Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 大氣科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83429
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor羅敏輝(Min-Hui Lo)
dc.contributor.authorPei-Syuan Liaoen
dc.contributor.author廖珮軒zh_TW
dc.date.accessioned2023-03-19T21:07:23Z-
dc.date.copyright2022-10-06
dc.date.issued2022
dc.date.submitted2022-09-19
dc.identifier.citationAdler, R. F., Huffman, G. J., Chang, A., Ferraro, R., Xie, P.-P., Janowiak, J., Rudolf, B., Schneider, U., Curtis, S., & Bolvin, D. (2003). The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present). Journal of Hydrometeorology, 4(6), 1147–1167. Almeida, C. T., Oliveira?J?nior, J. F., Delgado, R. C., Cubo, P., & Ramos, M. C. (2017). Spatiotemporal rainfall and temperature trends throughout the Brazilian Legal Amazon, 1973–2013. International Journal of Climatology, 37(4), 2013–2026. Bagley, J. E., Desai, A. R., Harding, K. J., Snyder, P. K., & Foley, J. A. (2014). Drought and deforestation: has land cover change influenced recent precipitation extremes in the Amazon? Journal of Climate, 27(1), 345–361. Barichivich, J., Gloor, E., Peylin, P., Brienen, R. J. W., Sch?ngart, J., Espinoza, J. C., & Pattnayak, K. C. (2018). Recent intensification of Amazon flooding extremes driven by strengthened Walker circulation. Science Advances, 4(9). https://doi.org/10.1126/SCIADV.AAT8785/SUPPL_FILE/AAT8785_SM.PDF Boisier, J. P., Ciais, P., Ducharne, A., & Guimberteau, M. (2015). Projected strengthening of Amazonian dry season by constrained climate model simulations. Nature Climate Change 2014 5:7, 5(7), 656–660. https://doi.org/10.1038/nclimate2658 Brando, P. M., Balch, J. K., Nepstad, D. C., Morton, D. C., Putz, F. E., Coe, M. T., Silv?rio, D., Macedo, M. N., Davidson, E. A., N?brega, C. C., Alencar, A., & Soares-Filho, B. S. (2014). Abrupt increases in Amazonian tree mortality due to drought-fire interactions. Proceedings of the National Academy of Sciences of the United States of America, 111(17), 6347–6352. https://doi.org/10.1073/PNAS.1305499111 Chen, C. C., Lo, M. H., Im, E. S., Yu, J. Y., Liang, Y. C., Chen, W. T., Tang, I., Lan, C. W., Wu, R. J., & Chien, R. Y. (2019). Thermodynamic and Dynamic Responses to Deforestation in the Maritime Continent: A Modeling Study. Journal of Climate, 32(12), 3505–3527. https://doi.org/10.1175/JCLI-D-18-0310.1 Choat, B., Brodribb, T. J., Brodersen, C. R., Duursma, R. A., L?pez, R., & Medlyn, B. E. (2018). Triggers of tree mortality under drought. Nature, 558(7711), 531–539. https://doi.org/10.1038/s41586-018-0240-x Chou, C., Chiang, J. C. H., Lan, C. W., Chung, C. H., Liao, Y. C., & Lee, C. J. (2013). Increase in the range between wet and dry season precipitation. Nature Geoscience, 6(4), 263–267. https://doi.org/10.1038/ngeo1744 Chou, C., & Lan, C. W. (2012). Changes in the annual range of precipitation under global warming. Journal of Climate, 25(1), 222–235. https://doi.org/10.1175/JCLI-D-11-00097.1 Correia, F. W. S., Alval?, R. C. S., & Manzi, A. O. (2008a). Modeling the impacts of land cover change in Amazonia: A regional climate model (RCM) simulation study. Theoretical and Applied Climatology, 93(3–4), 225–244. https://doi.org/10.1007/s00704-007-0335-z Correia, F. W. S., Alval?, R. C. S., & Manzi, A. O. (2008b). Modeling the impacts of land cover change in Amazonia: A regional climate model (RCM) simulation study. Theoretical and Applied Climatology, 93(3–4), 225–244. https://doi.org/10.1007/s00704-007-0335-z Cox, P. M., Harris, P. P., Huntingford, C., Betts, R. A., Collins, M., Jones, C. D., Jupp, T. E., Marengo, J. A., & Nobre, C. A. (2008). Increasing risk of Amazonian