請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83504
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 阮雪芬(Hsueh-Fen Juan) | |
dc.contributor.author | Kai-Jie Chang | en |
dc.contributor.author | 張凱傑 | zh_TW |
dc.date.accessioned | 2023-03-19T21:09:07Z | - |
dc.date.copyright | 2022-09-13 | |
dc.date.issued | 2022 | |
dc.date.submitted | 2022-09-05 | |
dc.identifier.citation | Anderson, D.D., Woeller, C.F., Chiang, E.-P., Shane, B., and Stover, P.J. (2012). Serine hydroxymethyltransferase anchors de novo thymidylate synthesis pathway to nuclear lamina for DNA synthesis. J Biol Chem 287, 7051–7062. https://doi.org/10.1074/jbc.M111.333120. Aveic, S., Pantile, M., Polo, P., Sidarovich, V., De Mariano, M., Quattrone, A., Longo, L., and Tonini, G.P. (2018). Autophagy inhibition improves the cytotoxic effects of receptor tyrosine kinase inhibitors. Cancer Cell International 18, 63. https://doi.org/10.1186/s12935-018-0557-4. Bansal, M., Yang, J., Karan, C., Menden, M.P., Costello, J.C., Tang, H., Xiao, G., Li, Y., Allen, J., Zhong, R., et al. (2014). A community computational challenge to predict the activity of pairs of compounds. Nat Biotechnol 32, 1213–1222. https://doi.org/10.1038/nbt.3052. Bennouna, J. (2017). Update on afatinib-based combination regimens for the treatment of EGFR mutation-positive non-small-cell lung cancer. Future Oncology 13, 1829–1833. https://doi.org/10.2217/fon-2017-0240. Bennouna, J., and Moreno Vera, S.R. (2016). Afatinib-based combination regimens for the treatment of solid tumors: rationale, emerging strategies and recent progress. Future Oncology 12, 355–372. https://doi.org/10.2217/fon.15.310. Berr?os-Caro, E., Gifford, D.R., and Galla, T. (2021). Competition delays multi-drug resistance evolution during combination therapy. Journal of Theoretical Biology 509, 110524. https://doi.org/10.1016/j.jtbi.2020.110524. Bonagas, N., Gustafsson, N.M.S., Henriksson, M., Marttila, P., Gustafsson, R., Wiita, E., Borhade, S., Green, A.C., Vallin, K.S.A., Sarno, A., et al. (2022). Pharmacological targeting of MTHFD2 suppresses acute myeloid leukemia by inducing thymidine depletion and replication stress. Nat Cancer 3, 156–172. https://doi.org/10.1038/s43018-022-00331-y. Boyd, J.A., Hubbs, J.L., Kim, D.W., Hollis, D., Marks, L.B., and Kelsey, C.R. (2010). Timing of local and distant failure in resected lung cancer: implications for reported rates of local failure. J Thorac Oncol 5, 211–214. https://doi.org/10.1097/JTO.0b013e3181c20080. Brasky, T.M., Ray, R.M., Navarro, S.L., Schenk, J.M., Newton, A.M., and Neuhouser, M.L. (2020). Supplemental one-carbon metabolism related B vitamins and lung cancer risk in the Women’s Health Initiative. International Journal of Cancer 147, 1374–1384. https://doi.org/10.1002/ijc.32913. Bukowska, B., Gajek, A., and Marczak, A. (2015). Two drugs are better than one. A short history of combined therapy of ovarian cancer. Contemp Oncol (Pozn) 19, 350–353. https://doi.org/10.5114/wo.2014.43975. Bunn, P.A. (1989). The expanding role of cisplatin in the treatment of non-small-cell lung cancer. Semin Oncol 16, 10–21. . Chao, T.-T., Wang, C.-Y., Chen, Y.-L., Lai, C.-C., Chang, F.-Y., Tsai, Y.-T., Chao, C.-H.H., Shiau, C.-W., Huang, Y.-C.T., Yu, C.-J., et al. (2014). Afatinib induces apoptosis in NSCLC without EGFR mutation through Elk-1-mediated suppression of CIP2A. Oncotarget 6, 2164–2179. . Chen, C., Zhu, T., Liu, X., Zhu, D., Zhang, Y., Wu, S., Han, C., Zhang, H., Luo, J., and Kong, L. (2022). Identification of a novel PHGDH covalent inhibitor by chemical proteomics and phenotypic profiling. Acta Pharmaceutica Sinica B 12, 246–261. https://doi.org/10.1016/j.apsb.2021.06.008. Chen, J., Chung, F., Yang, G., Pu, M., Gao, H., Jiang, W., Yin, H., Capka, V., Kasibhatla, S., Laffitte, B., et al. (2013). Phosphoglycerate dehydrogenase is dispensable for breast tumor maintenance and growth. Oncotarget 4, 2502–2511. https://doi.org/10.18632/oncotarget.1540. Cheng, F., Kov?cs, I.A., and Barab?si, A.