請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8343完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張智星(Jyh-Shing Jang) | |
| dc.contributor.author | Hao-Chun Fu | en |
| dc.contributor.author | 傅皓群 | zh_TW |
| dc.date.accessioned | 2021-05-20T00:52:26Z | - |
| dc.date.available | 2025-08-02 | |
| dc.date.available | 2021-05-20T00:52:26Z | - |
| dc.date.copyright | 2020-08-06 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-02 | |
| dc.identifier.citation | [1] C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu, “A framework for projected clustering of high dimensional data streams,” in Proceedings of the 13th International Conference on Very Large Data Bases (VLDB), Toronto, Canada, 2004, pp. 852– 863. [2] Hu, Yifan Koren, Yehuda Volinsky, Chris. (2008). Collaborative Filtering for Implicit Feedback Datasets. Proceedings - IEEE International Conference on Data Mining, ICDM. 263-272. 10.1109/ICDM.2008.22. [3] Yuchin Juan, Yong Zhuang, Wei-Sheng Chin, and Chih-Jen Lin. 2016. Field-aware Factorization Machines for CTR Prediction. In Proceedings of the 10th ACM Conference on Recommender Systems (RecSys ’16). Association for Computing Machinery, New York, NY, USA, 43–50. DOI:https://doi.org/10.1145/2959100.2959134 [4] Kula, Maciej. (2015). Metadata Embeddings for User and Item Cold-start Recommendations. 1448. [5] Xiangnan He and Tat-Seng Chua. 2017. Neural Factorization Machines for Sparse Predictive Analytics. In Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’17). Association for Computing Machinery, New York, NY, USA, 355–364. DOI:https://doi.org/10.1145/3077136.3080777 [6] H.-T. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra, H. Aradhye, G. Anderson, G. Corrado, W. Chai, M. Ispir, et al. Wide deep learning for recommender systems. arXiv preprint arXiv:1606.07792, 2016. [7] Wang, Ruoxi Fu, Bin Fu, Gang Wang, Mingliang. (2017). Deep Cross Network for Ad Click Predictions. 1-7. [8] Jun Xiao, Hao Ye, Xiangnan He, Hanwang Zhang, Fei Wu, and Tat-Seng Chua. 2017. Attentional factorization machines: Learning the weight of feature interactions via attention networks. arXiv preprint arXiv:1708.04617 (2017). [9] Tongwen Huang, Zhiqi Zhang, Junlin Zhang, FiBiNET: Combining Feature Importance and Bilinear feature Interaction for Click-Through Rate Prediction. [10] J. Hu, L. Shen, and G. Sun. Squeeze-and-excitation networks. arXiv preprint arXiv:1709.01507, 2017. [11] Yanru Qu, Han Cai, Kan Ren, Weinan Zhang, Yong Yu, Ying Wen, and Jun Wang. 2016. Product-based neural networks for user response prediction. In 2016 IEEE 16th International Conference on Data Mining (ICDM). IEEE, 1149-1154. [12] Guorui Zhou, Chengru Song, Xiaoqiang Zhu, Xiao Ma, Yanghui Yan, Xingya Dai, Han Zhu, Junqi Jin, Han Li, and Kun Gai. Deep interest network for click-through rate prediction. arXiv preprint arXiv:1706.06978, 2017. [13] Y. Wu, C. DuBois, A. X. Zheng, and M. Ester. Collaborative denoising auto-encoders for top-n recommender systems. In WSDM, pages 153--162, 2016. [14] Dell Zhang. Wikipedia Edit Number Prediction based on Temporal Dynamics Only. arXiv preprint arXiv: 1110.5051, 2011. [15] F. Maxwell Harper and Joseph A. Konstan. 2015. The MovieLens Datasets: History and Context. ACM Transactions on Interactive Intelligent Systems (TiiS) 5, 4: 19:1–19:19. <https://doi.org/10.1145/2827872> [16] Jesse Vig, Shilad Sen, and John Riedl. 2012. The Tag Genome: Encoding Community Knowledge to Support Novel Interaction. ACM Trans. Interact. Intell. Syst. 2, 3: 13:1–13:44. <https://doi.org/10.1145/2362394.2362395> [17] Peng-Hsuan Li, Tsu-Jui Fu, and Wei-Yun Ma. Why Attention? Analyze BiLSTM Deficiency and Its Remedies in the Case of NER. arXiv preprint arXiv: 1908.11046, 2019. [18] Rurek R., Sojka P. (2010) Software framework for topic modelling with large corpora. In: Proceedings of LREC 2010 workshop New Challenges for NLP Frameworks, University of Malta, Valletta, Malta, pp. 45–50. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8343 | - |
