請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83543
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林沛群(Pei-Chun Lin) | |
dc.contributor.author | Yu-Ju Liu | en |
dc.contributor.author | 劉育如 | zh_TW |
dc.date.accessioned | 2023-03-19T21:10:05Z | - |
dc.date.copyright | 2022-09-08 | |
dc.date.issued | 2022 | |
dc.date.submitted | 2022-08-31 | |
dc.identifier.citation | [1] M. Hutter, C. Gehring, M. A. H?pflinger, M. Bl?sch, and R. Siegwart, 'Toward combining speed, efficiency, versatility, and robustness in an autonomous quadruped,' IEEE Transactions on Robotics, vol. 30, no. 6, pp. 1427-1440, 2014. [2] M. Hutter et al., 'Anymal-a highly mobile and dynamic quadrupedal robot,' in 2016 IEEE/RSJ international conference on intelligent robots and systems (IROS), 2016: IEEE, pp. 38-44. [3] G. Fink and C. Semini, 'Proprioceptive sensor fusion for quadruped robot state estimation,' in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2020: IEEE, pp. 10914-10920. [4] M. Bloesch et al., 'State estimation for legged robots-consistent fusion of leg kinematics and IMU,' Robotics, vol. 17, pp. 17-24, 2013. [5] M. Bloesch, C. Gehring, P. Fankhauser, M. Hutter, M. A. Hoepflinger, and R. Siegwart, 'State estimation for legged robots on unstable and slippery terrain,' in 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2013: IEEE, pp. 6058-6064. [6] B. Ugurlu, I. Havoutis, C. Semini, and D. G. Caldwell, 'Dynamic trot-walking with the hydraulic quadruped robot—HyQ: Analytical trajectory generation and active compliance control,' in 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2013: IEEE, pp. 6044-6051. [7] M. Focchi, V. Barasuol, I. Havoutis, J. Buchli, C. Semini, and D. G. Caldwell, 'Local reflex generation for obstacle negotiation in quadrupedal locomotion,' in Nature-Inspired Mobile Robotics: World Scientific, 2013, pp. 443-450. [8] L. Righetti and A. J. Ijspeert, 'Pattern generators with sensory feedback for the control of quadruped locomotion,' in 2008 IEEE International Conference on Robotics and Automation, 2008: IEEE, pp. 819-824. [9] R. Hartley et al., 'Legged robot state-estimation through combined forward kinematic and preintegrated contact factors,' in 2018 IEEE International Conference on Robotics and Automation (ICRA), 2018: IEEE, pp. 4422-4429. [10] L. Hawley and W. Suleiman, 'External force observer for medium-sized humanoid robots,' in 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids), 2016: IEEE, pp. 366-371. [11] L. Hawley, R. Rahem, and W. Suleiman, 'Kalman filter based observer for an external force applied to medium-sized humanoid robots,' in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2018: IEEE, pp. 1204-1211. [12] K. Kaneko et al., 'Slip observer for walking on a low friction floor,' in 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005: IEEE, pp. 634-640. [13] J. Hwangbo, C. D. Bellicoso, P. Fankhauser, and M. Hutter, 'Probabilistic foot contact estimation by fusing information from dynamics and differential/forward kinematics,' in 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2016: IEEE, pp. 3872-3878. [14] M. Camurri et al., 'Probabilistic