Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83431
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 潘思樺(Szu-Hua Pan) | |
dc.contributor.author | Tan-Ching Wang | en |
dc.contributor.author | 王丹青 | zh_TW |
dc.date.accessioned | 2023-03-19T21:07:26Z | - |
dc.date.copyright | 2022-10-04 | |
dc.date.issued | 2022 | |
dc.date.submitted | 2022-09-17 | |
dc.identifier.citation | 1. Sung, H., J. Ferlay, R.L. Siegel, M. Laversanne, I. Soerjomataram, et al., Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin, 2021. 71(3): p. 209-249. 2. Siegel, R.L., K.D. Miller, H.E. Fuchs and A. Jemal, Cancer statistics, 2022. CA: A Cancer Journal for Clinicians, 2022. 72(1): p. 7-33. 3. Stapelfeld, C., C. Dammann and E. Maser, Sex-specificity in lung cancer risk. Int J Cancer, 2020. 146(9): p. 2376-2382. 4. Chang, Y.J., J.Y. Huang, C.H. Lin and B.Y. Wang, Survival and Treatment of Lung Cancer in Taiwan between 2010 and 2016. J Clin Med, 2021. 10(20). 5. Hsu, J.C., C.F. Wei, S.C. Yang, P.C. Lin, Y.C. Lee, et al., Lung cancer survival and mortality in Taiwan following the initial launch of targeted therapies: an interrupted time series study. BMJ Open, 2020. 10(5): p. e033427. 6. Centers for Disease Control and Prevention. What Are the Risk Factors for Lung Cancer? October 18, 2021; Available from: https://www.cdc.gov/cancer/lung/basic_info/risk_factors.htm. 7. Hoang, P.H. and M.T. Landi, DNA Methylation in Lung Cancer: Mechanisms and Associations with Histological Subtypes, Molecular Alterations, and Major Epidemiological Factors. Cancers (Basel), 2022. 14(4). 8. P. D. Q. Adult Treatment Editorial Board, Non-Small Cell Lung Cancer Treatment (PDQ?): Health Professional Version, in PDQ Cancer Information Summaries. 2002, National Cancer Institute (US): Bethesda (MD). 9. Khuder, S.A., Effect of cigarette smoking on major histological types of lung cancer: a meta-analysis. Lung Cancer, 2001. 31(2-3): p. 139-48. 10. Zhou, F. and C. Zhou, Lung cancer in never smokers-the East Asian experience. Transl Lung Cancer Res, 2018. 7(4): p. 450-463. 11. Li, C., R. Fang, Y. Sun, X. Han, F. Li, et al., Spectrum of oncogenic driver mutations in lung adenocarcinomas from East Asian never smokers. PLoS One, 2011. 6(11): p. e28204. 12. Sun, Y., Y. Ren, Z. Fang, C. Li, R. Fang, et al., Lung adenocarcinoma from East Asian never-smokers is a disease largely defined by targetable oncogenic mutant kinases. J Clin Oncol, 2010. 28(30): p. 4616-20. 13. The American Cancer Society medical and editorial content team. What Is Lung Cancer? 2019 October 1, 2019; Available from: https://www.cancer.org/cancer/lung-cancer/about/what-is.html. 14. Hirsch, F.R., K. Suda, J. Wiens and P.A. Bunn, Jr., New and emerging targeted treatments in advanced non-small-cell lung cancer. Lancet, 2016. 388(10048): p. 1012-24. 15. Sholl, L.M., Large-cell carcinoma of the lung: a diagnostic category redefined by immunohistochemistry and genomics. Curr Opin Pulm Med, 2014. 20(4): p. 324-31. 16. The American Lung Association. Lung Cancer Staging. October 28, 2021; Available from: https://www.lung.org/lung-health-diseases/lung-disease-lookup/lung-cancer/symptoms-diagnosis/lung-cancer-staging. 17. Nair, A., M.J. Klusmann, K.H. Jogeesvaran, S. Grubnic, S.J. Green, et al., Revisions to the TNM staging of non-small cell lung cancer: rationale, clinicoradiologic implications, and persistent limitations. Radiographics, 2011. 31(1): p. 215-38. 18. Edge, S.B. and C.C. Compton, The American Joint Committee on Cancer: the 7th edition of the AJCC cancer staging manual and the future of TNM. Annals of surgical oncology, 2010. 17(6): p. 1471-1474. 19. Hirsch, F.R., G.V. Scagliotti, J.L. Mulshine, R. Kwon, W.J. Curran, Jr., et al., Lung cancer: current therapies and new targeted treatments. Lancet, 2017. 