-L. (2019). Network-based prediction of drug combinations. Nat Commun 10, 1197. https://doi.org/10.1038/s41467-019-09186-x. Choi, B.-H., and Coloff, J.L. (2019). The Diverse Functions of Non-Essential Amino Acids in Cancer. Cancers (Basel) 11, 675. https://doi.org/10.3390/cancers11050675. Chong, C.R., and J?nne, P.A. (2013). The quest to overcome resistance to EGFR-targeted therapies in cancer. Nat Med 19, 1389–1400. https://doi.org/10.1038/nm.3388. Clarke, P.A., Roe, T., Swabey, K., Hobbs, S.M., McAndrew, C., Tomlin, K., Westwood, I., Burke, R., van Montfort, R., and Workman, P. (2019). Dissecting mechanisms of resistance to targeted drug combination therapy in human colorectal cancer. Oncogene 38, 5076–5090. https://doi.org/10.1038/s41388-019-0780-z. DeBerardinis, R.J. (2011). Serine metabolism: some tumors take the road less traveled. Cell Metab 14, 285–286. https://doi.org/10.1016/j.cmet.2011.08.004. Diaz, J.E., Ahsen, M.E., Schaffter, T., Chen, X., Realubit, R.B., Karan, C., Califano, A., Losic, B., and Stolovitzky, G. (2020). The transcriptomic response of cells to a drug combination is more than the sum of the responses to the monotherapies. Elife 9, e52707. https://doi.org/10.7554/eLife.52707. Dikic, I., and Elazar, Z. (2018). Mechanism and medical implications of mammalian autophagy. Nat Rev Mol Cell Biol 19, 349–364. https://doi.org/10.1038/s41580-018-0003-4. Do, S.K., Choi, S.H., Lee, S.Y., Choi, J.E., Kang, H.-G., Hong, M.J., Kim, J.H., Baek, S.A., Lee, J.H., Lee, W.K., et al. (2020). Genetic Variants in One-Carbon Metabolism Pathway Predict Survival Outcomes of Early-Stage Non-Small Cell Lung Cancer. OCL 98, 897–904. https://doi.org/10.1159/000509658. Ducker, G.S., and Rabinowitz, J.D. (2017). One-Carbon Metabolism in Health and Disease. Cell Metab 25, 27–42. https://doi.org/10.1016/j.cmet.2016.08.009. Dungo, R.T., and Keating, G.M. (2013). Afatinib: first global approval. Drugs 73, 1503–1515. https://doi.org/10.1007/s40265-013-0111-6. Ethier, S.P. (2002). Signal transduction pathways: The molecular basis for targeted therapies. Seminars in Radiation Oncology 12, 3–10. https://doi.org/10.1053/srao.2002.34863. Gadgeel, S.M., Ramalingam, S.S., and Kalemkerian, G.P. (2012). Treatment of lung cancer. Radiol Clin North Am 50, 961–974. https://doi.org/10.1016/j.rcl.2012.06.003. Ganini, C., Amelio, I., Bertolo, R., Candi, E., Cappello, A., Cipriani, C., Mauriello, A., Marani, C., Melino, G., Montanaro, M., et al. (2021). Serine and one-carbon metabolisms bring new therapeutic venues in prostate cancer. Discov Onc 12, 45. https://doi.org/10.1007/s12672-021-00440-7. Harvey, R.D., Adams, V.R., Beardslee, T., and Medina, P. (2020). Afatinib for the treatment of EGFR mutation-positive NSCLC: A review of clinical findings. J Oncol Pharm Pract 26, 1461–1474. https://doi.org/10.1177/1078155220931926. Huang, C.-T., Hsieh, C.-H., Chung, Y.-H., Oyang, Y.-J., Huang, H.-C., and Juan, H.-F. (2019). Perturbational Gene-Expression Signatures for Combinatorial Drug Discovery. IScience 15, 291–306. https://doi.org/10.1016/j.isci.2019.04.039. Ioannou, N., Dalgleish, A.G., Seddon, A.M., Mackintosh, D., Guertler, U., Solca, F., and Modjtahedi, H. (2011). Anti-tumour activity of afatinib, an irreversible ErbB family blocker, in human pancreatic tumour cells. Br J Cancer 105, 1554–1562. https://doi.org/10.1038/bjc.2011.396. Jaaks, P., Coker, E.A., Vis, D.J., Edwards, O., Carpenter, E.F., Leto, S.M., Dwane, L., Sassi, F., Lightfoot, H., Barthorpe, S., et al. (2022). Effective drug combinations in breast, colon and pancreatic cancer cells. Nature 603, 166–173. https://doi.org/10.1038/s41586-022-04437-2. Janjigian, Y.Y., Smit, E.F., Groen, H.J.M., Horn, L., Gettinger, S., Camidge, D.R., Riely, G.J., Wang, B., Fu, Y., Chand, V.K., et al. (2014). Dual inhibition of EGFR with afatinib and cetuximab in kinase inhibitor-resistant EGFR-mutant lung cancer with and without T790M mutations. Cancer Discov 4, 1036–1045. https://doi.org/10.1158/2159-8290.CD-14-0326. Ju, H.