請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83546完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 歐昱辰 | zh_TW |
| dc.contributor.advisor | Yu-Chen Ou | en |
| dc.contributor.author | 黃俊霖 | zh_TW |
| dc.contributor.author | Jyun-Lin Huang | en |
| dc.date.accessioned | 2023-03-19T21:10:10Z | - |
| dc.date.available | 2023-12-25 | - |
| dc.date.copyright | 2022-09-08 | - |
| dc.date.issued | 2022 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | [1] 中國土木水利工程學會,「混凝土工程設計規範與解說(土木401-110)」,科技圖書公司,2021。 [2] 李台光,陳正誠,「含組合繫筋及組合內箍筋RC柱之耐震性能」,結構工程,30卷1期,34-52頁,2015。 [3] 李台光,「繫筋配置對於鋼筋混凝土梁耐震性能影響之實驗研究」,內政部建築研究所研究報告,2020。 [4] ACI Committee 318, “Building Code Requirements for Structural Concrete and Commentary (ACI 318-19)”, American Concrete Institute, Farmington Hills, MI, 2019. [5] ACI Committee 374, “Acceptance Criteria for Moment Frames Based on Structural Testing and Commentary (ACI 374.1-05, Reapproved 2014)”, American Concrete Institute, Farmington Hills, MI, 2014. [6] B. DeGagné, E. Erdogmus, and J. Savage, “Longitudinal Bar Spacing and Intermediate Ties,” Concrete International, vol. 38, no. 5, pp. 43-46, 2016. [7] H. Tanaka, R. Park, and B. McNamee, “Anchorage of Transverse Reinforcement in Rectangular Reinforced Concrete Columns in Seismic Design,” Bulletin of the New Zealand Society for Earthquake Engineering, vol. 18, no. 2, pp. 165-190, 1985. [8] FEMA 356,. “Prestandard and Commentary for the Seismic Rehabilitation of Buildings”, Federal Emergency Management Agency: Washington, DC, 2000. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83546 | - |
| dc.description.abstract | 鋼筋混凝土韌性抗彎矩構架中,由於大梁塑鉸區具高剪力與圍束需求,須配置重疊閉合箍筋,若按設計規範所示之箍筋進行配置將有一定施工難度。本研究共配置五座不同形式閉合箍筋之大梁試體進行反覆載重試驗,一座配置傳統工法且符合規範之傳統閉合箍筋(S1),三座配置可提高工作性之閉合箍筋,包含一筆式(S2)、平面搭接式(SL1)與組立搭接式(SL2)閉合箍筋,一座配置實務常見但不符規範之2大U閉合箍筋(S3)。結果顯示,S2、SL1與SL2試體之內箍筋有效束制斷面中央3根主筋,並於位移比6%時,挫屈區域發生主筋或內箍筋斷裂情形,使鋼筋充足發揮消能性。相對於S1試體,S2、SL1與SL2試體之極限位移比∆u高約1%、8%與13%。並於位移比4%時,S2、SL1與SL2試體之等效阻尼比ξeq高約7%、13%與8%,於位移比5%時,ξeq高約39%、35%與31%。此外SL1與SL2試體之搭接內箍筋仍有效束制斷面中央主筋,且能發展至降伏應變,顯示即使塑鉸區混凝土已發生開裂剝落,混凝土核心仍有效提供箍筋搭接區域足夠握裹長度,確保試體為具韌性撓曲破壞。S3試體因僅大U箍筋束制角隅主筋且圍束混凝土能力較差,相對於S1試體,S3試體之∆u低約15%。並於位移比4%時,S3試體之ξeq低約2%,且頂蓋側主筋受壓時強度陡降而未通過ACI 374.1-05耐震性能評估。 | zh_TW |
| dc.description.abstract | In special moment resisting frames, hoops should be provided within the plastic hinge regions for the high shear and confinement demand. However, conventional hoop configurations conforming to the code requirements are difficult to be constructed. In this research, a total of five beam specimens with different types of hoops were designed and tested under cyclic loading. One specimen