389(10066): p. 299-311. 20. Blanca A. Ledezma and Edward B. Garon. Treatment of Non–Small-Cell Lung Cancer: A Guide for Patients. CONQUER: the patient voice April 2020 [cited 6 2]; Available from: https://conquer-magazine.com/issues/2020/vol-6-no-2-april-2020/1240-treatment-of-non-small-cell-lung-cancer-a-guide-for-patients. 21. Board, P.D.Q.A.T.E., Non-Small Cell Lung Cancer Treatment (PDQ?): Patient Version, in PDQ Cancer Information Summaries. 2002, National Cancer Institute (US): Bethesda (MD). 22. Noone, A., N. Howlader, M. Krapcho, D. Miller, A. Brest, et al., SEER cancer statistics review, 1975–2015. Bethesda, MD: National Cancer Institute, 2018. 4. 23. American Lung Association. Lung Cancer Fact Sheet. 2020 May 27, 2020; Available from: https://www.lung.org/lung-health-diseases/lung-disease-lookup/lung-cancer/resource-library/lung-cancer-fact-sheet. 24. Aberle, D.R., A.M. Adams, C.D. Berg, W.C. Black, J.D. Clapp, et al., Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med, 2011. 365(5): p. 395-409. 25. Liu, W.J., Y. Du, R. Wen, M. Yang and J. Xu, Drug resistance to targeted therapeutic strategies in non-small cell lung cancer. Pharmacol Ther, 2020. 206: p. 107438. 26. Grigoriu, B., T. Berghmans and A.P. Meert, Management of EGFR mutated nonsmall cell lung carcinoma patients. Eur Respir J, 2015. 45(4): p. 1132-41. 27. Lim, Z.F. and P.C. Ma, Emerging insights of tumor heterogeneity and drug resistance mechanisms in lung cancer targeted therapy. J Hematol Oncol, 2019. 12(1): p. 134. 28. Eldridge, L. Where Does Lung Cancer Spread? Common Sites of Lung Cancer Metastases. 2021 December 08, 2021; Available from: https://www.verywellhealth.com/where-does-lung-cancer-spread-2249368. 29. Kelly, W.J., N.J. Shah and D.S. Subramaniam, Management of Brain Metastases in Epidermal Growth Factor Receptor Mutant Non-Small-Cell Lung Cancer. Front Oncol, 2018. 8: p. 208. 30. Dillek?s, H., M.S. Rogers and O. Straume, Are 90% of deaths from cancer caused by metastases? Cancer Med, 2019. 8(12): p. 5574-5576. 31. Chanvorachote, P., S. Chamni, C. Ninsontia and P.P. Phiboonchaiyanan, Potential Anti-metastasis Natural Compounds for Lung Cancer. Anticancer Res, 2016. 36(11): p. 5707-5717. 32. Seo, J., J. Ha, E. Kang and S. Cho, The role of epithelial-mesenchymal transition-regulating transcription factors in anti-cancer drug resistance. Arch Pharm Res, 2021. 44(3): p. 281-292. 33. Strouhalova, K., M. P?echov?, A. Gandalovi?ov?, J. Br?bek, M. Gregor, et al., Vimentin Intermediate Filaments as Potential Target for Cancer Treatment. Cancers (Basel), 2020. 12(1). 34. Pitsidianaki, I., J. Morgan, J. Adams and K. Campbell, Mesenchymal-to-epithelial transitions require tissue-specific interactions with distinct laminins. J Cell Biol, 2021. 220(8). 35. Pei, D., X. Shu, A. Gassama-Diagne and J.P. Thiery, Mesenchymal-epithelial transition in development and reprogramming. Nat Cell Biol, 2019. 21(1): p. 44-53. 36. Min, H.Y. and H.Y. Lee, Mechanisms of resistance to chemotherapy in non-small cell lung cancer. Arch Pharm Res, 2021. 44(2): p. 146-164. 37. Mattila, P.K. and P. Lappalainen, Filopodia: molecular architecture and cellular functions. Nat Rev Mol Cell Biol, 2008. 9(6): p. 446-54. 38. Masi, I., V. Caprara, A. Bagnato and L. Rosan?, Tumor Cellular and Microenvironmental Cues Controlling Invadopodia Formation. Front Cell Dev Biol, 2020. 8: p. 584181. 39. Mohammed, D., G. Charras, E. Vercruysse, M. Versaevel, J. Lantoine, et al., Substrate area confinement is a key determinant of cell velocity in collective migration. Nature Physics, 2019. 15(8): p. 858-866. 40. Lennon, A. 1 in 3 cancer articles on social media contain harmful misinformation. 2021 July 28, 2021; Available from: https://www.medicalnewstoday.com/articles/1-in-3-cancer-articles-on-social-media-contain-harmful-misinformation. 