請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83467
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 楊宗傑(Tsung-Chieh Yang) | |
dc.contributor.author | TSUNG-HSIEN YOU | en |
dc.contributor.author | 游宗憲 | zh_TW |
dc.date.accessioned | 2023-03-19T21:08:15Z | - |
dc.date.copyright | 2022-10-04 | |
dc.date.issued | 2022 | |
dc.date.submitted | 2022-09-12 | |
dc.identifier.citation | [1] Zarb GA, Hobkirk J, Eckert S, Jacob R. Prosthodontic treatment for edentulous patients. 13th ed. St. Louis: Mosby/Elsevier; 2012. p.1-27. [2] Murray MD, Darvell BW. The evolution of the complete denture base. Theories of complete denture retention—a review. Part 1. Aust Dent J 1993;38:216-219. [3] Macentee MI, Walton JN. The economics of complete dentures and implant-related services: a framework for analysis and preliminary outcomes. J Prosthet Dent. 1998;79:24-30. [4] Bilhan H, Erdogan O, Ergin S, Celik M, Ates G, Geckili O. Complication rates and patient satisfaction with removable dentures. J Adv Prosthodont 2012;4:109-15. [5] Atwood DA. Final report of the workshop on clinical requirements of ideal denture base materials. J Prosthet Dent 1968;20:101-105. [6] Anderson G, Schulte J, Arnold T. Dimensional stability of injection and conventional processing of denture base acrylic resin. J Prosthet Dent 1988;60:394. [7] Woelfel Jb PG, Sweeney Wt. Dimensional changes occurring in dentures during processing. J Am Dent Assoc 1960;61:413-30. [8] Takamata T, Setcos JC. Resin denture bases: review of accuracy and methods of polymerization. Int J Prosthodont 1989;2:555-62. [9] Turd MD, Lang BR, Wilcox DE, Meiers JC. Direct measurement of dimensional accuracy with three denture-processing techniques. Int J Prosthodont 1992;5. [10] Kawara M, Komiyama O, Kimoto S, Kobayashi N, Kobayashi K, Nemoto K. Distortion behavior of heat-activated acrylic denture-base resin in conventional and long, low-temperature processing methods. J Dent Res 1998;77:1446-53. [11] Ayman AD. The residual monomer content and mechanical properties of CAD\CAM resins used in the fabrication of complete dentures as compared to heat cured resins. Electron Physician 2017;9:4766-4772. [12] Goodacre CJ, Garbacea A, Naylor WP, Daher T, Marchack CB, Lowry J. CAD/CAM fabricated complete dentures: concepts and clinical methods of obtaining required morphological data. J Prosthet Dent. 2012;107:34-46. [13] Han W, Li Y, Zhang Y, Lv Y, Zhang Y, Hu P, Liu H, Ma Z, Shen Y. Design and fabrication of complete dentures using CAD/CAM technology. Medicine (Baltimore) 2017;96:e5435. [14] Bidra AS, Taylor TD, Agar JR. Computer-aided technology for fabricating complete dentures: systematic review of historical background, current status, and future perspectives. J Prosthet Dent 2013;109:361-6. [15] Yamamoto S, Kanazawa M, Hirayama D, Nakamura T, Arakida T, Minakuchi S. In vitro evaluation of basal shapes and offset values of artificial teeth for CAD/CAM complete dentures. Comput Biol Med 2016;68:84-9. [16] Baba N. Materials and Processes for CAD/CAM Complete Denture Fabrication. Curr Oral Health Rep 2016;3. [17] Steinmassl PA, Klaunzer F, Steinmassl O, Dumfahrt H, Grunert I. Evaluation of Currently Available CAD/CAM Denture Systems. Int J Prosthodont 2017;30:116-122. [18] Wimmer T, Gallus K, Eichberger M, Stawarczyk B. Complete denture fabrication supported by CAD/CAM. J Prosthet Dent 2016;115:541-6. [19] Huang Z, Zhang L, Zhu J, Zhang X. Clinical marginal and internal fit of metal ceramic crowns fabricated with a selective laser melting technology. J Prosthet Dent 2015;113:623-7. [20] Quante K, Ludwig K, Kern M. Marginal and internal fit of metal-ceramic crowns fabricated with a new