. 118. Kumagai, S.; Motokucho, S.; Yabuki, R.; Anzai, A.; Kameda, T.; Watanabe, A.; Nakatani, H.; Yoshioka, T., Effects of hard- and soft-segment composition on pyrolysis characteristics of MDI, BD, and PTMG-based polyurethane elastomers. Journal of Analytical and Applied Pyrolysis 2017, 126, 337-345. 119. Saravari, O.; Vessabutr, B.; Pimpan, V., Synthesis of urethane oils from waste poly(ethylene terephthalate) bottles. Journal of Applied Polymer Science 2004, 92 (5), 3040-3045. 120. Kacperski, M.; Spychaj, T., Rigid polyurethane foams with poly(ethylene terephthalate)/triethanolamine recycling products. Polymers for Advanced Technologies 1999, 10 (10), 620-624. 121. Yu, K.; Taynton, P.; Zhang, W.; Dunn, M. L.; Qi, H. J., Influence of stoichiometry on the glass transition and bond exchange reactions in epoxy thermoset polymers. RSC Advances 2014, 4 (89), 48682-48690. 122. 楊兆翔, 利用聚碳酸酯回收中間體合成可再加工熱固性聚氨酯. 碩士論文 2021. 123. Biernath, R. W.; Soane, D. S., Cure Kinetics of Epoxy Cresol Novolac Encapsulant for Microelectronics Packaging. In Advances in New Materials, Salamone, J. C.; Riffle, J. S., Eds. Springer US: Boston, MA, 1992; pp 103-159. 124. Hill, L. W., Calculation of crosslink density in short chain networks. Progress in Organic Coatings 1997, 31 (3), 235-243. 125. Xu, Y.; Dai, S.; Bi, L.; Jiang, J.; Zhang, H.; Chen, Y., Catalyst-free self-healing bio-based vitrimer for a recyclable, reprocessable, and self-adhered carbon fiber reinforced composite. Chemical Engineering Journal 2022, 429, 132518. 126. Spiesschaert, Y.; Guerre, M.; De Baere, I.; Van Paepegem, W.; Winne, J. M.; Du Prez, F. E., Dynamic Curing Agents for Amine-Hardened Epoxy Vitrimers with Short (Re)processing Times. Macromolecules 2020, 53 (7), 2485-2495. 127. Liu, Y.; Tang, Z.; Chen, Y.; Zhang, C.; Guo, B., Engineering of β-Hydroxyl Esters into Elastomer–Nanoparticle Interface toward Malleable, Robust, and Reprocessable Vitrimer Composites. ACS Applied Materials & Interfaces 2018, 10 (3), 2992-3001. 128. Chen, J.-H.; An, X.-P.; Li, Y.-D.; Wang, M.; Zeng, J.-B., Reprocessible Epoxy Networks with Tunable Physical Properties: Synthesis, Stress Relaxation and Recyclability. Chinese Journal of Polymer Science 2018, 36 (5), 641-648. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83550 | - |
| dc.description.abstract | 本研究以聚碳酸酯之化學回收出發,以簡單、無催化劑、溫和的反應製程轉換廢棄高分子塑料成高價值的低分子量回收中間體產物hydroxyl N,N’-diphenylene-isopylidenyl biscarbamate (DP-biscarbamate),並以此為單體重新聚合製備出一系列可重複加工的熱固性聚氨酯或環氧樹脂,成功達到廢棄塑料的低碳循環高值化利用。熱固性樹脂的重複加工性質是由於動態共價適應性網絡(Covalent adaptable networks, CANs)的引入,在適當的熱刺激下能產生鍵結重組並伴隨顯著的黏流性值變化。其中,DP-biscarbamate具備複數個苯酚-胺基甲酸酯官能基能做為反應活性中心,在聚氨酯與環氧樹脂的系統中分別參與裂解-重組反應或是親核加成反應以達到網絡重組的目的。樣品的重複加工能力利用粉碎-熱壓的方式測量回復後的機械性質變化,發現聚氨酯及環氧樹脂能分別達到90 %及100 %的初始機械性質回復,證明回收材料亦能達到良好的再回收性質。本研究亦透過流變性質分析、線性膨脹測量法、小分子模型研究等多種技術了解樣品於加工環境產生的物理及化學性質變化,證實可以透過催化劑選擇及精準的結構設計避免動態反應發生的同時伴隨副產物的生成。此外,引進含有柔軟醚基的胺解試劑提升材料的排列能力,並在微差掃描熱分析及X光散射圖譜中皆觀察到材料之微觀相分離。根據上述基礎再透過化學交聯的方式進一步提升材料的熱性能及機械性質。簡言之,本研究經由化學交聯改善回收材料性質普遍不如新製樣品的問題,並利用苯酚-胺基甲酸酯官能基使化學交聯樣品具備重複回收利用的能力,提供了一個循環材料的嶄新設計概念,期望能減緩塑膠廢棄物對生態環境造成的衝擊。 | zh_TW |
| dc.description.abstract | This work demonstrates a simple, straightforward, and practical insight into a novel closed-loop material recycling strategy by converting poly(carbonate) (PC) into malleable thermosets. These strategies start with the chemical recycling of PC to obtain high value-added intermediate hydroxyl N,N’-diphenylene-isopylidenyl biscarbamate (DP-biscarbamate), followed by repolymerization of DP-biscarbamate into commonly used thermosets such as polyurethane (PU) or epoxy resin (EP). The recyclability of these repolymerized samples was enhanced by incorporating the notion of covalent adaptable networks (CANs), from which topology can rearrange upon experiencing thermal stimuli. As a result, PU and EP recovered 90 % and 100 % of their tensile strength after multiple rounds of compression molding treatments, respectively. This is due to the phenolic-carbamate functional groups from recycling moiety that can act as active site for network rearrangement. Stress relaxation analysis, dilatometric measurements, and small-molecule study were also conducted to realize the influence of CAN on physical or chemical properties. Besides, all samples exhibited excellent thermal and mechanical properties due to the incorporation of flexible ether linkage, which can promote crystallinity and form micro-phase separation morphology. Therefore, all PUs and EPs can meet the necessary standard compared to those prepared from commercial feedstocks. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T21:10:16Z (GMT). No. of bitstreams: 1 U0001-3008202213353800.pdf: 6316576 bytes, checksum: 6fcf046ed0abcfc70af214d29a3d5034 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 誌謝................................................................................................................................. i 摘要................................................................................................................................ ii Abstract ........................................................................................................................ iii 目錄............................................................................................................................... iv 圖目錄.......................................................................................................................... vii 表目錄........................................................................................................................... xi 壹、 緒論................................................................................................................ 1 貳、 文獻回顧........................................................................................................ 2 2.1 高分子回收與循環經濟................................................................................ 2 2.2 聚碳酸酯簡介 (Polycarbonate, PC) ............................................................. 5 2.2.1 聚碳酸酯簡介:合成方式及其應用 ...................................................... 5 2.2.2 光氣法與非光氣法製備之PC比較 ..................................................... 8 2.2.3 聚碳酸酯回收方式................................................................................ 9 2.3 類玻璃高分子(Virtimer)簡介 ..................................................................... 14 2.3.1. 熱塑性、熱固性塑膠與類玻璃高分子.............................................. 14 2.3.2. 類玻璃高分子黏流性質簡介.............................................................. 20 2.4 聚氨酯簡介.................................................................................................. 21 2.4.1. 類玻璃態之聚氨酯製備...................................................................... 24 2.4.2. 降解型PU Vitrimer ............................................................................. 24 2.4.3. 加成型PU Vitrimer ............................................................................. 27 2.5 環氧樹脂簡介 (Epoxy resin, EP) ............................................................... 28 2.5.1. 類玻璃態之環氧樹脂製備.................................................................. 28 2.5.2. 催化劑選擇.......................................................................................... 30 2.6 研究動機...................................................................................................... 35 參、 實驗步驟...................................................................................................... 37 3.1. 藥品與溶劑.................................................................................................. 37 3.2. 實驗儀器...................................................................................................... 43 3.3. 實驗流程...................................................................................................... 48 3.4. 合成步驟...................................................................................................... 51 3.4.1. 聚碳酸酯分解...................................................................................... 51 3.4.2. 以消化中間體產物製備聚氨酯Vitrimer ........................................... 51 3.4.3. 以消化中間體產物製備環氧樹脂Vitrimer ....................................... 52 3.4.4. 小分子模型化合物合成...................................................................... 54 3.4.4.1 製備Dibutyl (methylenebis(4,1-phenylene))dicarbamate (MB) ............ 54 3.4.4.2 製備Diphenyl-1,6-diyldicarbamate (HP) ............................................... 