41. Nelson, M. How to Sift Through Cancer and Nutrition Misinformation on Social Media. 2021 September 14, 2021; Available from: https://www.aicr.org/news/how-to-sift-through-cancer-and-nutrition-misinformation-on-social-media/. 42. Daniels, C. What are the three elements that fatty acids are composed of? 2018 December 20, 2018; Available from: https://healthyeating.sfgate.com/best-elliptical-machines-13771768.html. 43. Watanabe, Y. and I. Tatsuno, Prevention of Cardiovascular Events with Omega-3 Polyunsaturated Fatty Acids and the Mechanism Involved. J Atheroscler Thromb, 2020. 27(3): p. 183-198. 44. Liao, Y., B. Xie, H. Zhang, Q. He, L. Guo, et al., Efficacy of omega-3 PUFAs in depression: A meta-analysis. Transl Psychiatry, 2019. 9(1): p. 190. 45. da Silva, T.M., R.P. Munhoz, C. Alvarez, K. Naliwaiko, A. Kiss, et al., Depression in Parkinson's disease: a double-blind, randomized, placebo-controlled pilot study of omega-3 fatty-acid supplementation. J Affect Disord, 2008. 111(2-3): p. 351-9. 46. Amminger, G.P., M.R. Sch?fer, M. Schl?gelhofer, C.M. Klier and P.D. McGorry, Longer-term outcome in the prevention of psychotic disorders by the Vienna omega-3 study. Nat Commun, 2015. 6: p. 7934. 47. Innis, S.M., Dietary omega 3 fatty acids and the developing brain. Brain Res, 2008. 1237: p. 35-43. 48. Pan, M., F. Zhao, B. Xie, H. Wu, S. Zhang, et al., Dietary ω-3 polyunsaturated fatty acids are protective for myopia. Proc Natl Acad Sci U S A, 2021. 118(43). 49. Lu, W., S. Li, J. Li, J. Wang, R. Zhang, et al., Effects of Omega-3 Fatty Acid in Nonalcoholic Fatty Liver Disease: A Meta-Analysis. Gastroenterol Res Pract, 2016. 2016: p. 1459790. 50. Hutchinson, A.N., L. Ting? and R.J. Brummer, The Potential Effects of Probiotics and ω-3 Fatty Acids on Chronic Low-Grade Inflammation. Nutrients, 2020. 12(8). 51. Burdge, G.C., Metabolism of alpha-linolenic acid in humans. Prostaglandins Leukot Essent Fatty Acids, 2006. 75(3): p. 161-8. 52. Bernasconi, A.A., M.M. Wiest, C.J. Lavie, R.V. Milani and J.A. Laukkanen, Effect of Omega-3 Dosage on Cardiovascular Outcomes: An Updated Meta-Analysis and Meta-Regression of Interventional Trials. Mayo Clin Proc, 2021. 96(2): p. 304-313. 53. Khoukaz, H.B. and W.P. Fay, Fish Oil Supplements for Prevention of Cardiovascular Disease: The Jury Is Still Out: CON: Fish Oil is Useful to Prevent or Treat Cardiovascular Disease. Mo Med, 2021. 118(3): p. 219-225. 54. Elagizi, A., C.J. Lavie, E. O'Keefe, K. Marshall, J.H. O'Keefe, et al., An Update on Omega-3 Polyunsaturated Fatty Acids and Cardiovascular Health. Nutrients, 2021. 13(1). 55. Mariamenatu, A.H. and E.M. Abdu, Overconsumption of Omega-6 Polyunsaturated Fatty Acids (PUFAs) versus Deficiency of Omega-3 PUFAs in Modern-Day Diets: The Disturbing Factor for Their 'Balanced Antagonistic Metabolic Functions' in the Human Body. J Lipids, 2021. 2021: p. 8848161. 56. Asif, M., Health effects of omega-3,6,9 fatty acids: Perilla frutescens is a good example of plant oils. Orient Pharm Exp Med, 2011. 11(1): p. 51-59. 57. D'Angelo, S., M.L. Motti and R. Meccariello, ω-3 and ω-6 Polyunsaturated Fatty Acids, Obesity and Cancer. Nutrients, 2020. 12(9). 58. Simopoulos, A.P., An Increase in the Omega-6/Omega-3 Fatty Acid Ratio Increases the Risk for Obesity. Nutrients, 2016. 8(3): p. 128. 59. Finucane, O.M., C.L. Lyons, A.M. Murphy, C.M. Reynolds, R. Klinger, et al., Monounsaturated fatty acid-enriched high-fat diets impede adipose NLRP3 inflammasome-mediated IL-1β secretion and insulin resistance despite obesity. Diabetes, 2015. 64(6): p. 2116-28. 60. Efthimiou, J., P.J. Mounsey, D.N. Benson, R. Madgwick, S.J. Coles, et al., Effect of carbohydrate rich versus fat rich loads on gas exchange and walking performance in patients with chronic obstructive lung disease. Thorax, 1992. 