was designed with hoops (S1) with a conventional configuration conforming to the design code for reinforced concrete. Three specimens were designed with innovative hoops that can improve constructability. The innovative hoops included continuous hoops (specimen S2), two-dimensional lap-spliced hoops (specimen SL1), and three-dimensional lap-spliced hoops (specimen SL2). One specimen was designed with two overlapping perimeter hoops (S3), which are common in Taiwanese practice but do not meet the code requirement for hoops in the plastic hinge regions of beams. Test results showed that the inner hoops of specimens S2, SL1, and SL2 effectively restrained the three main bars confined by the inner hoops. When the drift ratio of the beam reached 6%, the main bars or the inner hoops fractured in the buckling region. This means the steel bars were fully mobilized to resist the load and dissipate energy. Compared with specimen S1, the ultimate drift ratio (∆u) of specimens S2, SL1 and SL2 was higher by 1%, 8% and 13%, respectively. Moreover, when the drift ratio of the beam reached 4%, the equivalent damping ratio (ξeq) of S2, SL1, and SL2 was higher by 7%, 13%, and 8%, respectively. When the drift ratio of the beam reached 5%, the ξeq of S2, SL1, and SL2 was higher by 39%, 35%, and 31%, respectively. The main bars of specimens SL1 and SL2 were still effectively restrained, and lap-spliced hoops of specimens SL1 and SL2 developed into the yield strain, which showed that even if the concrete in the plastic hinge region had cracked and spalled, the concrete core still effectively provided sufficient confinement to the lap splices of the hoops to ensure that the specimens had a ductile flexural failure. Compared with specimen S1, the ∆u of specimen S3 was lower by 15%. Moreover, when the drift ratio of the beam reached 4%, the ξeq of S3 was lower by 6%. When the main bars confined by the cross-tie cap were subjected to high compression, the strength of the beam dropped rapidly. The specimen failed to pass the seismic performance evaluation of ACI 374.1-05. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T21:10:10Z (GMT). No. of bitstreams: 1 U0001-3108202200263200.pdf: 65255801 bytes, checksum: ef83a2aaeeb8deebff28cc9034fb2dd4 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 謝辭 i 摘要 ii Abstract iii 目錄 v 圖目錄 viii 表目錄 xi 第一章 緒論 1 1.1 研究背景 1 1.2 研究目的 1 1.3 研究方法 2 第二章 文獻回顧 3 2.1 搭接式箍筋或繫筋於RC矩形構件之相關研究 3 2.1.1 H.Tanaka et al.[7]—箍筋或繫筋形式於RC 柱之耐震性能試驗 3 2.1.2 李台光等[2]試驗—含搭接繫筋或內箍筋RC柱之耐震性能試驗 4 2.2 箍筋或繫筋於斷面之配置於RC矩形構件之相關研究 6 2.2.1 B. DeGagné et al.