drought due to decreasing aerosol pollution. Nature, 453(7192), 212–215. https://doi.org/10.1038/nature06960 Cui, J., Piao, S., Huntingford, C., Wang, X., Lian, X., Chevuturi, A., Turner, A. G., & Kooperman, G. J. (2020). Vegetation forcing modulates global land monsoon and water resources in a CO2-enriched climate. Nature Communications, 11(1). https://doi.org/10.1038/s41467-020-18992-7 Danabasoglu, G., Lamarque, J. F., Bacmeister, J., Bailey, D. A., DuVivier, A. K., Edwards, J., Emmons, L. K., Fasullo, J., Garcia, R., Gettelman, A., Hannay, C., Holland, M. M., Large, W. G., Lauritzen, P. H., Lawrence, D. M., Lenaerts, J. T. M., Lindsay, K., Lipscomb, W. H., Mills, M. J., … Strand, W. G. (2020). The Community Earth System Model Version 2 (CESM2). Journal of Advances in Modeling Earth Systems, 12(2). https://doi.org/10.1029/2019MS001916 Devaraju, N., Bala, G., & Modak, A. (2015). Effects of large-scale deforestation on precipitation in the monsoon regions: Remote versus local effects. Proceedings of the National Academy of Sciences of the United States of America, 112(11), 3257–3262. https://doi.org/10.1073/pnas.1423439112 Duffy, P. B., Brando, P., Asner, G. P., & Field, C. B. (2015). Projections of future meteorological drought and wet periods in the Amazon. Proceedings of the National Academy of Sciences of the United States of America, 112(43), 13172–13177. https://doi.org/10.1073/pnas.1421010112 Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., & Taylor, K. E. (2016). Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9(5), 1937–1958. https://doi.org/10.5194/GMD-9-1937-2016 Friedman, A. R., Bollasina, M. A., Gastineau, G., & Khodri, M. (2021a). Increased Amazon Basin wet-season precipitation and river discharge since the early 1990s driven by tropical Pacific variability. Environmental Research Letters, 16(3). https://doi.org/10.1088/1748-9326/abd587 Friedman, A. R., Bollasina, M. A., Gastineau, G., & Khodri, M. (2021b). Increased Amazon Basin wet-season precipitation and river discharge since the early 1990s driven by tropical Pacific variability. Environmental Research Letters, 16(3). https://doi.org/10.1088/1748-9326/abd587 Fu, R., Dickinson, R. E., Chen, M., & Wang, H. (2001). How do tropical sea surface temperatures influence the seasonal distribution of precipitation in the equatorial Amazon? Journal of Climate, 14(20), 4003–4026. Fu, R., Yin, L., Li, W., Arias, P. A., Dickinson, R. E., Huang, L., Chakraborty, S., Fernandes, K., Liebmann, B., Fisher, R., & Myneni, R. B. (2013). Increased dry-season length over southern Amazonia in recent decades and its implication for future climate projection. Proceedings of the National Academy of Sciences of the United States of America, 110(45), 18110–18115. https://doi.org/10.1073/PNAS.1302584110 Garc?a-Garc?a, D., & Ummenhofer, C. C. (2015). Multidecadal variability of the continental precipitation annual amplitude driven by AMO and ENSO. Geophysical Research Letters, 42(2), 526–535. https://doi.org/10.1002/2014GL062451 Gatti, L. v., Basso, L. S., Miller, J. B., Gloor, M., Gatti Domingues, L., Cassol, H. L. G., Tejada, G., Arag?o, L. E. O. C., Nobre, C., Peters, W., Marani, L., Arai, E., Sanches, A. H., Corr?a, S. M., Anderson, L., von Randow, C., Correia, C. S. C., Crispim, S. P., & Neves, R. A. L. (2021). Amazonia as a carbon source linked to deforestation and climate change. Nature, 595(7867), 388–393. https://doi.org/10.1038/s41586-021-03629-6 Hurrell, J. W., Hack, J. J., Shea, D., Caron, J. M., & Rosinski, J. (2008). A New Sea Surface Temperature and Sea Ice Boundary Dataset for the Community Atmosphere Model. Journal of Climate, 