contact estimation and impact detection for state estimation of quadruped robots,' IEEE Robotics and Automation Letters, vol. 2, no. 2, pp. 1023-1030, 2017. [15] Q. Chenkun, G. Feng, Z. Xianchao, S. Qiao, T. Xinghua, and C. Xianbao, 'Dynamic model based ground reaction force estimation for a quadruped robot without force sensor,' in 2015 34th Chinese Control Conference (CCC), 2015: IEEE, pp. 6084-6089. [16] G. Bledt, P. M. Wensing, S. Ingersoll, and S. Kim, 'Contact model fusion for event-based locomotion in unstructured terrains,' in 2018 IEEE International Conference on Robotics and Automation (ICRA), 2018: IEEE, pp. 4399-4406. [17] G. Bledt, M. J. Powell, B. Katz, J. Di Carlo, P. M. Wensing, and S. Kim, 'MIT Cheetah 3: Design and control of a robust, dynamic quadruped robot,' in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2018: IEEE, pp. 2245-2252. [18] Z. Cong, A. Honglei, C. Wu, L. Lang, Q. Wei, and M. Hongxu, 'Contact force estimation method of legged-robot and its application in impedance control,' IEEE Access, vol. 8, pp. 161175-161187, 2020. [19] D. J. Hyun, S. Seok, J. Lee, and S. Kim, 'High speed trot-running: Implementation of a hierarchical controller using proprioceptive impedance control on the MIT Cheetah,' The International Journal of Robotics Research, vol. 33, no. 11, pp. 1417-1445, 2014. [20] I. Palomba, D. Richiedei, and A. Trevisani, 'Two-stage approach to state and force estimation in rigid-link multibody systems,' Multibody System Dynamics, vol. 39, no. 1, pp. 115-134, 2017. [21] E. Sanjurjo, D. Dopico, A. Luaces, and M. ?. Naya, 'State and force observers based on multibody models and the indirect Kalman filter,' Mechanical Systems and Signal Processing, vol. 106, pp. 210-228, 2018. [22] A. De Luca, A. Albu-Schaffer, S. Haddadin, and G. Hirzinger, 'Collision detection and safe reaction with the DLR-III lightweight manipulator arm,' in 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2006: IEEE, pp. 1623-1630. [23] S. Haddadin, A. Albu-Schaffer, A. De Luca, and G. Hirzinger, 'Collision detection and reaction: A contribution to safe physical human-robot interaction,' in 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2008: IEEE, pp. 3356-3363. [24] S. Fakoorian, V. Azimi, M. Moosavi, H. Richter, and D. Simon, 'Ground reaction force estimation in prosthetic legs with nonlinear Kalman filtering methods,' Journal of Dynamic Systems, Measurement, and Control, vol. 139, no. 11, p. 111004, 2017. [25] S. A. Fakoorian, D. Simon, H. Richter, and V. Azimi, 'Ground reaction force estimation in prosthetic legs with an extended Kalman filter,' in 2016 Annual IEEE Systems Conference (SysCon), 2016: IEEE, pp. 1-6. [26] V. Azimi, T. T. Nguyen, M. Sharifi, S. A. Fakoorian, and D. Simon, 'Robust ground reaction force estimation and control of lower-limb prostheses: Theory and simulation,' IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 50, no. 8, pp. 3024-3035, 2018. [27] J. G. De Jalon and E. Bayo, Kinematic and dynamic simulation of multibody systems: the real-time challenge. Springer Science & Business Media, 2012. [28] E. J. Haug, Computer aided kinematics and dynamics