-Q., Lu, Y.-X., Chen, D.-L., Zuo, Z.-X., Liu, Z.-X., Wu, Q.-N., Mo, H.-Y., Wang, Z.-X., Wang, D.-S., Pu, H.-Y., et al. (2019). Modulation of Redox Homeostasis by Inhibition of MTHFD2 in Colorectal Cancer: Mechanisms and Therapeutic Implications. JNCI: Journal of the National Cancer Institute 111, 584–596. https://doi.org/10.1093/jnci/djy160. Katayama, R., Shaw, A.T., Khan, T.M., Mino-Kenudson, M., Solomon, B.J., Halmos, B., Jessop, N.A., Wain, J.C., Yeo, A.T., Benes, C., et al. (2012). Mechanisms of acquired crizotinib resistance in ALK-rearranged lung Cancers. Sci Transl Med 4, 120ra17. https://doi.org/10.1126/scitranslmed.3003316. Kawai, J., Toki, T., Ota, M., Inoue, H., Takata, Y., Asahi, T., Suzuki, M., Shimada, T., Ono, K., Suzuki, K., et al. (2019). Discovery of a Potent, Selective, and Orally Available MTHFD2 Inhibitor (DS18561882) with in Vivo Antitumor Activity. J Med Chem 62, 10204–10220. https://doi.org/10.1021/acs.jmedchem.9b01113. Kobayashi, N., Hashimoto, H., Kamimaki, C., Nagasawa, R., Tanaka, K., Kubo, S., Katakura, S., Chen, H., Hirama, N., Ushio, R., et al. (2020). Afatinib + bevacizumab combination therapy in EGFR-mutant NSCLC patients with osimertinib resistance: Protocol of an open-label, phase II, multicenter, single-arm trial. Thoracic Cancer 11, 2125–2129. https://doi.org/10.1111/1759-7714.13503. K?hler, J., and Schuler, M. (2013). Afatinib, Erlotinib and Gefitinib in the First-Line Therapy of EGFR Mutation-Positive Lung Adenocarcinoma: A Review. ORT 36, 510–518. https://doi.org/10.1159/000354627. Lee, J., Chen, X., Wang, Y., Nishimura, T., Li, M., Ishikawa, S., Daikoku, T., Kawai, J., Tojo, A., and Gotoh, N. (2021). A novel oral inhibitor for one-carbon metabolism and checkpoint kinase 1 inhibitor as a rational combination treatment for breast cancer. Biochemical and Biophysical Research Communications 584, 7–14. https://doi.org/10.1016/j.bbrc.2021.11.001. Lee, Y., Wang, Y., James, M., Jeong, J.H., and You, M. (2016). Inhibition of IGF1R signaling abrogates resistance to afatinib (BIBW2992) in EGFR T790M mutant lung cancer cells. Mol Carcinog 55, 991–1001. https://doi.org/10.1002/mc.22342. Li, Q., Yang, F., Shi, X., Bian, S., Shen, F., Wu, Y., Zhu, C., Fu, F., Wang, J., Zhou, J., et al. (2021a). MTHFD2 promotes ovarian cancer growth and metastasis via activation of the STAT3 signaling pathway. FEBS Open Bio 11, 2845–2857. https://doi.org/10.1002/2211-5463.13249. Li, S., Zhang, F., Xiao, X., Guo, Y., Wen, Z., Li, M., and Pu, X. (2021b). Prediction of Synergistic Drug Combinations for Prostate Cancer by Transcriptomic and Network Characteristics. Frontiers in Pharmacology 12. . Li, X., Gracilla, D., Cai, L., Zhang, M., Yu, X., Chen, X., Zhang, J., Long, X., Ding, H.-F., and Yan, C. (2021c). ATF3 promotes the serine synthesis pathway and tumor growth under dietary serine restriction. Cell Reports 36, 109706. https://doi.org/10.1016/j.celrep.2021.109706. Lin, H., Huang, B., Wang, H., Liu, X., Hong, Y., Qiu, S., and Zheng, J. (2018). MTHFD2 Overexpression Predicts Poor Prognosis in Renal Cell Carcinoma and is Associated with Cell Proliferation and Vimentin-Modulated Migration and Invasion. CPB 51, 991–1000. https://doi.org/10.1159/000495402. Liu, F., Liu, Y., He, C., Tao, L., He, X., Song, H., and Zhang, G. (2014). Increased MTHFD2 expression is associated with poor prognosis in breast cancer. Tumor Biol. 35, 8685–8690. https://doi.org/10.1007/s13277-014-2111-x. Liu, X., Huang, Y., Jiang, C., Ou, H., Guo, B., Liao, H., Li, X., and Yang, D. (2016). Methylenetetrahydrofolate dehydrogenase 2 overexpression is associated with tumor aggressiveness and poor prognosis in hepatocellular carcinoma. Digestive and Liver Disease 48, 