47(6): p. 451-6. 61. Patel, H., C.C. Kerndt and A. Bhardwaj, Physiology, Respiratory Quotient, in StatPearls. 2022, StatPearls Publishing Copyright ? 2022, StatPearls Publishing LLC.: Treasure Island (FL). 62. Suteerojntrakool, O., S. Sanguanrungsirikul, S. Sritippayawan, W. Jantarabenjakul, P. Sirimongkol, et al., Effect of a low-carbohydrate diet on respiratory quotient of infants with chronic lung disease. J Med Assoc Thai, 2015. 98 Suppl 1: p. S21-8. 63. Warburg, O., On the origin of cancer cells. Science, 1956. 123(3191): p. 309-14. 64. Chen, Z., W. Lu, C. Garcia-Prieto and P. Huang, The Warburg effect and its cancer therapeutic implications. J Bioenerg Biomembr, 2007. 39(3): p. 267-74. 65. Hsu, C.C., L.M. Tseng and H.C. Lee, Role of mitochondrial dysfunction in cancer progression. Exp Biol Med (Maywood), 2016. 241(12): p. 1281-95. 66. Tran, Q., H. Lee, C. Kim, G. Kong, N. Gong, et al., Revisiting the Warburg Effect: Diet-Based Strategies for Cancer Prevention. Biomed Res Int, 2020. 2020: p. 8105735. 67. Giacobbe, J., B. Benoiton, P. Zunszain, C.M. Pariante and A. Borsini, The Anti-Inflammatory Role of Omega-3 Polyunsaturated Fatty Acids Metabolites in Pre-Clinical Models of Psychiatric, Neurodegenerative, and Neurological Disorders. Front Psychiatry, 2020. 11: p. 122. 68. Calder, P.C., Omega-3 fatty acids and inflammatory processes: from molecules to man. Biochem Soc Trans, 2017. 45(5): p. 1105-1115. 69. American Institute for Cancer Research. Flaxseed and Cancer, Benefits and Potential Warning. 2021 April 8, 2021; Available from: https://www.aicr.org/cancer-prevention/food-facts/flaxseed/. 70. Sperling, D. Flaxseeds May Prevent Prostate Cancer Tumors From Spreading. 2021 October 19, 2021; Available from: https://sperlingprostatecenter.com/flaxseeds-may-prevent-prostate-cancer-tumors-from-spreading/. 71. Calado, A., P.M. Neves, T. Santos and P. Ravasco, The Effect of Flaxseed in Breast Cancer: A Literature Review. Front Nutr, 2018. 5: p. 4. 72. Azrad, M., R.T. Vollmer, J. Madden, M. Dewhirst, T.J. Polascik, et al., Flaxseed-derived enterolactone is inversely associated with tumor cell proliferation in men with localized prostate cancer. J Med Food, 2013. 16(4): p. 357-60. 73. Parikh, M., T.G. Maddaford, J.A. Austria, M. Aliani, T. Netticadan, et al., Dietary Flaxseed as a Strategy for Improving Human Health. Nutrients, 2019. 11(5). 74. U.S. Department of Agriculture. FoodData Central Search Results: Flaxseed, ground. 2022 April 28, 2022; Available from: https://fdc.nal.usda.gov/fdc-app.html#/food-details/2262075/nutrients. 75. Bjarnadottir, A. Flax Seeds 101: Nutrition Facts and Health Benefits. 2019 March 28, 2019; Available from: https://www.healthline.com/nutrition/foods/flaxseeds. 76. Goyal, A., V. Sharma, N. Upadhyay, S. Gill and M. Sihag, Flax and flaxseed oil: an ancient medicine & modern functional food. J Food Sci Technol, 2014. 51(9): p. 1633-53. 77. Beare-Rogers, J.L., A. Dieffenbacher and J.V. Holm, Lexicon of lipid nutrition (IUPAC Technical Report). Pure and Applied Chemistry, 2001. 73(4): p. 685-744. 78. Wikipedia contributors, Alpha-Linolenic acid, in Wikipedia, The Free Encyclopedia. 2022. 79. Pawlosky, R.J., J.R. Hibbeln, J.A. Novotny and N. Salem, Jr., Physiological compartmental analysis of alpha-linolenic acid metabolism in adult humans. J Lipid Res, 2001. 42(8): p. 1257-65. 80. Baylin, A., E.K. Kabagambe, A. Ascherio, D. Spiegelman and H. Campos, Adipose tissue alpha-linolenic acid and nonfatal acute myocardial infarction in Costa Rica. Circulation, 2003. 107(12): p. 1586-91. 81. Heskey, C.E., K. Jaceldo-Siegl, J. Sabat?, G. Fraser and S. Rajaram, Adipose tissue α-linolenic acid is inversely associated with insulin resistance in adults. Am J Clin Nutr, 2016. 103(4): p. 1105-10. 