laser melting technology. Dent Mater 2008;24:1311-5. [21] Hull CW. Apparatus for production of three dimensional objects by stereolithography. U.S. Patent 4,575,330 1984. [22] Wu J, Wang X, Zhao X, Zhang C, Gao B. A study on the fabrication method of removable partial denture framework by computer?aided design and rapid prototyping. Rapid Prototyp J 2012;18:318-323. [23] Kattadiyil MT, Mursic Z, Alrumaih H, Goodacre CJ. Intraoral scanning of hard and soft tissues for partial removable dental prosthesis fabrication. J Prosthet Dent 2014;112:444-8. [24] Alharbi N, Osman RB, Wismeijer D. Factors Influencing the Dimensional Accuracy of 3D-Printed Full-Coverage Dental Restorations Using Stereolithography Technology. Int J Prosthodont 2016;29:503-10. [25] Kattadiyil M, Goodacre C, Baba N. CAD/CAM complete dentures: a review of two commercial fabrication systems. J Calif Dent Assoc 2013;41:407-16. [26] Bilgin MS, Erdem A, Aglarci OS, Dilber E. Fabricating Complete Dentures with CAD/CAM and RP Technologies. J Prosthodont 2015;24:576-579. [27] Bilgin MS, Baytaro?lu EN, Erdem A, Dilber E. A review of computer-aided design/computer-aided manufacture techniques for removable denture fabrication. Eur J Dent 2016;10:286-291. [28] Sun Y, L? P, Wang Y. Study on CAD&RP for removable complete denture. Comput Methods Programs Biomed. 2009;93:266-72. [29] Chen H, Wang H, Lv P, Wang Y, Sun Y. Quantitative Evaluation of Tissue Surface Adaption of CAD-Designed and 3D Printed Wax Pattern of Maxillary Complete Denture. Biomed Res Int 2015;2015:453968. [30] Inokoshi M, Kanazawa M, Minakuchi S. Evaluation of a complete denture trial method applying rapid prototyping. Dent Mater J 2012;31:40-6. [31] Alghazzawi TF. Advancements in CAD/CAM technology: Options for practical implementation. J Prosthodont Res 2016;60:72-84. [32] Alharbi N, Wismeijer D, Osman RB. Additive Manufacturing Techniques in Prosthodontics: Where Do We Currently Stand? A Critical Review. Int J Prosthodont 2017;30:474-484. [33] Unkovskiy A, Schmidt F, Beuer F, Li P, Spintzyk S, Kr?mer Fernandez P. Stereolithography vs. Direct Light Processing for Rapid Manufacturing of Complete Denture Bases: An In Vitro Accuracy Analysis. J Clin Med 2021. [34] Dalal N, Ammoun R, Abdulmajeed AA, Deeb GR, Bencharit S. Intaglio Surface Dimension and Guide Tube Deviations of Implant Surgical Guides Influenced by Printing Layer Thickness and Angulation Setting. J Prosthodont 2020;29:161-165. [35] Yoshidome K, Torii M, Kawamura N, Shimpo H, Ohkubo C. Trueness and fitting accuracy of maxillary 3D printed complete dentures. J Prosthodont Res 2021;65:559-564. [36] Jin MC, Yoon HI, Yeo IS, Kim SH, Han JS. The effect of build angle on the tissue surface adaptation of maxillary and mandibular complete denture bases manufactured by digital light processing. J Prosthet Dent 2020;123:473-482. [37] Tsai F-C, Yang T-C, Wang T-M, Lin L-D. Dimensional changes of complete dentures fabricated by milled and printed techniques: An in vitro study. J Prosthet Dent 2021. [38] Kattadiyil MT, Alhelal A. An update on computer-engineered complete dentures: A systematic review on clinical outcomes. J Prosthet Dent 2017;117:478-485. [39] Kattadiyil MT, Jekki R, Goodacre CJ, Baba NZ. Comparison of treatment outcomes in digital and conventional complete removable dental prosthesis fabrications in a predoctoral setting. J Prosthet Dent 2015;114:818-25. [40] Schwindling FS, Stober T. A comparison of two digital techniques for the fabrication of complete removable dental prostheses: A pilot clinical study. J Prosthet Dent 2016;116:756-763. [41] Kattadiyil MT, Alhelal A, Goodacre BJ. Clinical complications and quality assessments with