953–960. https://doi.org/10.1016/j.dld.2016.04.015. Liu, X., Suo, H., Zhou, S., Hou, Z., Bu, M., Liu, X., and Xu, W. (2021). Afatinib induces pro-survival autophagy and increases sensitivity to apoptosis in stem-like HNSCC cells. Cell Death Dis 12, 1–12. https://doi.org/10.1038/s41419-021-04011-0. Lou, F., Huang, J., Sima, C.S., Dycoco, J., Rusch, V., and Bach, P.B. (2013). Patterns of recurrence and second primary lung cancer in early-stage lung cancer survivors followed with routine computed tomography surveillance. J Thorac Cardiovasc Surg 145, 75–81; discussion 81-82. https://doi.org/10.1016/j.jtcvs.2012.09.030. Lowder, M.A., Doerner, A.E., and Schepartz, A. (2015). Structural Differences between Wild-Type and Double Mutant EGFR Modulated by Third-Generation Kinase Inhibitors. J. Am. Chem. Soc. 137, 6456–6459. https://doi.org/10.1021/jacs.5b02326. Ma, X., Li, B., Liu, J., Fu, Y., and Luo, Y. (2019). Phosphoglycerate dehydrogenase promotes pancreatic cancer development by interacting with eIF4A1 and eIF4E. Journal of Experimental & Clinical Cancer Research 38, 66. https://doi.org/10.1186/s13046-019-1053-y. Maruti, S.S., Ulrich, C.M., and White, E. (2009). Folate and one-carbon metabolism nutrients from supplements and diet in relation to breast cancer risk. Am J Clin Nutr 89, 624–633. https://doi.org/10.3945/ajcn.2008.26568. Mattaini, K.R., Sullivan, M.R., and Vander Heiden, M.G. (2016). The importance of serine metabolism in cancer. Journal of Cell Biology 214, 249–257. https://doi.org/10.1083/jcb.201604085. Mok, T.S., Wu, Y.-L., Ahn, M.-J., Garassino, M.C., Kim, H.R., Ramalingam, S.S., Shepherd, F.A., He, Y., Akamatsu, H., Theelen, W.S.M.E., et al. (2017). Osimertinib or Platinum-Pemetrexed in EGFR T790M-Positive Lung Cancer. N Engl J Med 376, 629–640. https://doi.org/10.1056/NEJMoa1612674. Mokhtari, R.B., Kumar, S., Islam, S.S., Yazdanpanah, M., Adeli, K., Cutz, E., and Yeger, H. (2013). Combination of carbonic anhydrase inhibitor, acetazolamide, and sulforaphane, reduces the viability and growth of bronchial carcinoid cell lines. BMC Cancer 13, 378. https://doi.org/10.1186/1471-2407-13-378. Molina, J.R., Yang, P., Cassivi, S.D., Schild, S.E., and Adjei, A.A. (2008). Non–Small Cell Lung Cancer: Epidemiology, Risk Factors, Treatment, and Survivorship. Mayo Clin Proc 83, 584–594. . Newman, A.C., and Maddocks, O.D.K. (2017). One-carbon metabolism in cancer. Br J Cancer 116, 1499–1504. https://doi.org/10.1038/bjc.2017.118. Nilsson, R., Jain, M., Madhusudhan, N., Sheppard, N.G., Strittmatter, L., Kampf, C., Huang, J., Asplund, A., and Mootha, V.K. (2014). Metabolic enzyme expression highlights a key role for MTHFD2 and the mitochondrial folate pathway in cancer. Nat Commun 5, 3128. https://doi.org/10.1038/ncomms4128. Nishimura, T., Nakata, A., Chen, X., Nishi, K., Meguro-Horike, M., Sasaki, S., Kita, K., Horike, S.-I., Saitoh, K., Kato, K., et al. (2019). Cancer stem-like properties and gefitinib resistance are dependent on purine synthetic metabolism mediated by the mitochondrial enzyme MTHFD2. Oncogene 38, 2464–2481. https://doi.org/10.1038/s41388-018-0589-1. Nussinov, R., Tsai, C.-J., and Jang, H. (2017). A New View of Pathway-Driven Drug Resistance in Tumor Proliferation. Trends Pharmacol Sci 38, 427–437. https://doi.org/10.1016/j.tips.2017.02.001. Pacold, M.E., Brimacombe, K.R., Chan, S.H., Rohde, J.M., Lewis, C.A., Swier, L.J.Y.M., Possemato, R., Chen, W.W., Sullivan, L.B., Fiske, B.P., et al. (2016). A PHGDH inhibitor reveals coordination of serine synthesis and one-carbon unit fate. Nat Chem Biol 12, 452–458. https://doi.org/10.1038/nchembio.2070. Pandey, S., Garg, P., Lee, S., Choung, H.-W., Choung, Y.-H., Choung, P.