82. Zhu, X., B. Wang, X. Zhang, X. Chen, J. Zhu, et al., Alpha-linolenic acid protects against lipopolysaccharide-induced acute lung injury through anti-inflammatory and anti-oxidative pathways. Microb Pathog, 2020. 142: p. 104077. 83. Kaveh, M., N. Eftekhar and M.H. Boskabady, The effect of alpha linolenic acid on tracheal responsiveness, lung inflammation, and immune markers in sensitized rats. Iran J Basic Med Sci, 2019. 22(3): p. 255-261. 84. Yue, H., B. Qiu, M. Jia, W. Liu, X.F. Guo, et al., Effects of α-linolenic acid intake on blood lipid profiles:a systematic review and meta-analysis of randomized controlled trials. Crit Rev Food Sci Nutr, 2021. 61(17): p. 2894-2910. 85. Winnik, S., C. Lohmann, E.K. Richter, N. Sch?fer, W.L. Song, et al., Dietary α-linolenic acid diminishes experimental atherogenesis and restricts T cell-driven inflammation. Eur Heart J, 2011. 32(20): p. 2573-84. 86. Lyudinina, A.Y., E.A. Bushmanova, N.G. Varlamova and E.R. Bojko, Dietary and plasma blood α-linolenic acid as modulators of fat oxidation and predictors of aerobic performance. J Int Soc Sports Nutr, 2020. 17(1): p. 57. 87. Li, J., Z. Gu, Y. Pan, S. Wang, H. Chen, et al., Dietary supplementation of α-linolenic acid induced conversion of n-3 LCPUFAs and reduced prostate cancer growth in a mouse model. Lipids Health Dis, 2017. 16(1): p. 136. 88. Yao, Q.H., X.C. Zhang, T. Fu, J.Z. Gu, L. Wang, et al., ω-3 polyunsaturated fatty acids inhibit the proliferation of the lung adenocarcinoma cell line A549 in vitro. Mol Med Rep, 2014. 9(2): p. 401-6. 89. Chamberland, J.P. and H.S. Moon, Down-regulation of malignant potential by alpha linolenic acid in human and mouse colon cancer cells. Fam Cancer, 2015. 14(1): p. 25-30. 90. Gutierrez-Pajares, J.L., C. Ben Hassen, C. Oger, J.M. Galano, T. Durand, et al., Oxidized Products of α-Linolenic Acid Negatively Regulate Cellular Survival and Motility of Breast Cancer Cells. Biomolecules, 2019. 10(1). 91. Xia, S.-H., J. Wang and J.X. Kang, Decreased n -6/ n -3 fatty acid ratio reduces the invasive potential of human lung cancer cells by downregulation of cell adhesion/invasion-related genes. Carcinogenesis, 2005. 26(4): p. 779-784. 92. Deshpande, R., P. Mansara and R. Kaul-Ghanekar, Alpha-linolenic acid regulates Cox2/VEGF/MAP kinase pathway and decreases the expression of HPV oncoproteins E6/E7 through restoration of p53 and Rb expression in human cervical cancer cell lines. Tumour Biol, 2016. 37(3): p. 3295-305. 93. Perlikos, F., K.J. Harrington and K.N. Syrigos, Key molecular mechanisms in lung cancer invasion and metastasis: a comprehensive review. Crit Rev Oncol Hematol, 2013. 87(1): p. 1-11. 94. March, T.H., P.G. Marron-Terada and S.A. Belinsky, Refinement of an orthotopic lung cancer model in the nude rat. Vet Pathol, 2001. 38(5): p. 483-90. 95. Chu, Y.W., P.C. Yang, S.C. Yang, Y.C. Shyu, M.J. Hendrix, et al., Selection of invasive and metastatic subpopulations from a human lung adenocarcinoma cell line. Am J Respir Cell Mol Biol, 1997. 17(3): p. 353-60. 96. Condon, N.D., J.L. Stow and A.A. Wall, Automated Analysis of Cell Surface Ruffling: Ruffle Quantification Macro. Bio Protoc, 2020. 10(2): p. e3494. 97. Leung, K.S., J.M. Galano, C. Oger, T. Durand and J.C. Lee, Enrichment of alpha-linolenic acid in rodent diet reduced oxidative stress and inflammation during myocardial infarction. Free Radic Biol Med, 2021. 162: p. 53-64. 98. Mungure, T.E. and E.J. Birch, Analysis of intact triacylglycerols in cold pressed canola, flax and hemp seed oils by HPLC and ESI-MS. SOP Trans. Anal. Chem, 2014. 1: p. 48-61. 99. Harper, C.R., M.J. Edwards, A.P. DeFilippis and T.A. Jacobson, Flaxseed oil increases the plasma concentrations of cardioprotective (n-3) fatty acids in humans. J Nutr, 2006. 136(1): p. 83-7. 