請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83549
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林敏聰(Minn-Tsong Lin) | |
dc.contributor.author | Ching-Chou Tsai | en |
dc.contributor.author | 蔡景州 | zh_TW |
dc.date.accessioned | 2023-03-19T21:10:14Z | - |
dc.date.copyright | 2022-09-02 | |
dc.date.issued | 2022 | |
dc.date.submitted | 2022-08-30 | |
dc.identifier.citation | [1] Archana Raja, Andrey Chaves, Jaeeun Yu, Ghidewon Arefe, Heather M. Hill, Albert F. Rigosi, Timothy C. Berkelbach, Philipp Nagler, Christian Sch?ller, TobiasKorn, Colin Nuckolls, James Hone, Louis E. Brus, Tony F. Heinz, David R. Reichman, and Alexey Chernikov. Coulomb engineering of the bandgap and excitons intwo-dimensional materials. Nature Communications, 8(1):1–7, May 2017. Number:1 Publisher: Nature Publishing Group. [2] Rui Dong and Irma Kuljanishvili. Review article: Progress in fabrication of transition metal dichalcogenides heterostructure systems. Journal of Vacuum Science &Technology B, 35(3):030803, May 2017. [3] Dongqi Liu, Xiao-Qing Yan, Hao-Wei Guo, Zhi-Bo Liu, Wen-Yuan Zhou, and JianGuo Tian. Substrate effect on the photoluminescence of chemical vapor depositiontransferred monolayer WSe2. Journal of Applied Physics, 128(4):043101, Jul 2020. [4] Kathleen M. McCreary, Marc Currie, Aubrey T. Hanbicki, Hsun-Jen Chuang, andBerend T. Jonker. Understanding variations in circularly polarized photoluminescence in monolayer transition metal dichalcogenides. ACS Nano, 11(8):7988–7994,Aug 2017. [5] G. Kioseoglou, A. T. Hanbicki, M. Currie, A. L. Friedman, D. Gunlycke, and B. T.53Jonker. Valley polarization and intervalley scattering in monolayer MoS2. AppliedPhysics Letters, 101(22):221907, Nov 2012. [6] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos,I. V. Grigorieva, and A. A. Firsov. Electric field effect in atomically thin carbonfilms. Science, 306(5696):666–669, Oct 2004. [7] Yuan Huang, Yu-Hao Pan, Rong Yang, Li-Hong Bao, Lei Meng, Hai-Lan Luo, YongQing Cai, Guo-Dong Liu, Wen-Juan Zhao, Zhang Zhou, Liang-Mei Wu, Zhi-Li Zhu,Ming Huang, Li-Wei Liu, Lei Liu, Peng Cheng, Ke-Hui Wu, Shi-Bing Tian, ChangZhi Gu, You-Guo Shi, Yan-Feng Guo, Zhi Gang Cheng, Jiang-Ping Hu, Lin Zhao,Guan-Hua Yang, Eli Sutter, Peter Sutter, Ye-Liang Wang, Wei Ji, Xing-Jiang Zhou,and Hong-Jun Gao. Universal mechanical exfoliation of large-area 2D crystals. Nature Communications, 11(11):2453, May 2020. [8] Jack R. Brent, Nicky Savjani, and Paul O?Brien. Synthetic approaches to twodimensional transition metal dichalcogenide nanosheets. Progress in Materials Science, 89:411–478, Aug 2017. [9] Buddhika Jayasena and Shreyes N. Melkote. An investigation of pdms stamp assistedmechanical exfoliation of large area graphene. Procedia Manufacturing, 1:840–853,Jan 2015. [10] N.S. Rytova, Alexey Chernikov, and Mikhail Glazov. Screened potential of a pointcharge in a thin film. Moscow University Physics Bulletin, 3:30, Jan 1967. [11] Andreas V. Stier, Nathan P. Wilson, Genevieve Clark, Xiaodong Xu, and Scott A.Crooker. Probing the influence of dielectric environment on excitons in monolayer54WSe2: Insight from high magnetic fields. Nano Letters, 16(11):7054–7060, Nov2016. [12] Alexey Chernikov, Timothy