21(19), 5145–5153. https://doi.org/10.1175/2008JCLI2292.1 Joetzjer, E., Douville, H., Delire, C., & Ciais, P. (2013). Present-day and future Amazonian precipitation in global climate models: CMIP5 versus CMIP3. Climate Dynamics, 41(11–12), 2921–2936. https://doi.org/10.1007/s00382-012-1644-1 Kayano, M. T., Andreoli, R. v., & de Souza, R. A. F. (2020). Pacific and Atlantic multidecadal variability relations to the El Ni?o events and their effects on the South American rainfall. International Journal of Climatology, 40(4), 2183–2200. https://doi.org/10.1002/JOC.6326 Kirschbaum, M. U. F., & McMillan, A. M. S. (2018). Warming and Elevated CO2 Have Opposing Influences on Transpiration. Which is more Important? Current Forestry Reports, 4(2), 51–71. https://doi.org/10.1007/S40725-018-0073-8 Kleidon, A., & Heimann, M. (2000). Assessing the role of deep rooted vegetation in the climate system with model simulations: mechanism, comparison to observations and implications for Amazonian deforestation. Climate Dynamics 2000 16:2, 16(2), 183–199. https://doi.org/10.1007/S003820050012 Lan, C. W., Lo, M. H., Chen, C. A., & Yu, J. Y. (2019). The mechanisms behind changes in the seasonality of global precipitation found in reanalysis products and CMIP5 simulations. Climate Dynamics, 53(7–8), 4173–4187. https://doi.org/10.1007/s00382-019-04781-6 Liang, Y. C., Lo, M. H., Lan, C. W., Seo, H., Ummenhofer, C. C., Yeager, S., Wu, R. J., & Steffen, J. D. (2020). Amplified seasonal cycle in hydroclimate over the Amazon river basin and its plume region. Nature Communications, 11(1). https://doi.org/10.1038/s41467-020-18187-0 Marengo, J. A., Liebmann, B., Grimm, A. M., Misra, V., Silva Dias, P. L., Cavalcanti, I. F. A., Carvalho, L. M. V., Berbery, E. H., Ambrizzi, T., Vera, C. S., Saulo, A. C., Nogues-Paegle, J., Zipser, E., Seth, A., & Alves, L. M. (2012). Recent developments on the South American monsoon system. International Journal of Climatology, 32(1), 1–21. https://doi.org/10.1002/JOC.2254 Nepstad, D., Lefebvre, P., Lopes da Silva, U., Tomasella, J., Schlesinger, P., Solorzano, L., Moutinho, P., Ray, D., & Guerreira Benito, J. (2004). Amazon drought and its implications for forest flammability and tree growth: A basin?wide analysis. Global Change Biology, 10(5), 704–717. Olivares, I., Svenning, J. C., van Bodegom, P. M., & Balslev, H. (2015). Effects of Warming and Drought on the Vegetation and Plant Diversity in the Amazon Basin. Botanical Review, 81(1), 42–69. https://doi.org/10.1007/S12229-014-9149-8 O’neill, B. C., Tebaldi, C., van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., Knutti, R., Kriegler, E., Lamarque, J.-F., Lowe, J., Meehl, G. A., Moss, R., Riahi, K., & Sanderson, B. M. (2016). The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev, 9, 3461–3482. https://doi.org/10.5194/gmd-9-3461-2016 Parsons, L. A. (2020). Implications of CMIP6 Projected Drying Trends for 21st Century Amazonian Drought Risk. Earth’s Future, 8(10), e2020EF001608. https://doi.org/10.1029/2020EF001608 Rezende, L. F. C., de Castro, A. A., von Randow, C., Ruscica, R., Sakschewski, B., Papastefanou, P., Viovy, N., Thonicke, K., S?rensson, A., Rammig, A., & Cavalcanti, I. F. A. (2022). Impacts of Land Use Change and Atmospheric CO2 on Gross Primary Productivity (GPP), Evaporation, and Climate in Southern Amazon. Journal of Geophysical Research: Atmospheres, 127(8), e2021JD034608. https://doi.org/10.1029/2021JD034608 Ritter, F., Berkelhammer, M., & Garcia-Eidell, C. (2020). Distinct response of gross primary productivity in five terrestrial biomes to precipitation variability. Communications Earth & Environment 2020 1:1, 