computer-engineered complete dentures: A systematic review. J Prosthet Dent 2017;117:721-728. [42] Jacobson TE, Krol AJ. A contemporary review of the factors involved in complete denture retention, stability, and support. Part I: retention. J Prosthet Dent 1983;49:5-15. [43] Alhelal A, Alrumaih HS, Kattadiyil MT, Baba NZ, Goodacre CJ. Comparison of retention between maxillary milled and conventional denture bases: A clinical study. J Prosthet Dent 2017;117:233-238. [44] Chandu G, Hema B, Mahajan H, Azad A, Sharma I, Azad A. A comparative study of retention of complete denture base with different types of posterior palatal seals - an in vivo study. Clin Cosmet Investig Dent 2014;6:95-100. [45] Fl?ystrand F, Orstavik JS. Retention of complete maxillary dentures as a result of changes in design. Acta Odontol Scand 1984;42:327-32. [46] Tasaka A, Matsunaga S, Odaka K, Ishizaki K, Ueda T, Abe S, Yoshinari M, Yamashita S, Sakurai K. Accuracy and retention of denture base fabricated by heat curing and additive manufacturing. J Prosthodont Res 2019;63:85-89. [47] Kana, Aoyagi, Yuji, Sato, Noboru, Kitagawa, Momoe, Okane, Takuya, Kakuda. Development of a Simple Chair-side Evaluation Method for Complete Denture Retention Forces and Its Reproducibility. Ronen Shika Igaku 2014;29:21-28. [48] Lee CJ, Bok SB, Bae JY, Lee HH. Comparative adaptation accuracy of acrylic denture bases evaluated by two different methods. Dent Mater J 2010;29:411-7. [49] Zissis A, Huggett R, Harrison A. Measurement methods used for the determination of dimensional accuracy and stability of denture base materials. J Dent 1991;19:199-206. [50] Harrison A, Huggett R, Zissis A. Measurements of dimensional accuracy using linear and scanning profile techniques. Int J Prosthodont 1992;5:68-72. [51] Kim MJ, Kim CW. A comparative study on the dimensional change of the different denture bases. J Korean Acad Prosthodont 2006;44:712-721. [52] Artopoulos A, Juszczyk AS, Rodriguez JM, Clark RK, Radford DR. Three-dimensional processing deformation of three denture base materials. J Prosthet Dent 2013;110:481-7. [53] Goodacre BJ, Goodacre CJ, Baba NZ, Kattadiyil MT. Comparison of denture base adaptation between CAD-CAM and conventional fabrication techniques. J Prosthet Dent 2016;116:249-56. [54] Srinivasan M, Cantin Y, Mehl A, Gjengedal H, M?ller F, Schimmel M. CAD/CAM milled removable complete dentures: an in vitro evaluation of trueness. Clin Oral Investig 2017;21:2007-2019. [55] Hsu C-Y, Yang T-C, Wang T-M, Lin L-D. Effects of fabrication techniques on denture base adaptation: An in vitro study. J Prosthet Dent 2020;124:740-747. [56] Kaur S, Datta K, Gupta SK, Suman N. Comparative analysis of the retention of maxillary denture base with and without border molding using zinc oxide eugenol impression paste. Indian J Dent 2016;7:1-5. [57] Hwang HJ, Lee SJ, Park EJ, Yoon HI. Assessment of the trueness and tissue surface adaptation of CAD-CAM maxillary denture bases manufactured using digital light processing. J Prosthet Dent 2019;121:110-117. [58] You SM, You SG, Lee BI, Kim JH. Evaluation of trueness in a denture base fabricated by using CAD-CAM systems and adaptation to the socketed surface of denture base: An in vitro study. J Prosthet Dent 2022;127:108-114. [59] Anthony DH, Peyton FA. Dimensional accuracy of various denture-base materials. J Prosthet Dent 1962;12:67-81. [60] Goodkind RJ, Schulte RC. Dimensional accuracy of pour acrylic resin and conventional processing of cold-curing acrylic resin bases. J Prosthet Dent 1970;24:662-668. [61] Uchida H, Kobayashi K, Nagao M. Measurement in vivo of masticatory mucosal thickness with 20 MHz B-mode ultrasonic diagnostic