-H., and Chung, J.H. (2014). Nucleotide biosynthesis arrest by silencing SHMT1 function via vitamin B6-coupled vector and effects on tumor growth inhibition. Biomaterials 35, 9332–9342. https://doi.org/10.1016/j.biomaterials.2014.07.045. Pikman, Y., Puissant, A., Alexe, G., Furman, A., Chen, L.M., Frumm, S.M., Ross, L., Fenouille, N., Bassil, C.F., Lewis, C.A., et al. (2016). Targeting MTHFD2 in acute myeloid leukemia. J Exp Med 213, 1285–1306. https://doi.org/10.1084/jem.20151574. Rathore, R., Schutt, C.R., and Van Tine, B.A. (2020). PHGDH as a mechanism for resistance in metabolically-driven cancers. Cancer Drug Resist 3, 762–774. https://doi.org/10.20517/cdr.2020.46. Rathore, R., Caldwell, K.E., Schutt, C., Brashears, C.B., Prudner, B.C., Ehrhardt, W.R., Leung, C.H., Lin, H., Daw, N.C., Beird, H.C., et al. (2021). Metabolic compensation activates pro-survival mTORC1 signaling upon 3-phosphoglycerate dehydrogenase inhibition in osteosarcoma. Cell Reports 34. https://doi.org/10.1016/j.celrep.2020.108678. Rohde, J.M., Brimacombe, K.R., Liu, L., Pacold, M.E., Yasgar, A., Cheff, D.M., Lee, T.D., Rai, G., Baljinnyam, B., Li, Z., et al. (2018). Discovery and optimization of piperazine-1-thiourea-based human phosphoglycerate dehydrogenase inhibitors. PMC. Shen, Y.-C., Tseng, G.-C., Tu, C.-Y., Chen, W.-C., Liao, W.-C., Chen, W.-C., Li, C.-H., Chen, H.-J., and Hsia, T.-C. (2017). Comparing the effects of afatinib with gefitinib or Erlotinib in patients with advanced-stage lung adenocarcinoma harboring non-classical epidermal growth factor receptor mutations. Lung Cancer 110, 56–62. https://doi.org/10.1016/j.lungcan.2017.06.007. Spillier, Q., and Fr?d?rick, R. (2021). Phosphoglycerate dehydrogenase (PHGDH) inhibitors: a comprehensive review 2015–2020. Expert Opinion on Therapeutic Patents 31, 597–608. https://doi.org/10.1080/13543776.2021.1890028. Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A., Paulovich, A., Pomeroy, S.L., Golub, T.R., Lander, E.S., et al. (2005). Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences 102, 15545–15550. https://doi.org/10.1073/pnas.0506580102. Sullivan, M.R., Mattaini, K.R., Dennstedt, E.A., Nguyen, A.A., Sivanand, S., Reilly, M.F., Meeth, K., Muir, A., Darnell, A.M., Bosenberg, M.W., et al. (2019). Increased Serine Synthesis Provides an Advantage for Tumors Arising in Tissues Where Serine Levels Are Limiting. Cell Metabolism 29, 1410-1421.e4. https://doi.org/10.1016/j.cmet.2019.02.015. Sun, C., and Bernards, R. (2014). Feedback and redundancy in receptor tyrosine kinase signaling: relevance to cancer therapies. Trends Biochem Sci 39, 465–474. https://doi.org/10.1016/j.tibs.2014.08.010. Tanaka, K., Sasayama, T., Nagashima, H., Irino, Y., Takahashi, M., Izumi, Y., Uno, T., Satoh, N., Kitta, A., Kyotani, K., et al. (2021a). Glioma cells require one-carbon metabolism to survive glutamine starvation. Acta Neuropathologica Communications 9, 16. https://doi.org/10.1186/s40478-020-01114-1. Tanaka, K., Nagashima, H., Uno, T., Fujita, Y., Iwahashi, H., and Sasayama, T. (2021b). CBMS-5 One-carbon metabolism protect glioma cells under glutamine starvation through upregulation of MTHFD2. Neuro-Oncology Advances 3, vi2–vi3. https://doi.org/10.1093/noajnl/vdab159.007. Tang, X., Cheng, L., Li, G., Yan, Y.-M., Su, F., Huang, D.-L., Zhang, S., Liu, Z., Qian, M., Li, J., et al. (2021). A small-molecule compound D6 overcomes EGFR-T790M-mediated resistance in non-small cell lung cancer. Commun Biol 4, 1–13. https://doi.org/10.1038/s42003-021-02906-4. Tang, Y., Zhang, X., Qi, F., Chen, M., Li, Y., Liu, L., He, W., Li, Z., and Zu, X. (2015). Afatinib inhibits proliferation and invasion and promotes apoptosis of the T24 bladder cancer cell line. Experimental and Therapeutic Medicine 9, 1851–1856. https://doi.org/10.3892/etm.2015.2314. Travis, W.D., Brambilla, E., Nicholson, A.G., Yatabe, Y., Austin, J.H.M., Beasley, M.B., Chirieac, L.R., Dacic, S., Duhig, E., Flieder, D.B., et al. (2015). The 2015 World Health Organization Classification of Lung Tumors: Impact of Genetic, Clinical and Radiologic Advances Since the 2004 Classification. J Thorac Oncol 10, 