[6]—ACI 318於RC耐震構件斷面之繫筋間距規定探討 6 2.2.2 李台光[3]—繫筋配置於RC梁耐震性能影響之試驗 6 2.3 土木401-110[1]—設計規範 8 2.3.1 斷面材料配置 8 2.3.2 設計彎矩強度、設計剪力強度與箍筋間距 8 2.3.3 橫向鋼筋細部設計 9 2.4 FEMA 356[8] 10 2.4.1 雙線性 10 2.4.2 等效阻尼比 10 2.5 ACI 374.1-05[5] 11 2.5.1 試驗反覆載重迴圈 11 2.5.2 耐震評估準則 11 第三章 試體設計 13 3.1 試體參數規劃及斷面配置概述 13 3.2 試體箍筋現地施工流程 14 3.3 試體分析與設計 16 3.3.1 斷面材料配置 16 3.3.2 撓曲破壞設計 17 3.3.3 橫向鋼筋細部設計 18 3.4 試體製作 21 第四章 試驗計畫 24 4.1 材料試驗 24 4.1.1 混凝土抗壓試驗 24 4.1.2 鋼筋與麻面鋼線拉伸試驗 25 4.2 反覆載重試驗規劃與測試方法 25 4.2.1 試驗配置 25 4.2.2 試驗加載方法 27 4.2.3 光學空間座標監測系統(NDI)規劃 27 4.2.4 應變計規劃 29 4.3 反覆載重試驗過程敘述 32 4.3.1 S1試體 1大1小U傳統閉合箍筋 32 4.3.2 S2試體 一筆式閉合箍筋 34 4.3.3 SL1試體 平面搭接式閉合箍筋 37 4.3.4 SL2試體 組立搭接式閉合箍筋 39 4.3.5 S3試體 2大U閉合箍筋 42 第五章 試驗結果與分析 45 5.1 試驗過程與包絡線 45 5.2 雙線性與理論試驗強度比 47 5.3 曲率與剪應變 50 5.4 能量消散 56 5.5 ACI 374.1-05耐震性能評估 57 5.6 應變計分析 59 第六章 結論與建議 67 參考文獻 70 附錄A 各試體設計與斷面箍筋設計圖 71 附錄B.1 S1試體試驗照片 84 附錄B.2 S2試體試驗照片 94 附錄B.3 SL1試體試驗照片 104 附錄B.4 SL2試體試驗照片 114 附錄B.5 S3試體試驗照片 124 附錄C.1 S1試體應變計資料 134 附錄C.2 S2試體應變計資料 143 附錄C.3 SL1試體應變計資料 152 附錄C.4 SL2試體應變計資料 162 附錄C.5 S3試體應變計資料 172 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 塑鉸區 | zh_TW |
| dc.subject | 消能 | zh_TW |
| dc.subject | 韌性 | zh_TW |
| dc.subject | 耐震性能 | zh_TW |
| dc.subject | 閉合箍筋 | zh_TW |
| dc.subject | 鋼筋混凝土梁 | zh_TW |
| dc.subject | 鋼筋混凝土梁 | zh_TW |
| dc.subject | 塑鉸區 | zh_TW |
| dc.subject | 閉合箍筋 | zh_TW |
| dc.subject | 耐震性能 | zh_TW |
| dc.subject | 韌性 | zh_TW |
| dc.subject | 消能 | zh_TW |
| dc.subject | Ductility | en |
| dc.subject | Plastic Hinge Region | en |
| dc.subject | RC Beams | en |
| dc.subject | Plastic Hinge Region | en |
| dc.subject | Hoops | en |
| dc.subject | Seismic Performance | en |
| dc.subject | Ductility | en |
| dc.subject | Energy Dissipation | en |
| dc.subject | RC Beams | en |
| dc.subject | Energy Dissipation | en |
| dc.subject | Hoops | en |
| dc.subject | Seismic Performance | en |
| dc.title | 塑鉸區箍筋形式對混凝土大梁耐震行為之影響 | zh_TW |
| dc.title | The Effect of Different Types of Hoops in the Plastic Hinge Region on Seismic Behavior of Concrete Beams | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 110-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 邱建國;李翼安 | zh_TW |
| dc.contributor.oralexamcommittee | Chien-Kuo Chiu;Yi-An Li | en |
| dc.subject.keyword | 鋼筋混凝土梁,塑鉸區,閉合箍筋,耐震性能,韌性,消能, | zh_TW |
| dc.subject.keyword | RC Beams,Plastic Hinge Region,Hoops,Seismic Performance,Ductility,Energy Dissipation, | en |
| dc.relation.page | 178 | - |
| dc.identifier.doi | 10.6342/NTU202202995 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2022-08-31 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-110-2.pdf 未授權公開取用 | 63.73 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