equipment. J Dent Res 1989;68:95-100. [62] M?ller HP, Schaller N, Eger T, Heinecke A. Thickness of masticatory mucosa. J Clin Periodontol 2000;27:431-6. [63] Hirano S. Study on analysis of viscoelastic property of palatal mucoperiosteum--about the creep recovery. Kokubyo Gakkai Zasshi 1992;59:124-41. [64] Takeuchi S, Sato Y, Kitagawa N, Shimodaira O, Hara S, Isobe A. Measurements of Viscoelasticity of Oral Mucosa-Establishing a Simultaneous Measurement Method for Load and Change of the Mucosa Thickness. Annals of Japan Prosthodontic Society 2010;2:70-77. [65] Prombonas AE, Vlissidis DS. Comparison of the midline stress fields in maxillary and mandibular complete dentures: a pilot study. J Prosthet Dent 2006;95:63-70. [66] Cilingir A, Bilhan H, Baysal G, Sunbuloglu E, Bozdag E. The impact of frenulum height on strains in maxillary denture bases. J Adv Prosthodont 2013;5:409-15. [67] Hada T, Suzuki T, Minakuchi S, Takahashi H. Reduction in maxillary complete denture deformation using framework material made by computer-aided design and manufacturing systems. J Mech Behav Biomed Mater 2020;103:103514. [68] 角田 拓, 佐藤 裕, 北川 昇, 中津 百, 青柳 佳, 高山 真, 椿田 健. 上顎全部床義??維持力測定????最適部位?荷重方法??討. 老年?科?? 2015;30:25-36. [69] Rantonen PJF, Meurman JH. Viscosity of whole saliva. Acta Odontol Scand 1998;56:210-214. [70] Slagter AP, Bosman F, Van Der Glas HW, Van Der Bilt A. Human jaw-elevator muscle activity and food comminution in the dentate and edentulous state. Arch Oral Biol 1993;38:195-205. [71] Takamata T, Setcos JC, Phillips RW, Boone ME. Adaptation of acrylic resin dentures as influenced by the activation mode of polymerization. J Am Dent Assoc 1989;119:271-6. [72] Jagger RG, Milward PJ, Jagger DC, Vowles RW. Accuracy of adaptation of thermoformed poly(methyl methacrylate). J Oral Rehabil 2003;30:364-8. [73] Ono T, Kita S, Nokubi T. Dimensional accuracy of acrylic resin maxillary denture base polymerized by a new injection pressing method. Dent Mater J 2004;23:348-52. [74] Ganzarolli S, Rached R, Garcia R, Del Bel Cury A. Effect of cooling procedure on final denture base adaptation. J Oral Rehabil 2002;29:787-790. [75] Sartori EA, Schmidt CB, Mota EG, Hirakata LM, Shinkai RS. Cumulative effect of disinfection procedures on microhardness and tridimensional stability of a poly(methyl methacrylate) denture base resin. J Biomed Mater Res B Appl Biomater 2008;86:360-4. [76] Darvell BW, Clark RKF. The physical mechanisms of complete denture retention. Br. Dent. J. 2000;189:248-252. [77] Antonelli G, Padoan A, Aita A, Sciacovelli L, Plebani M. Verification of examination procedures in clinical laboratory for imprecision, trueness and diagnostic accuracy according to ISO 15189:2012: a pragmatic approach. Clin Chem Lab Med 2017;55:1501-1508. [78] Zarb GA, Bolender CL, Eckert S, Jacob R, Fenton A, Mericske-Stern R. Prosthodontic treatment for edentulous patients. Complete dentures and implant-supported prostheses. 12th. ed. St. Louis: Mosby 2004. [79] Favero CS, English JD, Cozad BE, Wirthlin JO, Short MM, Kasper FK. Effect of print layer height and printer type on the accuracy of 3-dimensional printed orthodontic models. Am. J Orthod Dentofacial Orthop 2017;152:557-565. [80] Patzelt SBM, Bishti S, Stampf S, Att W. Accuracy of computer-aided design/computer-aided manufacturing–generated dental casts based on intraoral scanner data. J Am Dent Assoc 2014;145:1133-1140. [81] Brown GB, Currier GF, Kadioglu O, Kierl JP. Accuracy of 3-dimensional printed dental models reconstructed from digital intraoral impressions. Am J Orthod Dentofacial Orthop 2018;154:733-739. [82] Tahayeri A, Morgan M, Fugolin AP, Bompolaki D, Athirasala A, Pfeifer CS, Ferracane