1243–1260. https://doi.org/10.1097/JTO.0000000000000630. Wallace-Povirk, A., Hou, Z., Nayeen, M.J., Gangjee, A., and Matherly, L.H. (2021). Folate Transport and One-Carbon Metabolism in Targeted Therapies of Epithelial Ovarian Cancer. Cancers (Basel) 14, 191. https://doi.org/10.3390/cancers14010191. Wang, S., and Wang, Z. (2014). EGFR mutations in patients with non-small cell lung cancer from mainland China and their relationships with clinicopathological features: a meta-analysis. Int J Clin Exp Med 7, 1967–1978. . Watanabe, H., Ichihara, E., Kayatani, H., Makimoto, G., Ninomiya, K., Nishii, K., Higo, H., Ando, C., Okawa, S., Nakasuka, T., et al. (2021). VEGFR2 blockade augments the effects of tyrosine kinase inhibitors by inhibiting angiogenesis and oncogenic signaling in oncogene-driven non-small-cell lung cancers. Cancer Science 112, 1853–1864. https://doi.org/10.1111/cas.14801. Wei, L., Lee, D., Law, C.-T., Zhang, M.S., Shen, J., Chin, D.W.-C., Zhang, A., Tsang, F.H.-C., Wong, C.L.-S., Ng, I.O.-L., et al. (2019). Genome-wide CRISPR/Cas9 library screening identified PHGDH as a critical driver for Sorafenib resistance in HCC. Nat Commun 10, 4681. https://doi.org/10.1038/s41467-019-12606-7. Woodard, G.A., Wang, S.X., Kratz, J.R., Zoon-Besselink, C.T., Chiang, C.-Y., Gubens, M.A., Jahan, T.M., Blakely, C.M., Jones, K.D., Mann, M.J., et al. (2018). Adjuvant Chemotherapy Guided by Molecular Profiling and Improved Outcomes in Early Stage, Non-Small-Cell Lung Cancer. Clin Lung Cancer 19, 58–64. https://doi.org/10.1016/j.cllc.2017.05.015. Wu, M., Sirota, M., Butte, A.J., and Chen, B. (2015). Characteristics of drug combination therapy in oncology by analyzing clinical trial data on ClinicalTrials.gov. Pac Symp Biocomput 68–79. . Wu, Y., Zhang, J., Yun, C., Dong, C., and Tian, Y. (2022). Effects of Afatinib on Development of Non-Small-Cell Lung Cancer by Regulating Activity of Wnt/β-Catenin Signaling Pathway. Computational and Mathematical Methods in Medicine 2022, e5213016. https://doi.org/10.1155/2022/5213016. Xu, Q.-Y., Xie, M.-J., Huang, J., and Wang, Z.-W. (2019). Effect of circ MTHFD2 on resistance to pemetrexed in gastric cancer through regulating expression of miR-124. Eur Rev Med Pharmacol Sci 23, 10290–10299. https://doi.org/10.26355/eurrev_201912_19667. Yadav, B., Wennerberg, K., Aittokallio, T., and Tang, J. (2015). Searching for Drug Synergy in Complex Dose-Response Landscapes Using an Interaction Potency Model. Comput Struct Biotechnol J 13, 504–513. https://doi.org/10.1016/j.csbj.2015.09.001. Yao, S., Peng, L., Elakad, O., K?ffer, S., Hinterthaner, M., Danner, B.C., von Hammerstein-Equord, A., Str?bel, P., and Bohnenberger, H. (2021). One carbon metabolism in human lung cancer. Transl Lung Cancer Res 10, 2523–2538. https://doi.org/10.21037/tlcr-20-1039. Yarden, Y., and Pines, G. (2012). The ERBB network: at last, cancer therapy meets systems biology. Nat Rev Cancer 12, 553–563. https://doi.org/10.1038/nrc3309. Yarden, Y., and Sliwkowski, M.X. (2001). Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2, 127–137. https://doi.org/10.1038/35052073. Yoshino, H., Nohata, N., Miyamoto, K., Yonemori, M., Sakaguchi, T., Sugita, S., Itesako, T., Kofuji, S., Nakagawa, M., Dahiya, R., et al. (2017). PHGDH as a Key Enzyme for Serine Biosynthesis in HIF2α-Targeting Therapy for Renal Cell Carcinoma. Cancer Research 77, 6321–6329. https://doi.org/10.1158/0008-5472.CAN-17-1589. Yu, H.A., Arcila, M.E., Rekhtman, N., Sima, C.S., Zakowski, M.F., Pao, W., Kris, M.G., Miller, V.A., Ladanyi, M., and Riely, G.J. (2013). Analysis of tumor specimens at the time of acquired resistance to EGFR-TKI therapy in 155 patients with EGFR-mutant lung cancers. Clin Cancer Res 19, 2240–2247. https://doi.org/10.1158/1078-0432.CCR-12-2246. Zhan, W., Zhu, J., and Wang, L. (2016). Inhibition of proliferation and induction of apoptosis in RB116 retinoblastoma cells by afatinib treatment. Tumor Biol. 37, 9249–9254. https://doi.org/10.1007/s13277-015-4768-1. Zhou, C., Wu, Y.