of mechanical systems. Vol. 1: basic methods. Allyn & Bacon, Inc., 1989. [29] K. Erleben, 'Stable, robust, and versatile multibody dynamics animation,' Unpublished Ph. D. Thesis, University of Copenhagen, Copenhagen, 2004. [30] 陳宣妤, '具快速變換與跳躍能力之輪腳模組開發,' 工學院機械工程學系, 國立臺灣大學, 2020. [31] 沈宣諭, '輪腳雙模式運動平台之研發,' 工學院機械工程學系, 國立臺灣大學, 2009. [32] 陳為熙, '輪腳快速變換平台及其仿生控制架構之開發,' 工學院機械工程學系, 國立臺灣大學, 2013. [33] 何光展, '高動態雙自由度輪腳模組之驅動與控制,' 工學院機械工程學系, 國立臺灣大學, 2021. [34] B. G. Katz, 'A low cost modular actuator for dynamic robots,' Massachusetts Institute of Technology, 2018. [35] 海泰機電. 'HT-04.' http://www.haitaijd.cn/page105?product_id=78 (accessed August 18, 2022). [36] 國家儀器. 'sbRIO-9629.' https://www.ni.com/zh-tw/support/model.sbrio- 9629.html (accessed August 18, 2022). [37] 國家儀器. 'sbRIO-9853.' https://www.ni.com/zh-tw/support/model.sbrio-9853.html (accessed August 19, 2022). [38] L. N. Hand and J. D. Finch, Analytical mechanics. Cambridge University Press, 1998. [39] K. Pickl, 'Rigid body dynamics: links and joints,' Master's thesis, Computer Science Department, vol. 10, 2009. [40] D. Chappuis, 'Constraints derivation for rigid body simulation in 3D,' ed, 2013. [41] M. Anitescu and F. A. Potra, 'Formulating dynamic multi-rigid-body contact problems with friction as solvable linear complementarity problems,' Nonlinear Dynamics, vol. 14, no. 3, pp. 231-247, 1997. [42] D. E. Stewart and J. C. Trinkle, 'An implicit time?stepping scheme for rigid body dynamics with inelastic collisions and coulomb friction,' International Journal for Numerical Methods in Engineering, vol. 39, no. 15, pp. 2673-2691, 1996. [43] H. W. Kuhn and A. W. Tucker, 'Nonlinear programming,' in Traces and emergence of nonlinear programming: Springer, 2014, pp. 247-258. [44] W. Karush, 'Minima of functions of several variables with inequalities as side constraints,' M. Sc. Dissertation. Dept. of Mathematics, Univ. of Chicago, 1939. [45] T. H. Kjeldsen, 'A contextualized historical analysis of the Kuhn–Tucker theorem in nonlinear programming: the impact of World War II,' Historia mathematica, vol. 27, no. 4, pp. 331-361, 2000. [46] A. R. Champneys and P. L. V?rkonyi, 'The Painlev? paradox in contact mechanics,' IMA Journal of Applied Mathematics, vol. 81, no. 3, pp. 538-588, 2016. [47] F. G?not and B. Brogliato, 'New results on Painlev? paradoxes,' European Journal of Mechanics-A/Solids, vol. 18, no. 4, pp. 653-677, 1999. [48] N. Dantam, 'Quaternion computation,' Georgia Institute of Technology, Atlanta, Tech. Rep, 2014. [49] E. Bayo, J. Jimenez, M. Serna, and J. Bastero, 'Penalty based Hamiltonian equations for the dynamic analysis of constrained mechanical systems,' Mechanism and machine theory, vol. 29, no. 5, pp. 725-737, 1994. [50] W. Blajer, 'Augmented Lagrangian formulation: geometrical interpretation and application to systems with singularities and redundancy,' Multibody System Dynamics, vol. 8, no. 2, pp. 141-159, 2002. [51] B. Ruzzeh and J. K?vecses, 'A penalty formulation for dynamics analysis of redundant mechanical systems,' Journal of computational and nonlinear dynamics, vol. 6, no. 2, 2011. [52] F. Pfeiffer and C. Glocker, Multibody dynamics with unilateral contacts. John Wiley & Sons, 1996. [53] R. W. Cottle, J.