JL, Bertassoni LE. 3D printed versus conventionally cured provisional crown and bridge dental materials. Dent Mater 2018;34:192-200. [83] Alharbi N, Osman R, Wismeijer D. Effects of build direction on the mechanical properties of 3D-printed complete coverage interim dental restorations. J Prosthet Dent 2016;115:760-7. [84] Unkovskiy A, Bui PH, Schille C, Geis-Gerstorfer J, Huettig F, Spintzyk S. Objects build orientation, positioning, and curing influence dimensional accuracy and flexural properties of stereolithographically printed resin. Dent Mater 2018;34:e324-e333. [85] Ollison T, Berisso K. Three-dimensional printing build variables that impact cylindricity. J Ind Technol 2010;26:1-10. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83467 | - |
dc.description.abstract | 實驗目的: 本研究目的在測試以以不同製程技術製作全口義齒時,固持力與密合度及義齒後緣型態之相關評估。 材料與方法: 使用上顎全口無牙組織模擬模型,以 2 mm 厚之矽膠印模材模擬口內軟組織,並定義此模型為標準模型。調拌藻膠印模材並置於印模托上後放入模型上印模,待硬化完成後取下。將初始模型倒出後,製作上顎客製化印模托,以上顎初始模型作為標準,其延伸範圍到上顎前庭最深處往內 2mm。將客製化印模托塗佈接著劑後以矽膠印模材進行精確印模,待印模材完全硬化後取下。以 3D 桌掃機掃描模型,並由 CAD 模擬設計軟體設計厚度為 2mm 之義齒基底試品,並調整邊緣及拋光面(polishing surface)型態。後續以 CAD/CAM 切削(CAD/CAM Milling) (CCM 組)、熱聚合方式(Compression molding) (CM 組) 以及 3D 列印(3D printing) (又以列印角度不同分為 3DP 0-degree 組、3DP 45-degree 組) 進行義齒基底之製作,每組上顎各製作 7 個義齒試品 (Model 1 ~ Model 7,四組共計 28 個義齒基底試品)。使用萬能測試機 (universal testing maching)作為將上顎全口義齒基底板拉離標準模型之施力裝置。測試時將標準模型固定於牽引裝置之水平平台,上顎組織面朝下擺放。並將丙三醇之水溶液塗布於上顎全口義齒基底板與標準矽膠模型之間作為口內唾液的模擬。在全口義齒基底板的重心位置裝置一個環鉤,牽引裝置對此環鉤施予垂直向上拉力,拉伸速率設定為 50mm/min。以基底板脫離上顎標準模型時最大量測數值作為固持力大小。每一組進行七次檢測並去除最大及最小之值各一,將剩餘五次的數值進行平均得到固持力大小。之後將各組義齒基底後側邊緣修短至顎凹(palatini fovea)前方 4mm 處,並將修短過後之義齒基底以前述同樣方式進行拉力測試,並比較修短前後固持力之差距。修短前後的固持力之間比較使用 Kruskal-Walist test 進行無母數統計分析,若組之間有顯著差異再使用 Dunn’s test for post hoc test 進行事後檢定。考量到密合度可能是造成固持力差距之因素,將製成之 CCM, CM , 3DP義齒基底(共 28 個)使用桌掃機進行掃描,得到義齒基底之立體結構檔案(STL 檔),並進行義齒基底之組織面與初始設計檔差距之比較。使用疊合軟體將義齒基底之組織面與設計檔進行疊合,先於軟體中定義出組織面貼合之範圍,而後將設計檔之組織面以及義齒基底組織面進行最佳疊合(best fit alignment)。疊合之後以軟體分析兩者之間的立體空間差距,並以均方根誤差(root mean square)代表誤差大小。誤差大小使用 Kruskal-Walist test 進行無母數統計分析,若組之間有顯著差異再使用 Dunn’s test for post hoc test 進行事後檢定。並將不同組測得均方根誤差數值與拉力測試數值進行相關性評估 (使用 Spearman correlation),其絕對值愈接近 1 表示關聯性愈大,正負值代表兩變數之間的趨勢變化。 實驗結果: 在固持力測試的結果中,以電腦切削義齒基底有最大的固持力中位數(CCM 組,1603gw),其次是熱聚合義齒基底(CCM 組, 1217gw),以 3D 列印製程為最差(3DP 0-degree 組 , 447gw ; 3DP 45-degree 組 , 427gw)。CCM 組相較於 3DP 組較佳、CM 組相較於 3DP-45degree 組較佳且有統計上的意義 (P<0.05) 。在後側邊緣修短後,各組所測得之固持力皆有下降且具統計上的意義 (P<0.05),下降幅度為20~52 %。 以電腦疊合後立體空間的差距表示義齒基底和模型之間的間隙,結果顯示義齒基底與模型貼合程度以 CCM 組為最佳 (RMS = 0.04mm), 其次是 CM 組 (RMS = 0.09mm), 以 3DP 組為最差(3DP – 0 degree 組, RMS=0.25mm ; 3DP – 45 degree 組, RMS=0.19mm)。將疊合得到的空隙大小與固持力進行比對分析後,發現固持力較好的組別空隙也較小,反之固持力較差之組別空隙也較大,相關係數 R 值為-0.77504 ( p < 0.0001),表示兩組之間具明確相關性。 結論: 在本實驗有限的條件下,對於全口義齒基底在固持力的檢測的結果,CCM 組有最大的固持力,其次是 CM 組,而 3DP 組之固持力最差,3DP 組中 0 度列印與45 度列印組之間無統計上顯著差異。在義齒基底後側邊緣修短條件下,對於固持力的下降有影響,後緣面積減少 4.8 %,固持力下降 21% ~ 52%。密合度方面以 CCM 組有最佳之密合度,其次為 CM 組,以 3DP 組密合度為最差,在 0 度列印與 45 度列印組之間無統計上顯著差異。在固持力與密合度的關係比較之下,越高的固持力同時也具備較貼合的組織面,兩者呈現正相關。 | zh_TW |
dc.description.abstract | Objective: This in vitro study was to evaluate the effects of fabrication techniques (compression molding, CAD/CAM milling, and 3D printing), regarding adaptation, and posterior border design on the retention of the denture base. Material and methods An edentulous maxilla model using a 2 mm thick silicone impression material to simulate the soft tissue was regarded as a standard model. Impressions were taken in the individual tray using the PVS impression material (Express XT Light body, 3M ) for seven times, and then poured out seven casts(Model 1 to Model 7). Scanning the models with a 3D table scanner(3Shape, Copenhagen, Denmark), and a denture base sample with a thickness of 2 mm was fabricated