-L., Chen, G., Feng, J., Liu, X.-Q., Wang, C., Zhang, S., Wang, J., Zhou, S., Ren, S., et al. (2011). Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer (OPTIMAL, CTONG-0802): a multicentre, open-label, randomised, phase 3 study. Lancet Oncol 12, 735–742. https://doi.org/10.1016/S1470-2045(11)70184-X. Zhu, J., Ma, J., Wang, X., Ma, T., Zhang, S., Wang, W., Zhou, X., and Shi, J. (2016). High Expression of PHGDH Predicts Poor Prognosis in Non-Small Cell Lung Cancer. Transl Oncol 9, 592–599. https://doi.org/10.1016/j.tranon.2016.08.003. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83504 | - |
dc.description.abstract | 小分子通常用於靶向癌症治療,但它們的效果往往受到耐藥性發展的阻礙。最近的證據表明,儘管抗癌藥物具有抑制靶向通路的能力,但治療所誘導的轉錄反應可能作為腫瘤生長的逃逸機制。解決這一障礙的最佳策略是使用同時針對這些轉錄機制的聯合療法。在這項研究中,我們建立了一個系統性的分析,通過分析從 LINCS L1000 平台獲得的小分子擾動圖譜來預測治療誘導的抗性轉錄機制。通過對用約 3,000 種化合物處理的 10 個細胞株的轉錄組數據進行系統分析,發現常用於非小細胞肺癌 (NSCLC) 一線治療的表皮生長因子受體酪氨酸激?抑製劑 afatinib 能誘導絲氨酸生物合成和葉酸介導單碳代謝路徑作為潛在的抗性機制。與我們的預測一致,絲氨酸生物合成基因磷酸甘油酸脫氫? (PHGDH) 和磷酸絲氨酸氨基轉移? 1 (PSAT1) 以及單碳代謝基因亞甲基四氫葉酸脫氫? (MTHFD2)和絲氨酸羥甲基轉移? (SHMT2) 在NSCLC 細胞株 H1299 和 H1975 中處理Afatinib 後表現量升高。西方墨點法分析進一步證實了這些路徑蛋白在 NSCLC 細胞株中會在 afatinib 治療的下被提高。此外,我們藉由分析細胞內的代謝產物絲氨酸以及磷酸絲氨酸在 afatinib 治療的下有被提升。接著我們進行了聚落形成試驗,證明了 afatinib 與此兩種生物路徑的抑製劑對於毒殺非小細胞肺癌細胞具有協同作用。在短期 MTS 細胞存活率分析中我們發現 afatinib 與 NCT-503 的協同性作用,以及其對於 NSCLC 細胞株的細胞週期影響,並發現了兩個藥物合併使用會顯著地提高細胞凋亡的比例。綜上所述,這些研究結果表明,絲氨酸生物合成和單碳代謝的誘導是非小細胞肺癌中 afatinib 耐藥的潛在機制,通過靶向出現在轉錄水平的耐藥機制為癌症治療提供了理論基礎。 | zh_TW |
dc.description.abstract | Small molecules are commonly used for targeted cancer therapy, but their effects are often hampered by the development of drug resistance. Recent evidence suggests that despite the ability of cancer drugs to inhibit on-target pathways, treatmentinduced transcriptional responses may serve as an escape mechanism for tumor growth.An optimal strategy for addressing this obstacle is the use of combination therapies that simultaneously target these emerging resistance mechanisms. In this study, we established a computational framework for predicting treatment-induced transcriptional mechanisms of resistance by analyzing small-molecule perturbation profiles obtained from the LINCSL1000 platform. Through systematic investigation of transcriptomic data of 10 cell lines treated with ~3,000 compounds, we found that afatinib, an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor for the first-line treatment of non-small-cell lung cancer (NSCLC), was predicted to induce the serine biosynthesis and the one-carbon pool by folate pathways as a potential resistance mechanism. Consistent with our prediction, the expression of serine biosynthesis genes phosphoglycerate dehydrogenase (PHGDH) and phosphoserine aminotransferase 1 (PSAT1) and one-carbon metabolism genes methylenetetrahydrofolate dehydrogenase (MTHFD2) and serine hydroxymethyltransferase (SHMT2) was elevated in NSCLC cell lines, H1299 and H1975, after afatinib treatment. Immunoblot analysis further confirmed the inducible expression of these pathway proteins in afatinib-treated NSCLC cell lines. We found the content of serine and O-phospho-L-serine was elevated after afatinib treatment in NSCLC cell lines. We then conducted a clonogenic assay to demonstrate that afatinib synergized with the inhibitors of these two pathways in the NSCLC cell lines. In the short-term MTS cell survival analysis, the synergistic effect of afatinib and NCT-503 was found. We examined the effect of the combination of afatinib and NCT-503 on the cell cycle of NSCLC cell lines. Furthermore, the combination of the two drugs was found to significantly increase the proportion of apoptosis. To sum up, these findings suggest that induction of serine biosynthesis and one-carbon metabolism is a potential mechanism of afatinib resistance in NSCLC, providing a rationale for cancer therapy by targeting the resistance mechanisms that emerge at the transcriptional level. | en |