100. Laaksonen, K.S., T.O. Nevalainen, K. Haasio, I.H. Kasanen, P.A. Nieminen, et al., Food and water intake, growth, and adiposity of Sprague-Dawley rats with diet board for 24 months. Lab Anim, 2013. 47(4): p. 245-56. 101. Chen, H.H., Y.Z. Lin and Y. Luo, Isotropic differential phase contrast microscopy for quantitative phase bio-imaging. J Biophotonics, 2018. 11(8): p. e201700364. 102. Greten, F.R. and S.I. Grivennikov, Inflammation and Cancer: Triggers, Mechanisms, and Consequences. Immunity, 2019. 51(1): p. 27-41. 103. Jungheim, E.S., G.A. Macones, R.R. Odem, B.W. Patterson and K.H. Moley, Elevated serum α-linolenic acid levels are associated with decreased chance of pregnancy after in vitro fertilization. Fertil Steril, 2011. 96(4): p. 880-3. 104. Tsukamoto, I. and S. Sugawara, Low levels of linoleic acid and alpha-linolenic acid and high levels of arachidonic acid in plasma phospholipids are associated with hypertension. Biomed Rep, 2018. 8(1): p. 69-76. 105. Arterburn, L.M., E.B. Hall and H. Oken, Distribution, interconversion, and dose response of n?3 fatty acids in humans. The American Journal of Clinical Nutrition, 2006. 83(6): p. 1467S-1476S. 106. Yang, P., C. Cartwright, D. Chan, J. Ding, E. Felix, et al., Anticancer activity of fish oils against human lung cancer is associated with changes in formation of PGE2 and PGE3 and alteration of Akt phosphorylation. Mol Carcinog, 2014. 53(7): p. 566-77. 107. Bai, X., J. Shao, S. Zhou, Z. Zhao, F. Li, et al., Inhibition of lung cancer growth and metastasis by DHA and its metabolite, RvD1, through miR-138-5p/FOXC1 pathway. J Exp Clin Cancer Res, 2019. 38(1): p. 479. 108. Liu, Y., Y. Tian, W. Cai, Y. Guo, C. Xue, et al., DHA/EPA-Enriched Phosphatidylcholine Suppresses Tumor Growth and Metastasis via Activating Peroxisome Proliferator-Activated Receptor γ in Lewis Lung Cancer Mice. J Agric Food Chem, 2021. 69(2): p. 676-685. 109. Cheng, M., S. Zhang, C. Ning and Q. Huo, Omega-3 fatty acids supplementation improve nutritional status and inflammatory response in patients with lung cancer: a randomized clinical trial. Front Nutr, 2021. 8: p. 686752. 110. Daisy Whitbread. Foods High in Alpha Linolenic Acid (ALA). April 21st, 2022; Available from: https://www.myfooddata.com/articles/foods-high-in-ALA.php#intro. 111. Marchiori, E., G. Zanetti, C.M. Mano and B. Hochhegger, Exogenous lipoid pneumonia. Clinical and radiological manifestations. Respir Med, 2011. 105(5): p. 659-66. 112. Alberts, B., A. Johnson, J. Lewis, M. Raff, K. Roberts, et al., The lipid bilayer, in Molecular Biology of the Cell. 4th edition. 2002, Garland Science. 113. Abbott, S.K., P.L. Else, T.A. Atkins and A.J. Hulbert, Fatty acid composition of membrane bilayers: importance of diet polyunsaturated fat balance. Biochim Biophys Acta, 2012. 1818(5): p. 1309-17. 114. Harayama, T. and T. Shimizu, Roles of polyunsaturated fatty acids, from mediators to membranes. J Lipid Res, 2020. 61(8): p. 1150-1160. 115. Tyler, A.I.I., J.L. Greenfield, J.M. Seddon, N.J. Brooks and S. Purushothaman, Coupling Phase Behavior of Fatty Acid Containing Membranes to Membrane Bio-Mechanics. Front Cell Dev Biol, 2019. 7: p. 187. 116. Sunshine, H. and M.L. Iruela-Arispe, Membrane lipids and cell signaling. Curr Opin Lipidol, 2017. 28(5): p. 408-413. 117. Kim, W., Y.Y. Fan, R. Barhoumi, R. Smith, D.N. McMurray, et al., n-3 polyunsaturated fatty acids suppress the localization and activation of signaling proteins at the immunological synapse in murine CD4+ T cells by affecting lipid raft formation. J Immunol, 2008. 181(9): p. 6236-43. 118. Swaminathan, V., K. Mythreye, E.T. O'Brien, A. Berchuck, G.C. Blobe, et al., Mechanical stiffness grades metastatic potential in patient tumor cells and in cancer cell lines. Cancer Res, 2011. 71(15): p. 5075-80. 119. Preta, G., New insights into targeting membrane lipids for cancer therapy. Front Cell Dev Biol, 2020. 8: p. 571237. 120. Caires, R., F.J. Sierra-Valdez, J.R.M. Millet, J.D. Herwig, E. Roan, et al., Omega-3 Fatty Acids Modulate TRPV4 Function through Plasma Membrane Remodeling. Cell Rep, 2017. 21(1): p. 246-258. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83431 | - |