1(1), 1–8. https://doi.org/10.1038/s43247-020-00034-1 Ruiz-V?squez, M., Arias, P. A., Mart?nez, J. A., & Espinoza, J. C. (2020). Effects of Amazon basin deforestation on regional atmospheric circulation and water vapor transport towards tropical South America. Climate Dynamics, 54(9–10), 4169–4189. https://doi.org/10.1007/S00382-020-05223-4 Sampaio, G., Shimizu, M. H., Guimar?es-J?nior, C. A., Alexandre, F., Guatura, M., Cardoso, M., Domingues, T. F., Rammig, A., von Randow, C., Rezende, L. F. C., & Lapola, D. M. (2021). CO2 physiological effect can cause rainfall decrease as strong as large-scale deforestation in the Amazon. Biogeosciences, 18(8), 2511–2525. https://doi.org/10.5194/bg-18-2511-2021 Schneider, U., Becker, A., Finger, P., Meyer-Christoffer, A., Rudolf, B., & Ziese, M. (2011). GPCC full data reanalysis version 6.0 at 0.5: Monthly land-surface precipitation from rain-gauges built on GTS-based and historic data. GPCC Data Rep., Doi, 10. Shimizu, M. H., Anochi, J. A., & Kayano, M. T. (2022). Precipitation patterns over northern Brazil basins: climatology, trends, and associated mechanisms. Theoretical and Applied Climatology, 147(1–2), 767–783. https://doi.org/10.1007/S00704-021-03841-4 Silva Junior, C. H. L., Pess?a, A. C. M., Carvalho, N. S., Reis, J. B. C., Anderson, L. O., & Arag?o, L. E. O. C. (2021). The Brazilian Amazon deforestation rate in 2020 is the greatest of the decade. In Nature Ecology and Evolution (Vol. 5, Issue 2, pp. 144–145). Nature Research. https://doi.org/10.1038/s41559-020-01368-x Spracklen, D. v., & Garcia-Carreras, L. (2015). The impact of Amazonian deforestation on Amazon basin rainfall. Geophysical Research Letters, 42(21), 9546–9552. https://doi.org/10.1002/2015GL066063 Wang, C., & Dong, S. (2010). Is the basin-wide warming in the North Atlantic Ocean related to atmospheric carbon dioxide and global warming? Geophysical Research Letters, 37(8), 8707. https://doi.org/10.1029/2010GL042743 Wang, X. Y., Li, X., Zhu, J., & Tanajura, C. A. S. (2018). The strengthening of Amazonian precipitation during the wet season driven by tropical sea surface temperature forcing. Environmental Research Letters, 13(9), 094015. https://doi.org/10.1088/1748-9326/AADBB9 Wang, Y., Xiao, J., Li, X., & Niu, S. (2022). Global evidence on the asymmetric response of gross primary productivity to interannual precipitation changes. Science of The Total Environment, 814, 152786. https://doi.org/10.1016/J.SCITOTENV.2021.152786 Yoon, J. H., & Zeng, N. (2010). An Atlantic influence on Amazon rainfall. Climate Dynamics, 34(2), 249–264. https://doi.org/10.1007/s00382-009-0551-6
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83429-
dc.description.abstract亞馬遜地區擁有全世界面積最大的雨林,並且有豐富的生物多樣性,同時有地球之肺之稱,然而從觀測資料顯示,此處在1979到2014年降水年際變化增加,濕季變得更濕、乾季變得更乾,過去的研究探討造成這個現象的因子可能主要有自然變異和人為影響。自然變異之中以大西洋數十年週期振盪與太平洋十年振盪的影響最大,而人為影響中,砍伐森林和全球暖化都可能改變當地氣候,但是目前研究並沒有指出各個因子的貢獻程度為何,本研究利用全球氣候模式(National Center for Atmospheric Sciences, Community Earth System Model)設計四組理想實驗,分別為控制北大西洋和北太平洋的海溫,讓其海溫維持氣候平均值的季節循環,以及去除人為土地利用變遷與二氧化碳濃度升高的趨勢。 實驗結果指出在固定北大西洋海溫實驗中,降水季節性趨勢和控制組的差異最顯著,顯示北大西洋海溫影響亞馬遜降水的年際變化的重要性,我們同時做了一組移除北大西洋海溫上升趨勢的實驗,發現這組實驗對於降水年際變化的增加和固定北大西洋季節循環海溫實驗中有相同程度的改變,這結果指出北大西洋海溫的上升趨勢可能是造成亞馬遜地區的降水年際變化變大的主因。而在第六次耦合模式比對專案(Coupled Model Intercomparison Project Phase 6, CMIP6)中,當北大西洋暖化時,1979到2014年有14個模式同時顯示乾季變乾、濕季變濕的情形,然而在未來人為氣候變遷情境下,雖然北大西洋海溫有持續上升的趨勢,亞馬遜降水年際變化沒有增加的更多,顯示氣候暖化下的影響因子會隨著不同的氣候狀態而有所不同,未來研究將持續探討其背後不同的影響機制,對於未來亞馬遜雨林降水的變化以及其相對應的水、碳循環,可以有更準確的推估。zh_TW