dc.description.provenance | Made available in DSpace on 2023-03-19T21:09:07Z (GMT). No. of bitstreams: 1 U0001-2408202214021200.pdf: 4917369 bytes, checksum: 2c9c982bb3c2d3abdc98cd25ff02e753 (MD5) Previous issue date: 2022 | en |
dc.description.tableofcontents | 口試委員審定書......................................................... ii 中文摘要................................ iii Abstract...................................... iv List of Tables ............................ ix List of Figures............................. ix Chapter 1 Introduction..................1 1.1 Non-small cell lung cancer (NSCLC) .......................................1 1.2 Combination therapy ...........2 1.3 Afatinib (giotrif ?) ...............4 1.4 Drug-induced pathways.......................5 1.4.1 De novo serine biosynthesis pathway.......................................6 1.4.2 NCT-503 ............................6 1.4.3 Folate-mediated one-carbon metabolism......................7 1.4.4 DS18561882 ............................8 1.5 Motivation .............................9 Chapter 2 Materials and Methods.........................10 2.1 Gene set enrichment analysis (GSEA) ........................................10 2.2 Cell culture ..........................10 2.3 Chemicals.....................................11 2.4 RNA extraction and reverse transcription ......................................11 2.5 Quantitative Real-Time PCR..................................12 2.6 Cell lysate preparation and protein extraction..............13 2.7 Immunoblot analysis ................13 2.8 Clonogenic assay.................................................14 2.9 Cell viability analysis ...............................15 2.10 Cell Cycle Analysis .........................................15 2.11 Apoptosis Assay.............................................................16 2.12 Cellular metabolite analysis..........................17 2.13 Statistical analysis .................18 Chapter 3 Results......................19 3.1 Serine biosynthesis and one-carbon pool by folate pathways were predicted to be induced after afatinib treatment........19 3.2 PHGDH and PSAT1 were up-regulated in afatinib-resistant clones which were derived from the NSCLC xenograft model .............20 3.3 The mRNA expression levels of PHGDH, PSAT1, MTHFD2, and SHMT2 were induced after afatinib treatment in NSCLC cells ...........................20 3.4 Afatinib co-treatment with inhibitors of PHGDH or MTHFD2 led to synergistic cytotoxic effects in NSCLC cells .............................................22 Chapter 4 Discussion..................26 Chapter 5 Conclusion ......................................30 References .......................................32 Tables..........................................46 Figures........................................53 | |
dc.language.iso | zh-TW | |
dc.title | 靶向afatinib誘導之轉錄反應探索肺癌組合治療 | zh_TW |
dc.title | Targeting afatinib-induced transcriptional responses to inform combination therapies for lung cancer | en |
dc.type | Thesis | |
dc.date.schoolyear | 110-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 黃宣誠(Hsuan-Cheng Huang),許家郎(Chia-Lang Hsu),黃翠琴(Tsui-Chin Huang),張心儀(Hsin-Yi Chang) | |
dc.subject.keyword | 巨量資料分析,非小細胞肺癌,Afatinib,組合治療,轉錄反應,絲氨酸生物合成路徑,葉酸介導單碳代謝路徑, | zh_TW |
dc.subject.keyword | Large-scale data analysis,Non-small cell lung cancer,Afatinib,Combination therapy,Transcriptional response,Serine biosynthesis pathway,Folate-mediated one-carbon metabolism pathway, | en |
dc.relation.page | 70 | |
dc.identifier.doi | 10.6342/NTU202202755 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2022-09-05 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 生命科學系 | zh_TW |
顯示於系所單位: | 生命科學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-2408202214021200.pdf 目前未授權公開取用 | 4.8 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。