by CAD simulation design software (3Shape dental system,3Shape) by using different fabrication techniques and materials: CAD-CAM milled (CCM), compression molding (CM), 3D printed (3DP; 3DP - 0 degree build angle, 3DP – 45 degree build angle). Each group had 7 denture samples (28 denture bases in total). A universal testing machine was used as a force-applying device for pulling the denture base denture away from the standard model. The pulling force was recorded the maximum retention force. A glycerol solution was applied between the denture base and the standard silicone model as a simulation of intraoral saliva. Before the test, press the denture base for five seconds to fit the model to make the glycerin distributed evenly, and stop the pressure for five seconds to allow the silicone material to rebound. A loop was installed at the center of the denture base and the traction device exerts a vertical upward pulling force on it. The crosshead speed was set at 50 mm/min. Each group was tested for seven times, and the largest and smallest divergent values were removed. The remaining five values of retention force were averaged. Afterward, the posterior edge of the denture bases was shortened to 4 mm in front of the palatini fovea, and had taken retention test again in the same manner. The difference between the retention force before and after the denture base shortening was calculated. To evaluate the adaptation, all the denture bases were scanned with a table scanner to obtain the three-dimensional structure file (STL file). After superimposing between the denture base file and the initial design file, the three-dimensional space gap was analyzed by image analysis software (Geomagic Control X 2020), and the root mean square was calculated to represent the adaptation error. Results In the retention force test results, the CCM group(1603gw) had the largest median retention force, followed by the CM group (1217gw), and the 3D printing process was the lowest ( 3DP 0-degree group, 447gw ; 3DP 45-degree group, 427gw) with statistical significance (P<0.05) . The results of adaptation showed that the CCM group had the best adaptation (RMS = 0.04mm), followed by the CM group (RMS = 0.09mm), with the 3DP group as the lowest (3DP – 0 degree group, RMS=0.25mm; 3DP – 45 degree group, RMS=0.19mm) with statistical significance (P<0.05). The correlation coefficient R value between retention force and RMS is -0.77504 , which is highly correlated. (p < 0.0001) Conclusions Within the limitation of the study, the conclusions are 1. The CAD/CAM milled denture process presented with higher retention force, followed by the CM group, while the 3DP group was the lowest. 2. With the shortened posterior border, the retention force of the denture base decreased. 3. The better the tissue surface of denture base, the higher the retention force was present. Retention force and denture adaptation were positively correlated. | en |
dc.description.provenance | Made available in DSpace on 2023-03-19T21:08:15Z (GMT). No. of bitstreams: 1 U0001-0609202200292800.pdf: 3340371 bytes, checksum: 8e6ec08bb1b01546c6f3fb163ba1aabe (MD5) Previous issue date: 2022 | en |