55 3.4.4.3 製備1,3-diphenoxypropan-2-ol (DPP) ................................................... 56 3.4.5. 熱壓程序.............................................................................................. 57 3.4.5.1 聚氨酯Vitrimer熱壓程序 ...................................................................... 57 3.4.5.2 環氧樹脂Vitrimer熱壓程序 .................................................................. 57 肆、 結果與討論.................................................................................................. 58 4.1. 聚碳酸酯回收中間體產物鑑定與分析...................................................... 58 4.2. 類玻璃態之聚氨酯合成與鑑定.................................................................. 60 4.2.1. 合成鑑定.............................................................................................. 60 4.2.2. 熱重損失分析...................................................................................... 62 4.2.3. 微差掃描熱分析.................................................................................. 63 4.2.4. 聚氨酯Vitrimer微相分離研究 .......................................................... 64 4.2.5. 機械性質分析...................................................................................... 66 4.2.6. 流變性質分析...................................................................................... 68 4.2.7. 再加工性質分析.................................................................................. 73 4.2.8. 小分子模型研究.................................................................................. 76 4.3. 環氧樹脂Vitrimer合成與鑑定 .................................................................. 80 4.3.1. 合成鑑定.............................................................................................. 80 4.3.2. 最佳化環氧樹脂添加量...................................................................... 81 4.3.3. 催化劑選擇.......................................................................................... 83 4.3.3.1. 鹼性觸媒DBU ........................................................................................ 83 4.3.3.2. 鋅系觸媒Zn(OAc)2................................................................................. 86 4.3.3.3. 磷系觸媒TPP .......................................................................................... 90 4.3.4. EV2-5樣品其他性質鑑定 .................................................................. 94 4.3.4.1. 線性膨脹測試.......................................................................................... 94 4.3.4.2. 形狀記憶效果.......................................................................................... 95 4.3.5. 小分子模型研究.................................................................................. 96 伍、 結論與未來展望.......................................................................................... 99 陸、 參考文獻.................................................................................................... 100 柒、 附錄............................................................................................................ 111 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 化學回收 | zh_TW |
| dc.subject | 共價適應性網絡 | zh_TW |
| dc.subject | 環氧樹脂 | zh_TW |
| dc.subject | 聚氨酯 | zh_TW |
| dc.subject | 聚碳酸酯 | zh_TW |
| dc.subject | epoxy resin | en |
| dc.subject | polycarbonate | en |
| dc.subject | covalent adaptable networks | en |
| dc.subject | chemical recycling | en |
| dc.subject | polyurethane | en |
| dc.title | 自回收聚碳酸酯合成可再加工之熱固性樹脂 | zh_TW |
| dc.title | Malleable Thermosets Derived from Chemical Recycling of Polycarbonate Waste | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 110-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 吳建欣;黃英治;童世煌;邱方遒 | zh_TW |
| dc.contributor.oralexamcommittee | Chien-Hsin Wu;Ying-Chi Huang;Shih-Huang Tung;Fang-Chyou Chiu | en |
| dc.subject.keyword | 聚碳酸酯,聚氨酯,環氧樹脂,共價適應性網絡,化學回收, | zh_TW |
| dc.subject.keyword | polycarbonate,polyurethane,epoxy resin,covalent adaptable networks,chemical recycling, | en |
| dc.relation.page | 118 | - |
| dc.identifier.doi | 10.6342/NTU202202967 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2022-08-31 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 高分子科學與工程學研究所 | - |
| 顯示於系所單位: | 高分子科學與工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-110-2.pdf 未授權公開取用 | 6.17 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