-S. Pang, and R. E. Stone, The linear complementarity problem. SIAM, 2009. [54] J. J. J?dice, 'Algorithms for linear complementarity problems,' in Algorithms for continuous optimization: Springer, 1994, pp. 435-474. [55] A. Almqvist. 'A pivoting algorithm solving linear complementarity problems ' https://www.mathworks.com/matlabcentral/fileexchange/41485-a-pivoting-algorithm-solving-linear-complementarity-problems (accessed. [56] C. Lacoursi?re, 'Regularized, stabilized, variational methods for multibodies,' in The 48th Scandinavian Conference on Simulation and Modeling (SIMS 2007), 30-31 October, 2007, G?teborg (S?r?), 2007: Link?ping University Electronic Press, pp. 40-48. [57] E. Bayo, J. G. De Jalon, and M. A. Serna, 'A modified Lagrangian formulation for the dynamic analysis of constrained mechanical systems,' Computer methods in applied mechanics and engineering, vol. 71, no. 2, pp. 183-195, 1988. [58] M. B. Cline and D. K. Pai, 'Post-stabilization for rigid body simulation with contact and constraints,' in 2003 IEEE International Conference on Robotics and Automation (Cat. No. 03CH37422), 2003, vol. 3: IEEE, pp. 3744-3751. [59] H. S. Chin, Stabilization methods for simulations of constrained multibody dynamics. University of British Columbia, 1995. [60] U. M. Ascher, H. Chin, and S. Reich, 'Stabilization of DAEs and invariant manifolds,' Numerische Mathematik, vol. 67, no. 2, pp. 131-149, 1994. [61] N. Docquier, A. Poncelet, and P. Fisette, 'ROBOTRAN: a powerful symbolic gnerator of multibody models,' Mechanical Sciences, vol. 4, no. 1, pp. 199-219, 2013. [62] S. Zapolsky and E. Drumwright, 'Inverse dynamics with rigid contact and friction,' Autonomous Robots, vol. 41, no. 4, pp. 831-863, 2017. [63] R. A. Wehage and E. J. Haug, 'Generalized coordinate partitioning for dimension reduction in analysis of constrained dynamic systems,' 1982. [64] F. Marques, P. Flores, J. Claro, and H. M. Lankarani, 'Modeling and analysis of friction including rolling effects in multibody dynamics: a review,' Multibody System Dynamics, vol. 45, no. 2, pp. 223-244, 2019. [65] D. Threlfall, 'The inclusion of Coulomb friction in mechanisms programs with particular reference to DRAM au programme DRAM,' Mechanism and Machine Theory, vol. 13, no. 4, pp. 475-483, 1978. [66] S. Andersson, A. S?derberg, and S. Bj?rklund, 'Friction models for sliding dry, boundary and mixed lubricated contacts,' Tribology international, vol. 40, no. 4, pp. 580-587, 2007. [67] S. J. Julier and J. K. Uhlmann, 'New extension of the Kalman filter to nonlinear systems,' in Signal processing, sensor fusion, and target recognition VI, 1997, vol. 3068: Spie, pp. 182-193. [68] C. Masreliez and R. Martin, 'Robust Bayesian estimation for the linear model and robustifying the Kalman filter,' IEEE transactions on Automatic Control, vol. 22, no. 3, pp. 361-371, 1977. [69] J. Humpherys, P. Redd, and J. West, 'A fresh look at the Kalman filter,' SIAM review, vol. 54, no. 4, pp. 801-823, 2012. [70] S. Ghahramani, Fundamentals of probability: with stochastic processes. Chapman and Hall/CRC, 2018. [71] H. Masnadi-Shirazi, A. Masnadi-Shirazi, and M.