C. Berkelbach, Heather M. Hill, Albert Rigosi, Yilei Li,Ozgur Burak Aslan, David R. Reichman, Mark S. Hybertsen, and Tony F. Heinz. Exciton binding energy and nonhydrogenic rydberg series in monolayer WS2. PhysicalReview Letters, 113(7):076802, Aug 2014. [13] Theodore Oakberg. Linear circular dichroism application note. [14] Iann C. Gerber and Xavier Marie. Dependence of band structure and exciton properties of encapsulated WSe2 monolayers on the hbn-layer thickness. Physical ReviewB, 98(24):245126, Dec 2018. [15] Guilherme Volpe Bossa and Sylvio May. Integral representation of electrostatic interactions inside a lipid membrane. Molecules, 25(1717):3824, Jan 2020. [16] N.S. Rytova, Alexey Chernikov, and Mikhail Glazov. Screened potential of a pointcharge in a thin film. Moscow University Physics Bulletin, 3:30, Jan 1967. [17] John R. Barker and Antonio Martinez. Image charge models for accurate construction of the electrostatic self-energy of 3D layered nanostructure devices. Journal ofPhysics: Condensed Matter, 30(13):134002, Mar 2018. [18] Mads L. Trolle, Thomas G. Pedersen, and Valerie V?niard. Model dielectricfunction for 2D semiconductors including substrate screening. Scientific Reports,7(11):39844, Jan 2017. [19] Svitlana Kondovych. Electrostatics of charges in thin dielectric and ferroelectricfilms. phdthesis, Universit? de Picardie Jules Verne, Oct 2017.55 [20] Seong-Yeon Lee, Tae-Young Jeong, Ji-Hee Kim, Seokjoon Yun, and Ki-Ju Yee. Selfconsistent dielectric constant determination for monolayer WSe2. Optics Express,26(18):23061–23068, Sep 2018. [21] Yifei Yu, Yiling Yu, Chao Xu, Yongqing Cai, Liqin Su, Yong Zhang, Yong-WeiZhang, Kenan Gundogdu, and Linyou Cao. Engineering substrate interactions forhigh luminescence efficiency of transition-metal dichalcogenide monolayers. Advanced Functional Materials, 26, May 2016. [22] Wei-Ting Hsu, Jiamin Quan, Chun-Yuan Wang, Li-Syuan Lu, Marshall Campbell,Wen-Hao Chang, Lain-Jong Li, Xiaoqin Li, and Chih-Kang Shih. Dielectric impacton exciton binding energy and quasiparticle bandgap in monolayer WS2 and WSe2.2D Materials, 6(2):025028, Mar 2019. [23] Kana Kojima, Hong En Lim, Zheng Liu, Wenjin Zhang, Tetsuki Saito, YusukeNakanishi, Takahiko Endo, Yu Kobayashi, Kenji Watanabe, Takashi Taniguchi,Kazunari Matsuda, Yutaka Maniwa, Yuhei Miyauchi, and Yasumitsu Miyata. Restoring the intrinsic optical properties of cvd-grown MoS2 monolayers and their heterostructures. Nanoscale, 11(27):12798–12803, Jul 2019. [24] D. A. Kleinman and R. C. Miller. Band-gap renormalization in semiconductor quantum wells containing carriers. Phys. Rev. B, 32:2266–2272, Aug 1985. [25] Alexey Chernikov, Claudia Ruppert, Heather M. Hill, Albert F. Rigosi, and Tony F.Heinz. Population inversion and giant bandgap renormalization in atomically thinWS2 layers. Nature Photonics, 9(77):466–470, Jul 2015. [26] Yuxuan Lin, Xi Ling, Lili Yu, Shengxi Huang, Allen L. Hsu, Yi-Hsien Lee, Jing56Kong, Mildred S. Dresselhaus, and Tom?s Palacios. Dielectric screening of excitonsand trions in single-layer MoS2, Sep 2014. [27] Dongqi Liu, Xiao-Qing Yan, Hao-Wei Guo, Zhi-Bo Liu, Wen-Yuan Zhou, and JianGuo Tian. Substrate effect on the photoluminescence