請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8348完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 廖運炫(Yunn-Shiuan Liao) | |
| dc.contributor.author | Yu-Fang Tseng | en |
| dc.contributor.author | 曾禹方 | zh_TW |
| dc.date.accessioned | 2021-05-20T00:52:31Z | - |
| dc.date.available | 2030-08-13 | |
| dc.date.available | 2021-05-20T00:52:31Z | - |
| dc.date.copyright | 2020-09-02 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-07-31 | |
| dc.identifier.citation | [1] H. Singh, and R. Garg, 'Effects of process parameters on material removal rate in WEDM,' Journal of Achievements in Materials and Manufacturing Engineering, vol. 32, no. 1, pp. 70-74, 2009. [2] Y. Liao, and J. Woo, 'The effects of machining settings on the behavior of pulse trains in the WEDM process,' Journal of Materials Processing Technology, vol. 71, no. 3, pp. 433-439, 1997. [3] 張廷彥,微放電加工效率與能力提昇之研究, 臺灣大學機械工程學研究所碩士論文, 2010. [4] S. Mahapatra, and A. Patnaik, 'Optimization of wire electrical discharge machining (WEDM) process parameters using Taguchi method,' The International Journal of Advanced Manufacturing Technology, vol. 34, no. 9-10, pp. 911-925, 2007. [5] 洪清華,深度學習應用於線切割放電加工之變厚度智慧型控制, 臺灣大學機械工程學研究所碩士論文, 2019. [6] W. Lee, and Y. Liao, 'Adaptive control of the WEDM process using a self-tuning fuzzy logic algorithm with grey prediction,' The International Journal of Advanced Manufacturing Technology, vol. 34, no. 5-6, pp. 527-537, 2007. [7] J. Wang, F. Han, and F. Zhao, 'Improvement of EDM efficiency with a new adaptive control strategy,' The International Journal of Advanced Manufacturing Technology, vol. 62, no. 9-12, pp. 1025-1040, 2012. [8] 陈良 与 张红玉,多输入工件厚度辨识模型的LS-WEDM自适应控制系统, 机械设计与制造, no. 1, pp. 101-103, 2017. [9] 李其政,類神經網路應用於線切割放電加工厚度變化工件之研究, 國立台灣大學機械工程學研究所碩士論文, 2004. [10] Y. Luo, 'The dependence of interspace discharge transitivity upon the gap debris in precision electrodischarge machining,' Journal of materials processing technology, vol. 68, no. 2, pp. 121-131, 1997. [11] A. K. Khanra, L. Pathak, and M. Godkhindi, 'Microanalysis of debris formed during electrical discharge machining (EDM),' Journal of Materials Science, vol. 42, no. 3, pp. 872-877, 2007. [12] K. L. Wu, B. H. Yan, J.-W. Lee, and C. G. Ding, 'Study on the characteristics of electrical discharge machining using dielectric with surfactant,' journal of materials processing technology, vol. 209, no. 8, pp. 3783-3789, 2009. [13] A. Okada, Y. Uno, S. Onoda, and S. Habib, 'Computational fluid dynamics analysis of working fluid flow and debris movement in wire EDMed kerf,' CIRP annals, vol. 58, no. 1, pp. 209-212, 2009. [14] Z. Guo, T. Lee, T. Yue, and W. Lau, 'A study of ultrasonic-aided wire electrical discharge machining,' Journal of materials processing technology, vol. 63, no. 1-3, pp. 823-828, 1997. [15] Z. Zhang, H. Huang, W. Ming, Z. Xu, Y. Huang, and G. Zhang, 'Study on machining characteristics of WEDM with ultrasonic vibration and magnetic field assisted techniques,' Journal of Materials Processing Technology, vol. 234, pp. 342-352, 2016. [16] K. Rajurkar et al., 'Micro and nano machining by electro-physical and chemical processes,' CIRP annals, vol. 55, no. 2, pp. 643-666, 2006. [17] M. Kunieda, B. Lauwers, K. Rajurkar, and B. Schumacher, 'Advancing EDM through fundamental insight into the process,' CIRP annals, vol. 54, no. 2, pp. 64-87, 2005. [18] 李國祥, WEDM細線加工之放電能量與電流波形探討, 國立台北科技大學電機工程學研究所碩士論文, 2004. [19] C. Wen et al., 'Advances in ultrasound assisted extraction of bioactive compounds from cash crops–A review,' Ultrasonics sonochemistry, vol. 48, pp. 538-549, 2018. [20] W. Lauterborn, and C.-D. Ohl, 'Cavitation bubble dynamics,' Ultrasonics sonochemistry, vol. 4, no. 2, pp. 65-75, 1997. [21] B. E. Noltingk, and E. A. Neppiras, 'Cavitation produced by ultrasonics,' Proceedings of the physical society. Section B, vol. 63, no. 9, p. 674, 1950. [22] R. D. Blevins, Formulas for dynamics, acoustics and vibration. John Wiley Sons, 2015. [23] S. Temkin, 'Elements of acoustics acoustical society of America,' Melville, 2001. [24] N. Tosun and H. Pihtili, 'The effect of cutting parameters on wire crater sizes in wire EDM,' The International Journal of advanced manufacturing technology, vol. 21, no. 10-11, pp. 857-865, 2003. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8348 | - |