dc.description.tableofcontents | 目錄 中 文 摘 要 ......................................................... 1 Abstract ............................................................ 4 目錄 ................................................................ 7 第一章 文獻回顧 .................................................... 12 1.1 傳統方式製作全口活動義齒優缺點 ............................. 13 1.2 數位方式製作在牙科領域的應用與全口義齒之製作 ............... 13 1.3 影響 DLP 數位光固化處理 (Digital Light Processing)精準度的因素.... 18 1.4 數位方式製作全口活動義齒的臨床結果評估 ..................... 19 1.5 全口義齒固持力對全口義齒之影響及測量方法 ................... 20 1.6 全口活動義齒密合度評估方法 ................................. 21 1.7 全口義齒後側封閉與後側邊緣長度對義齒固持力之影響 ........... 22 第二章 研究動機與目的 .............................................. 24 第三章 材料與方法 .................................................. 25 一、實驗用模型製作 ............................................... 25 二、實驗用義齒基底製作 ........................................... 25 三、全口義齒基底密合度之檢測: .................................... 29 四、拉力設備之設置 ............................................... 30 五、固持力之測量 ................................................. 31 六、後側邊緣修短義齒基底之製備 ................................... 31 七、後側邊緣修短義齒基底固持力之測量及面積計算 ................... 32 8 八、實驗數據分析及統計方法 ....................................... 33 第四章 實驗結果 .................................................... 34 第五章 討論 ........................................................ 38 5.1 實驗模型的製作 ................................................ 40 5.2 義齒基底固持力之測量方式 ..................................... 40 5.3 義齒基底密合度的檢測 ......................................... 43 5.4 義齒後緣與覆蓋面積之討論 ...................................... 44 5.5 義齒基底與數位設計檔之疊合 .................................... 45 5.6 3D 列印義齒基底探討 ........................................... 46 5.7 不同方式製作義齒基底密合度的與固持力之探討 ................... 48 5.8 實驗的誤差與限制 ............................................. 49 第六章 結論 ........................................................ 50 第七章 未來展望 .................................................... 51 參考文獻 ........................................................... 80 圖目錄 圖 一、選擇性雷射燒結(SELECTIVE LASER SINTERING,SLS)以及直接金屬雷射燒結 (DIRECT METAL LASER SINTERING, DMLS) ............................................................................ 52 圖 二、光固化立體成型 (STEREOLITHOGRAPHY APPARATUS,SLA)流程圖 ...................... 52 圖 三、數位光固化處理 (DIGITAL LIGHT PROJECTION,DLP)流程圖 .................................. 53 圖 四、材料噴印成型法/黏著劑噴印成型法(DIRECT DEPOSITION PRINTING/JETTING)流 程 ........................................................................................................................................................... 53 圖 五、實驗標準模型 ........................................................................................................................... 54 圖 六、彈性印模材印模及倒出石膏模型 ................................................................................... 54 圖 七、3SHAPE E3 桌掃機 ................................................................................................................... 55 圖 八、以 3 SHAPE 軟體設計之義齒基底型態 ............................................................................ 55 圖 九、義齒環鉤放置位置 D 點為 BC 線段之終點,而 E 點為 AD 線段之中點 .... 56 圖 十、I-DENSOL 五軸車削機 ............................................................................................................. 56 圖 十一、YAMAHACHI PMMA 樹脂料塊 .................................................................................... 57 圖 十二、PROZEN3D 列印機 ............................................................................................................... 57 圖 十三、列印後固化機 FORMLABS FORM CURE , THINGLAB TECH CO ................................... 58 圖 十四、3D 列印材料 ENLIGHTEN AA TEMP, ENLIGHTEN MATERIALS CO ............................. 58 圖 十五、3D 列印 0 度列印角度 .................................................................................................. 59 圖 十六、3D 列印 45 度列印角度 ............................................................................................... 59 圖 十七、CM 組熱聚合樹脂之蠟型成形 ..................................................................................... 60 圖 十八、樹脂煮聚機 ........................................................................................................................... 