-A. Dastgheib, 'A Step by Step Mathematical Derivation and Tutorial on Kalman Filters,' arXiv preprint arXiv:1910.03558, 2019. [72] D. Simon, 'Kalman filtering with state constraints: a survey of linear and nonlinear algorithms,' IET Control Theory & Applications, vol. 4, no. 8, pp. 1303-1318, 2010. [73] N. Gupta and R. Hauser, 'Kalman filtering with equality and inequality state constraints,' arXiv preprint arXiv:0709.2791, 2007. [74] P. Varin and S. Kuindersma, 'A constrained kalman filter for rigid body systems with frictional contact,' in International Workshop on the Algorithmic Foundations of Robotics, 2018: Springer, pp. 474-490. [75] J. Collins, S. Chand, A. Vanderkop, and D. Howard, 'A review of physics simulators for robotic applications,' IEEE Access, 2021. [76] Webots. 'Open-source Mobile Robot Simulation Software.' http://www.cyberbotics.com (accessed. [77] T. Kraver, G. Fan, and J. Shah, 'Complex modal analysis of a flat belt pulley system with belt damping and coulomb-damped tensioner,' 1996. [78] A. Tonoli, N. Amati, and E. Zenerino, 'Dynamic modeling of belt drive systems: effects of the shear deformations,' 2006. [79] K. Sollmann and M. Jouaneh, 'Dynamic modelling of a single-axis belt-drive system,' International Journal of Modelling, Identification and Control, vol. 12, no. 4, pp. 386-394, 2011. [80] H. Cao, L. Niu, S. Xi, and X. Chen, 'Mechanical model development of rolling bearing-rotor systems: A review,' Mechanical Systems and Signal Processing, vol. 102, pp. 37-58, 2018. [81] M. B. Cline, 'Rigid body simulation with contact and constraints,' Citeseer, 2002. [82] C. Glocker and F. Pfeiffer, 'Multiple impacts with friction in rigid multibody systems,' Nonlinear Dynamics, vol. 7, no. 4, pp. 471-497, 1995. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83543 | - |
dc.description.abstract | 本文主要探討多連桿輪腳複合機構之外力估測,此輪腳機構為五連桿內接七連桿的雙自由度機構,可以透過連桿幾何形狀的主動控制,在輪模式及腳模式平滑轉換,此機構特性讓新型四足輪腳複合機器人得以在平坦地形上使用輪型式移動,在崎嶇地形則切換至腳模式,藉由步態選擇、踏點控制或是跳躍的方式,跨越障礙物,為使足類機器人可以在各式各樣未知的地形上穿梭,需要知道機器人目前的機身狀態,並透過狀態資訊即時更新命令,而足類機器人的機身動態主要取決於足部末端與地面的接觸力,由於此輪腳複合機構較複雜,且因應輪模式下連續旋轉的限制,不易在機構末端安裝力感測器,因而無法直接取得機構末端與地面接觸的交互作用力,本研究使用間接的方式取得地面接觸力。 本研究透過多體動力學方式建構輪腳機構之動力學模型,模型主要透過幾何限制以及接觸限制條件約束系統運動行為,由於實際系統中存在許多其他未知的干擾因素,以及無法建模的損耗,因此設計一個具有限制條件的卡曼濾波器,不僅確保在使用感測器量測值更新模型預測之系統狀態時,仍滿足系統設定之限制條件,且可同時修正模型預測之接觸力。 | zh_TW |
dc.description.abstract | This paper mainly discussed the ground reaction force estimation of a complex 11-linkage and closed-chain leg-wheel module. This leg-wheel module has two degrees of freedom and is capable of transforming between wheel mode and leg mode rapidly yet smoothly. Therefore, the new quadruped composed of 4 leg-wheel modules is able to cruise on flat terrains with wheels efficiently, while traversing uneven terrains in leg mode. In order to enable the legged robot to traverse diverse unknown terrains, it is crucial to track the status of the robot. The dynamic of the legged robot mainly depends on the ground reaction forces and the contact status. Due to the complexity of the leg-wheel module and the limitation of continuous rotating in wheel mode, it is difficult to mount force sensors on the legs. Therefore, in this paper, we establish the dynamic model of the leg-wheel module using the multibody dynamic approach. The contact-constrained Kalman filter developed in this paper can not only ensure the constraints are satisfied through the measurement update, but also correct the contact forces predicted by the dynamic model. | en |