dc.description.abstract | 肺癌在全球癌症死亡人數比例中一直是名列前茅的佼佼者,除了因其不易被早期診斷外,另一項主要的原因就是患者有極高的機率在病程早期發生癌轉移的情況。目前,肺癌的治療仍存在許多的侷限性,轉移與藥物的抗藥性的產生是臨床常見的棘手問題,隨著病況的改變,病人往往需要接受更高強度的治療,伴隨而來的便是虛弱與副作用的發生;此時,許多的病人常會自行尋求營養補充像是亞麻籽油等以作為輔助治療,期望可以藉此延緩癌症進程。亞麻籽油富含大量α-次亞麻油酸(ALA),其對於人類屬於一種必須脂肪酸,人體無法自行合成,須透過食物加以攝取,多數會儲存於身體組織中,進而在體內發揮潛在生理功能。目前,對於ALA是否能有效抑制肺癌細胞的轉移及其相關的調控機轉並不十分清楚;因此,在本研究中我們嘗試釐清ALA對於癌細胞侵襲與轉移能力之調控影響。首先,我們藉由細胞存活實驗找出不影響癌細胞增生之ALA添加劑量。後續,利用體外細胞培養的研究結果發現,ALA可促使高侵襲力肺癌細胞(CL1-2、CL1-5、Hop62和A549)產生類間質細胞上皮轉化 (MET-like)、抑制癌細胞的移動和侵襲、促進細胞骨架重排並使細胞整體的厚度增加。此外,我們利用全蛋白質體分析技術進一步找出可能參與ALA影響細胞轉移作用有關的作用蛋白並加以驗證。最後,更透過動物實驗以再次驗證ALA在動物體抑制肺癌轉移的能力。綜合上述結果,我們認為ALA在臨床上或許能作為一種有效的天然預防物,以協助延緩肺癌病患病情的惡化。 | zh_TW |
dc.description.abstract | Lung cancer is the leading cause of cancer mortality worldwide. In addition to the delayed diagnosis, early metastasis and drug resistance are big challenges for lung cancer treatment, which not only accelerate cancer progression but also make patients more debilitated. Thus, many people tend to seek nutritional supports such as flaxseed oil to relieve their symptoms and hope to prolong their life. Flaxseed oil contains 50 to 60% alpha-linolenic acid (ALA), which is an essential fatty acid, stored in tissue pools, and benefits per se against cancer owing to its good bioavailability. Till now, the exact molecular mechanism of how ALA ameliorates cancer metastasis is still unclear. Thus, we tried to explore whether ALA treatment could affect the malignant behavior of highly invasive lung cancer cells. First, we determined the treatment concentration of ALA according to the IC50 of these cells. Then, we displayed that ALA treatments led cells to process mesenchymal-epithelial transition (MET), suppress their migratory and invasive abilities, promote cytoskeletal rearrangement, and increase cell thickness in vitro. Further, we identified potential candidates involved in ALA-mediated regulation of cancer metastasis through proteomic analysis. In the end, we demonstrated that ALA could inhibit lung cancer metastasis in vivo. All the results enlightened the role of ALA in inhibiting lung cancer metastasis. | en |
dc.description.provenance | Made available in DSpace on 2023-03-19T21:07:26Z (GMT). No. of bitstreams: 1 U0001-1009202216190300.pdf: 14767979 bytes, checksum: 80d6fc84657ad64b13bbd7dd52cd3c3e (MD5) Previous issue date: 2022 | en |
dc.description.tableofcontents | 致謝 ? 中文摘要 ? Abstract ? Contents iv List of Figures x List of Tables xiii List of Appendices xiv Chapter One: Introduction 1 1.1 Lung cancer 1 1.1.1 The epidemiology of NSCLC 1 1.1.2 The risk factors for lung cancer 2 1.1.3 The histological classification of lung cancer 3 1.1.4 Stages of NSCLC 5 1.1.5 Treatments for NSCLC 8 1.1.6 Challenge in NSCLC therapy 10 1.2 Processing steps of thickness measurement 12 1.2.1 Cell migration and invasion involved in cancer metastatic process 12 1.2.2 Epithelial-to-mesenchymal transition (EMT) 13 1.2.3 Cytoskeletal rearrangement 15 1.3. Potential supportive medicine for lung cancer 16 1.3.1 Nutrition: Oil supplements 161.3.2 The importance of evidence-based research on nutrition and cancer 17 1.3.3 The difference between omega-3, 6, and 9 fatty acids 18 1.3.4 The benefits of omega-3 fatty acids for lung cancer patients 21 1.3.5 Flaxseed oil is rich in α-linolenic acid (ALA) 23 1.3.6 Alpha-linolenic acid (ALA) 24 1.3.7 The metabolism of ALA in humans 25 1.3.8 The proven benefits of ALA 28 1.4 Research background and motives 