of chemical vapor depositiontransferred monolayer WSe2. Journal of Applied Physics, 128(4):043101, Jul 2020. [28] O. Burak Aslan, Minda Deng, and Tony Heinz. Strain tuning of excitons in monolayer WSe2. Physical Review B, 98:115308, Sep 2018. [29] G. Kioseoglou, A. T. Hanbicki, M. Currie, A. L. Friedman, and B. T. Jonker. Opticalpolarization and intervalley scattering in single layers of MoS2 and MoSe2. ScientificReports, 6(1):25041, Apr 2016. [30] Satoru Konabe. Screening effects due to carrier doping on valley relaxation in transition metal dichalcogenide monolayers. Applied Physics Letters, 109(7):073104,Aug 2016. [31] Satoru Konabe. Screening effects due to carrier doping on valley relaxation in transition metal dichalcogenide monolayers. Applied Physics Letters, 109(7):073104,Aug 2016. [32] T. Yu and M. W. Wu. Valley depolarization due to intervalley and intravalley electron-hole exchange interactions in monolayer mos2. Physical Review B,89(20):205303, May 2014. [33] Joydeep Ghosh. Modeling Spin-Dependent Transport in Silicon. PhD thesis, Mar2016. [34] Bernhard Endres. Spin injection into GaAs. May 2013.57 [35] Satoru Konabe. Screening effects due to carrier doping on valley relaxation in transition metal dichalcogenide monolayers. Applied Physics Letters, 109(7):073104,Aug 2016. [36] X. Yang, S. Guo, Franky Chan, Kai Wing Wong, and Wai-Yim Ching. Analyticsolution of a two-dimensional hydrogen atom. i. nonrelativistic theory. Physicalreview. A, 43:1186–1196, Mar 1991. [37] Hyunseung Lee, Van Tu Nguyen, Ji-Yong Park, and Jieun Lee. Microsphere-coupledlight emission control of van der waals heterostructures. Nanoscale, 13(7):4262–4268, Feb 2021. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83549 | - |
dc.description.abstract | 介電環境對於二維材料的特性 - 例如激子結合能、激子半徑以及交換作用強度 - 都有很大的影響力;已經有眾多發表文獻利用介電材料來讓二維材料展現具有應用價值的特性。在這篇論文我們建立受控制的介電環境來研究二維材料中,由於電子-電洞交換作用造成的激子去極化現象。所建立的介電環境透過低溫光致發光 (PL) 光譜來確認除了介電性質以外,材料沒有其他明顯的特性轉變。在不同的介電環境下,我們測量圓偏振極化強度 (極化強度) 來觀察其對於極化強度的影響。為了量化介電強度,我們使用了鏡像電荷法 (相容於 Keldysh 位能) 來估計出環境介電常數 (可用於計算交換作用) 以及總介電常數 (可用於計算激子類氫能階)。我們的極化強度實驗結果顯現出和理論預估不同的介電常數關係,且不能直接被兩種常見的模型:交換作用模型 Maialle-Silva-Sham (MSS) 及動量散射模型解釋。我們在最後提出可能的機制來解釋在實驗設置下觀察到的極化強度結果,以及偏離模型預估的冪次關係。 | zh_TW |
dc.description.abstract | Dielectric environment plays an important role in determining 2D materials?exciton properties, such as binding energy, exciton radius, and exchange interaction. Numerous reports have realized utilization of dielectrics as a tool to manipulate 2D materials for desired characteristics. Here we use controlled dielectric environment to study the depolarization of exciton in exfoliated WSe2 monolayers due to electron-hole exchange interaction. To verify the uncontrolled variations when modifying dielectric environment, low temperature photoluminescence (PL) spectrum is taken to monitor exciton properties throughout the process. Circular polarization is measured to reveal its relation to dielectric environments. For estimation of effective dielectric constant, we use image charge method, compatible with Keldysh potential, giving both environmental and total dielectric contribution for energy level and exchange interaction estimations. Our result shows unexpected depolarization dependence on dielectric strength that cannot be explained by either momentum scattering or exchange interaction from Maialle-Silva-Sham (MSS) mechanism. We give a possible mechanism for the observed polarization and its deviation from theoretical estimations under practical polarized PL setups. | en |