dc.description.provenance | Made available in DSpace on 2023-03-19T21:10:05Z (GMT). No. of bitstreams: 1 U0001-2908202211010700.pdf: 19315122 bytes, checksum: 11ef74549bee068ff36d8476be95880c (MD5) Previous issue date: 2022 | en |
dc.description.tableofcontents | 審定書 i 誌謝 ii 中文摘要 iii ABSTRACT iv 目錄 v 圖目錄 ix 表目錄 xiii 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 1 1.3 研究動機 6 1.4 貢獻 8 1.5 論文架構 9 第二章 實驗平台 10 2.1 前言 10 2.2 連桿型輪腳機構回顧 10 2.2.1 運動學分析 11 2.2.2 虛功法 15 2.3 單足模組架構 16 2.3.1 R100改良版輪腳機構 16 2.3.2 雙自由度同軸輸出之馬達模組 17 2.3.3 直流無刷馬達 18 2.4 通訊架構 22 2.5 四足機器人架構 27 2.5.1 機電系統 27 第三章 輪腳機構三維動力學模型 29 3.1 前言 29 3.2 獨立座標系與相依座標系 29 3.3 狀態定義 30 3.3.1 座標向量 31 3.3.2 速度向量 32 3.4 運動學拘束方程式 33 3.4.1 前言 34 3.4.2 完全運動拘束條件(Holonomic constraint) 35 3.4.3 非完全運動拘束條件(Nonholonomic constraints) 42 3.5 動力學模型 50 3.5.1 前言 50 3.5.2 動力學方程式 51 3.5.3 離散化 51 3.5.4 更新狀態向量 52 3.6 餘贅度(Redundancy) 53 3.7 線性互補性問題 54 3.8 輪腳機構三維模型 55 3.8.1 未觸地 55 3.8.2 觸地(無摩擦) 57 3.8.3 觸地(有摩擦) 64 3.9 實驗結果 64 3.9.1 單足實驗平台 65 3.9.2 實驗結果分析 66 第四章 輪腳機構二維動力學模型 70 4.1 前言 70 4.2 狀態定義 70 4.2.1 座標向量 70 4.2.2 速度向量 71 4.3 運動拘束方程式 72 4.3.1 完全運動拘束條件(Holonomic constraints) 72 4.3.2 非完全運動拘束條件(Nonholonomic constraints) 77 4.4 動力學模型 80 4.5 輪腳機構二維模型 82 4.5.1 未觸地 82 4.5.2 觸地(無摩擦) 83 4.5.3 觸地(有摩擦) 84 4.6 三維模型與二維模型模擬結果比較 85 4.6.1 靜態比較 85 4.6.2 動態比較 87 4.7 關節摩擦力 88 4.7.1 逆向動力學 89 4.7.2 關節摩擦力模型 90 第五章 基於多體動力學之外力估測 94 5.1 前言 94 5.2 卡曼濾波器 94 5.2.1 遞迴貝氏估測器 95 5.2.2 卡曼濾波器 97 5.3 限制型卡曼濾波器(Constrained Kalman filter) 100 5.3.1 最大後驗機率(Maximum A Posteriori) 102 5.3.2 接觸限制卡曼濾波 102 5.4 資料蒐集 107 5.4.1 Webots模擬資料 107 5.4.2 實驗資料 110 5.5 結果與討論 114 5.5.1 Webots 114 5.5.2 單足垂直運動實驗 118 5.5.3 四足水平運動實驗 123 5.5.4 結論 133 第六章 結論與未來展望 135 6.1 結論 135 6.2 未來展望 137 REFERENCE 138 | |
dc.language.iso | zh-TW | |
dc.title | 結合多體動力學及限制型卡曼濾波器建構輪腳機構地面接觸力估測 | zh_TW |
dc.title | Ground Contact Force Estimation of a Leg-wheel Module Using a Multi-body Dynamic Model and a Constrained Kalman Filter | en |
dc.type | Thesis | |
dc.date.schoolyear | 110-2 | |
dc.description.degree | 碩士 | |
dc.contributor.advisor-orcid | 林沛群(0000-0001-9146-3817) | |
dc.contributor.oralexamcommittee | 連豊力(Feng-Li Lian),顏炳郎(Ping-Lang Yen),田維誠(Wei-Cheng Tian) | |
dc.contributor.oralexamcommittee-orcid | 連豊力(0000-0002-1260-4894),顏炳郎(0000-0001-8020-6241) | |
dc.subject.keyword | 仿生機器人,輪腳複合模組,多體動力學,地面作用力,限制型卡曼濾波器,接觸力估測器, | zh_TW |
dc.subject.keyword | Bio-inspired robot,leg-wheel module,multibody dynamics,ground reaction force,constrained Kalman filter,contact force estimation, | en |
dc.relation.page | 144 | |
dc.identifier.doi | 10.6342/NTU202202912 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2022-08-31 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-2908202211010700.pdf 目前未授權公開取用 | 18.86 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。