| dc.description.abstract | 超音波輔助線切割雖然已有許多研究,但仍有裝置設計上的限制而尚未在實務上被廣泛應用。從過去的研究中可得知超音波輔助可以提升線切割的加工效率,但少有研究專注觀察與探討這背後影響極間狀況的原理、成因,大多從實驗經驗去回推超音波振動設定上的建議與規則。 第一部份,本實驗嘗試改良超音波輔助線切割的裝置設計,可以不需再因工作區工件厚度與線極長度的改變而調整超音波輔助裝置的設計,透過此裝置發明可以更容易且穩定地使線極產生隨超音波振動的運動現象。 第二部份,本研究想了解線極在間隙中影響流場與碎屑的狀況,但因放電的靜電力等因素難以捉摸與觀測,因此先排除了放電的因素進行此觀察與分析,使用第一部份的超音波輔助裝置,透過觀察的裝置實際觀察與電腦上的流場模擬分析進行綜合探討。 由本研究結果顯示,超音波輔助線切割在加工液中產生的空化氣泡是主要影響碎屑分布的因素。 | zh_TW |
| dc.description.abstract | Although many researches have been done on ultrasonic-aided WEDM, there are still some limitations in device design, so it has not been widely used in practice. It can be known from past research that ultrasonic-aided can improve the efficiency of wire EDM cutting, but few studies have focused on observing and discussing the principles and causes behind the spark gap conditions. Most of the ultrasonic vibration settings have been introduced from experimental experience. In the first part, this study attempts to improve the design of the ultrasonic-aided WEDM device. It is no longer necessary to adjust the design of the device due to the change in the thickness of the workpiece and the length of the wire electrode in the working place. By this design, wire can vibrate with ultrasonic more stably and easily. In the second part, this study wants to understand how the ultrasonic-aided wire affects the flow field and debris in the spark gap. Because of the difficulty of observing electrostatic force of the discharge in the spark gap, the discharge factor is excluded first for this observation and analysis. A part of ultrasonic-aided phenomenon is discussed through the actual observation and the analysis of the flow field on the computer. The results of this study show that the phenomenon of cavitation bubbles generated in the machining fluid by ultrasonic assisted wire is the main factors affecting the distribution of debris. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-20T00:52:31Z (GMT). No. of bitstreams: 1 U0001-3107202015291100.pdf: 2912949 bytes, checksum: 5934d433ff39cbad9237b1369b9fafa7 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 誌謝 2 摘要 3 Abstract 4 目錄 5 圖目錄 7 表目錄 9 第一章 緒論 10 1.1 研究背景與動機 10 1.2 文獻回顧 11 1.3 研究目的與方法 15 1.4 本文結構 16 第二章 相關理論 17 2.1 放電現象簡述與材料移除機制 17 2.2 放電電弧的發展過程 19 2.3 放電火花結構 20 2.4 放電迴路的種類及原理 22 2.5 放電參數與放電波形 24 2.6 超音波空化原理 26 第三章 實驗設備與規劃 28 3.1 實驗設備與材料 28 3.2 實驗規劃 36 第四章 實驗裝置設計 38 4.1 超音波輔助裝置設計 38 4.1.1 導輪設計與模擬 39 4.1.2 實際量測 43 4.2 觀察盒裝置設計 45 4.3 整體觀察裝置 47 第五章 實驗結果與分析討論 49 5.1 實驗觀測結果 49 5.2 超音波振動流場分析 51 第六章 結論與建議 55 6.1 結論 55 6.2 未來展望 56 參考文獻 57 | |
| dc.language.iso | zh-TW | |
| dc.title | 線電極中超音波對線切割放電加工之影響 | zh_TW |
| dc.title | Effect of Ultrasonic Vibration in Wire Electrode on Wire Electric Discharge Machining (WEDM) | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.author-orcid | 0000-0002-6737-2162 | |
| dc.contributor.oralexamcommittee | 蔡曜陽(Yao-Yang Tsai),李貫銘(Kuan-Ming Li) | |
| dc.subject.keyword | 線切割放電加工,超音波,空化作用, | zh_TW |
| dc.subject.keyword | Wire EDM,Ultrasonic,Cavitation, | en |
| dc.relation.page | 59 | |
| dc.identifier.doi | 10.6342/NTU202002162 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2020-07-31 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2030-08-13 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-3107202015291100.pdf 此日期後於網路公開 2030-08-13 | 2.84 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