dc.description.provenance | Made available in DSpace on 2023-03-19T21:10:14Z (GMT). No. of bitstreams: 1 U0001-3008202212131900.pdf: 16245583 bytes, checksum: 057f550c6989fbd6d9cbcfb8997600ff (MD5) Previous issue date: 2022 | en |
dc.description.tableofcontents | Contents Acknowledgements 摘要 Abstract Contents List of Figures List of Tables Denotation Chapter 1 Introduction and Backgrounds 1.1 Challenges in sample reproducibility 1.2 Challenges in measurement stability Chapter 2 Sample Preparation 2.1 Exfoliation of WSe2 monolayers 2.2 Deposition of SiO2 on top of WSe2 ML 3.1 Photoelastic modulator and its applications on our system 3.2 PL measurement platform 3.3 Circular polarization measurements 3.4 Normalization of measured signal 3.5 VAC and VDC measurements and resulted polarization Chapter 4 ICM: Estimation of Dielectric Strengths εenv and εtotal 4.1 Rytova-Keldysh potential and image charge method (ICM) 4.2 Estimation of εtop for finite thickness SiO2 top layers using ICM 4.3 Estimation of total dielectric constant εtotal Chapter 5 Spectroscopic Results of WSe2 ML in Different Dielectric Environment 5.1 Possible effects from interface transition and accumulative SiO2 thickness change 5.2 PL spectrum of WSe2 monolayer throughout SiO2 accumulation process 5.3 Fitting result of PL spectrum 5.4 Trion prevalence and carrier density n 5.5 Summary for spectroscopic information Chapter 6 Polarization Measurements in Different Dielectric Environment 6.1 Phonon assisted scattering mechanism for exciton depolarization 6.2 Exciton exchange interaction and MSS theory 6.3 Circular polarization Pc measurements 6.4 Possible reason for Pc’s stronger dielectric dependency Chapter 7 Summary References Appendix A — Oral questions and modification suggestions from the committee A.1 Prof. 江文中 A.2 Dr. 張玉明 A.3 Prof. 林敏聰 A.4 Prof. 徐瑋廷 Appendix B — Modification logs after oral defence Appendix C — Copy of oral defence logs | |
dc.language.iso | en | |
dc.title | 介電環境對於二硒化鎢單層內的激子及其維谷去極化之影響 | zh_TW |
dc.title | The Effect of Dielectric Environment on Exciton and its Valley Depolarization in WSe2 Monolayers | en |
dc.type | Thesis | |
dc.date.schoolyear | 110-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 張玉明(Yu-Ming Chang) | |
dc.contributor.oralexamcommittee | 江文中(Wen-Chung Chiang),徐瑋廷(Wei-Ting Hsu) | |
dc.subject.keyword | 二硒化鎢,二維過渡金屬硫化物,介電環境,激子,單層,二維材料,交換作用, | zh_TW |
dc.subject.keyword | WSe2,TMDC,Dielectric environment,Exciton,Monolayer,2D material,Exchange interaction,Exchange coupling, | en |
dc.relation.page | 68 | |
dc.identifier.doi | 10.6342/NTU202202963 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2022-08-31 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 物理學研究所 | zh_TW |
顯示於系所單位: | 物理學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-3008202212131900.pdf 目前未授權公開取用 | 15.86 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。