61 圖 十九、熱聚合義齒基底 LUCITONE 199, DENTSPLY SIRONA ................................................ 61 圖 二十、立體影像疊合初始定位(INITIAL ALIGNMENT) .......................................................... 62 圖 二十一、立體影像辨識組織面(POLISHING SURFACE) .......................................................... 62 圖 二十二、立體影像組織面排除三定位點圖 ......................................................................... 63 圖 二十三、立體影像組織面最佳疊合(BEST FIT ALIGNMENT) .............................................. 63 圖 二十四、立體影像疊合比較 (3D COMPARISON) ................................................................. 64 圖 二十五、拉力測試實驗情況及裝置設置圖 ......................................................................... 64 圖 二十六、人工唾液放置情形 ....................................................................................................... 65 圖 二十七、義齒基底試品後緣修短標記 ................................................................................... 65 圖 二十八、義齒基底後緣修短邊緣繪製及模板製作 .......................................................... 66 圖 二十九、修短前後組織面面積比較 ........................................................................................ 67 圖 三十、未切短後緣義齒基底之固持力箱型圖 .................................................................... 67 圖 三十一、義齒試品修短前後固持力之比較圖 .................................................................... 68 圖 三十二、CM 組立體影像疊合比較圖 ..................................................................................... 69 圖 三十三、CCM 組立體影像疊合比較圖 .................................................................................. 69 圖 三十四、3DP- 0 DEGREE 組立體影像疊合比較圖 .............................................................. 70 圖 三十五、3DP- 45 DEGREE 組立體影像疊合比較圖 ........................................................... 70 圖 三十六、RMS (ROOT MEAN SQUARE)箱型圖 (BOXPLOT) ....................................................... 71 圖 三十七、固持力與 RMS 值比較長條圖 ................................................................................. 71 表目錄 表 一、各組固持力大小平均值(GW) ............................................................................................. 72 表 二、固持力測試數值(GW) ............................................................................................................ 74 表 三、修短後緣後義齒基底的固持力(GW) .............................................................................. 76 表 四、立體疊圖之均方根誤差值(MM) ........................................................................................ 77 表 五、四種製程間的比較。KRUSKAL -WALIST TEST (DUNN’S TEST FOR POST HOC TEST)78 表 六、修短後緣前後固持力比較(四種製程分別分析)。WILCOXON SIGNED-RANK TEST ....................................................................................................................................................... 78 表 七、均方誤差值與固持力之間的相關性 ( SPEARMAN CORRELATION ) ........................ 79 | |
dc.language.iso | zh-TW | |
dc.title | 以不同製程技術製作全口義齒時,固持力與密合度及義齒後緣型態之相關評估:體外實驗 | zh_TW |
dc.title | Effects of fabrication techniques, adaptation, and posterior border design on retention of denture base: An in vitro study | en |
dc.type | Thesis | |
dc.date.schoolyear | 110-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 林立德(Li-Deh Lin) | |
dc.contributor.oralexamcommittee | 洪志遠(Chi-Yuan Hong) | |
dc.subject.keyword | CAD/CAM 切削,3D 列印,熱聚合樹脂,全口活動義齒,義齒基底密合度,固持力, | zh_TW |
dc.subject.keyword | CAD/CAM milled,3D printing,complete denture,retention force,posterior border,adaptation, | en |
dc.relation.page | 86 | |
dc.identifier.doi | 10.6342/NTU202203180 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2022-09-12 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 臨床牙醫學研究所 | zh_TW |
顯示於系所單位: | 臨床牙醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-0609202200292800.pdf 目前未授權公開取用 | 3.26 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。