| dc.description.abstract | 在訓練電子商務的推薦系統模型時,使用者和商品之間的互動是資料的核心,例如統計過去一段時間內,使用者對商品的購買或觀看次數,但是這個次數不包含時間資訊,為了解決此問題,我們提出以時間權重調整互動次數的方法,這個方法是一個框架,稱 User Preference Ensemble with Time Intervals (UPETI),讓推薦模型 能把時間權重考慮進使用者與商品的互動,藉由整合不同時間區間的使用者偏好度,得到最終的使用者偏好度。在我們的實驗中,使用創業家兄弟的好吃市集網站的資料,其中有 3 萬多位使用者和 5 千多件商品所形成的 51 萬多筆互動紀錄。結果顯示,套用 UPETI 框架的 LightFM 和 WMF 分別被改善了 6.20%和 4.20%,表示 UPETI 框架是可行的。除此之外,UPETI 框架極有彈性,可以套用到任何現有模型且不用做任何更改。 | zh_TW |
| dc.description.abstract | Interactions between users and products are the core of data for modeling electronic commerce recommendation systems. For example, we can count the number of “buys” or “clicks” in a certain period between a user and a product. However, the interaction usually does not have time stamp associated with it. To handle this problem, we propose a way to adjust the number of interactions with time weights. In particular, we propose a framework called UPETI (User Preference Ensemble with Time Intervals) for any recommendation model to take time weights of interactions into consideration, and the final user preference by integrating the user preferences from different time intervals. In our experiments, we used the dataset from Food123 of Kuobrothers with thirty thousand active users or so and five thousand active products or so, with around fifty-one thousand interaction records. Experiment results show that with UPETI framework, LightFM and WMF can achieve relative improvement of 6.20% and 4.20%, respectively, indicating the feasibility of the proposed framework. Moreover, UPETI framework is flexible and it can be applied to any existing models with also no modification. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-20T00:52:26Z (GMT). No. of bitstreams: 1 U0001-3107202019233700.pdf: 2209727 bytes, checksum: 5abd3dd725cad4df97b7c5e8f84cdeb8 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 口試委員會審定書 i 誌謝 ii 摘要 iii ABSTRACT iv 目次 v 圖目錄 viii 表目次 x 第 1 章 緒論 1 1.1 推薦系統簡介 1 1.2 問題描述 1 1.3 主要貢獻 2 1.4 章節概要 2 第 2 章 文獻回顧 3 2.1 WMF 3 2.2 LightFM 4 2.3 DIN 6 第 3 章 資料簡介 8 3.1 好吃市集網站 8 3.2 MovieLens 9 第 4 章 方法介紹 10 第 5 章 實驗設定 12 5.1 資料切割 12 5.1.1 好吃市集網站 12 5.1.2 MovieLens 13 5.2 特徵抽取 14 5.2.1 好吃市集網站 14 5.2.2 MovieLens 17 5.3 訓練資料及測試資料 18 5.3.1 好吃市集網站 18 5.3.2 MovieLens 19 5.4 評估方法 21 5.5 實驗環境 21 第 6 章 實驗結果與討論 23 6.1 模型套用UPETI框架的成效 (RQ1) 24 6.1.1 好吃市集網站 24 6.1.2 MovieLens 41 6.2 時間區間切割數量的影響 (RQ2) 45 6.2.1 好吃市集網站 46 6.2.2 MovieLens 48 6.3 UPETI框架的延伸 (RQ3) 51 6.3.1 方法一:整合各個時間區間的訓練資料 51 6.3.2 方法二:整合各個時間區間的模型的預測值 54 第 7 章 結論與未來展望 58 7.1 結論 58 7.2 未來展望 58 參考文獻 61 | |
| dc.language.iso | zh-TW | |
| dc.title | 以使用者偏好於不同時間區間的整合來改善電子商務推薦系統 | zh_TW |
| dc.title | User Preference Ensemble with Time Intervals for Recommendation in Electronical Commerce | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊弈軒(Yi-Hsuan Yang),蔡銘峰(Ming-Feng Tsai) | |
| dc.subject.keyword | 使用者偏好於不同時間區間的整合框架,使用者偏好,時間區間,電子商務推薦, | zh_TW |
| dc.subject.keyword | User Preference Ensemble with Time Intervals framework,User preference,Time interval,Electronical commerce recommendation, | en |
| dc.relation.page | 62 | |
| dc.identifier.doi | 10.6342/NTU202002183 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2020-08-03 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 資訊工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2025-08-02 | - |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-3107202019233700.pdf | 2.16 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