30 Chapter Two: Materials 32 2.1 Cell line 32 2.2 Animal 32 2.3 Instrument and device 32 2.4 Antibody 33 2.5 Kit 34 2.6 Pharmaceutical 35 2.7 Analysis software 37 Chapter Three: Methods 38 3.1 Cell lines and culture conditions 38 3.2 Preparation of ALA solution 38 3.3 Sulforhodamine B (SRB) assay 39 3.4 Doubling time assay 40 3.5 Oil Red O staining 41 3.6 Microscopy examination 42 3.7 Immunoblotting 42 3.8 2-well wound healing assay 43 3.9 Modified Boyden chamber invasion assay 44 3.10 F-actin staining 45 3.11 Experimental metastasis in vivo 47 3.12 Total proteome analysis 48 3.13 Quantitative phase bio-imaging for thickness 52 3.14 Statistical analysis 53 Chapter Four: Results 54 4.1 Aim one: ALA supplements can affect metastasis-related cellular functions of lung cancer cells 54 4.1.1 The appropriate ALA concentration for the highly invasive CL1-5 cell line was measured 54 4.1.2 Treatment of ALA for 24 hours makes highly invasive CL1-5 cells ingest a certain amount of ALA and change their morphology 55 4.1.3 ALA supplements induce MET in highly invasive lung cancer cell lines 56 4.1.4 ALA suppresses the migratory abilities of highly invasive lung cancer cell lines in a dose-dependent manner 58 4.1.5 ALA reduces the invasive abilities of highly invasive lung cancer cell lines in a dose-dependent manner 59 4.1.6 ALA significantly promotes cytoskeletal rearrangement of highly invasive lung cancer cell lines 59 4.1.7 ALA suppresses lung cancer metastasis in vivo 60 4.2 Aim two: The molecular mechanism of how ALA ameliorates lung cancer metastasis is explored 62 4.2.1 Total proteome analysis was applied to find potential candidates involved in the signal pathways 62 4.2.2 The selected top-regulated candidates are validated by immunoblotting and their survival analysis for patients with lung cancer 64 4.2.3 DDRGK, ZN701, and THBG are possible top 3 proteins involved in signal pathways that ALA regulates for ameliorating lung cancer metastasis 65 Chapter Five: Discussion 87 5.1 There are similarities and differences in characteristics among cell lines we used 87 5.2 It may be practicable to reach 100-150 μM ALA in human plasma by intake of ALA supplements 88 5.3 The ALA concentration of commercial flaxseed supplements is compared with the effective ALA dose in this study 91 5.4 Several foods are high in ALA 91 5.5 More improved directions in animal experiments can be implemented in the future 92 5.6 It is required to conduct recused experiments for the 3 selected candidates from ranking 94 5.7 The clear mechanism from total proteome analysis may be improved in several ways 94 5.8 ALA may alter membrane rigidity and then influence intracellular signaling 97 5.9 ALA supplements make CL1-5 cells thicker 98 5.10 Membrane rigidity may be related to cancer metastasis 100 5.11 Membrane proteome analysis should be undertaken in the future 100 Chapter Six: Conclusion 102 Abbreviation 104 References 106 Appendix 115 | |
dc.language.iso | en | |
dc.title | 次亞麻油酸在抑制肺癌轉移之角色探討及研究 | zh_TW |
dc.title | The role of α-Linolenic Acid in Inhibition of Lung Cancer Metastasis | en |
dc.type | Thesis | |
dc.date.schoolyear | 110-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 邱琬淳(Wan-Chun Chiu),張以承(Yi-Cheng Chang) | |
dc.subject.keyword | α-次亞麻油酸,轉移,肺癌,亞麻籽油, | zh_TW |
dc.subject.keyword | Alpha-linolenic acid,metastasis,lung cancer,flaxseed oil, | en |
dc.relation.page | 157 | |
dc.identifier.doi | 10.6342/NTU202203272 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2022-09-19 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 基因體暨蛋白體醫學研究所 | zh_TW |
Appears in Collections: | 基因體暨蛋白體醫學研究所 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
U0001-1009202216190300.pdf Restricted Access | 14.42 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.