dc.description.abstractThe Amazon precipitation annual range (AR) increases from 1979 to 2014. This change may result from natural variabilities and anthropogenic forcings (such as local land-use changes and global warming). The Atlantic Multidecadal Oscillation (AMO) and Pacific Decadal Oscillation (PDO) are two of the leading natural variabilities that significantly affect the long-term climate of Amazon. Amazon deforestation can cause local climate changes, including decreasing the mean precipitation. Furthermore, the increased atmospheric CO2 concentration can change patterns and characteristics of precipitation by radiative forcing and biophysical processes. However, the relative contributions from the natural and anthropogenic forcings on the Amazon precipitation AR remain unclear. This study uses National Center for Atmospheric Research (NCAR) Community Earth System Model (CESM) with a series of idealized experiments from 1970 to 2014 to explore each element's role in affecting Amazon AR by setting sea surface temperature (SST) as a climatological seasonal cycle over the North Atlantic and North Pacific, and fixing the land type and CO2 concentration at the level of 1970. The result shows that each factor contributes different magnitudes of changes in the precipitation trend in wet and dry seasons. In the North Atlantic climatological seasonal cycle of SST experiment, the precipitation AR trend over Amazon is the lowest. I further conduct the North Atlantic SST detrend experiment and find that North Atlantic SST warming trend seems to be the key to the increased AR over Amazon from 1979 to 2014, which can be revealed by the Coupled Model Intercomparison Project Phase 6 (CMIP6) model archive as well. In three-quarters (about 19 models) of the CMIP6 model archive under historical scenarios, the Amazon precipitation AR increases. In the future scenario, however, the larger North Atlantic SST warming does not necessarily lead to higher precipitation AR in the Amazon. Instead, the dry-season precipitation would keep decreasing, and the wet-season precipitation does not have a significant trend in the future, which deserves further research to better understand Amazon climate changes.en
dc.description.provenanceMade available in DSpace on 2023-03-19T21:07:23Z (GMT). No. of bitstreams: 1
U0001-1407202215074600.pdf: 4038158 bytes, checksum: bff7947bd47fc196c8aee8b6a31b2045 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents口試委員會審定書 # 誌謝 i 中文摘要 ii ABSTRACT iv CONTENTS vi LIST OF FIGURES viii LIST OF TABLES xii Chapter 1 Introduction 1 Chapter 2 Data and Methodology 5 2.1 Observational Datasets and CMIP6 Model Outputs 5 2.2 Model Experiments Design 5 2.3 Atmospheric Moisture Budget Analysis 7 2.4 Annual Range Analysis 8 2.5 Moist Static Energy (MSE) 8 Chapter 3 Results 9 3.1 The Relative Contributions to Precipitation AR from Model Experiments 9 3.2 The Effect of Sea Surface Temperature Variability and Warming Trend over the North Atlantic 10 3.3 The Warming Trend of Sea Surface Temperature in North Atlantic 13 3.4 Projection of Future Precipitation Changes in the Amazon 15 3.5 The impact on the Amazon ecosystem 16 Chapter 4 Discussion 18 4.1 Changes in Precipitation AR under Global Warming 18 4.2 Implications for the Carbon Cycle and Climate Extremes 19 Chapter 5 Conclusion 21 FIGURES 24 TABLES 41 SUPPLEMENTARY 46 REFERENCES 48
dc.language.isoen
dc.title探討亞馬遜地區降水年際變化增加的因子zh_TW
dc.titleExploring the Factors Controlling the Increased Annual Range of Amazon Precipitationen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee梁禹喬(Yu-Chiao Liang),黃彥婷(Yen-Ting Hwang),陳奕穎(Yi-Ying Chen),翁葳(Wei Weng)
dc.subject.keyword亞馬遜,降水季節性,CESM,自然變異,砍伐森林,全球暖化,zh_TW
dc.subject.keywordAmazon,precipitation annual range,CESM,natural variability,deforestation,global warming,en
dc.relation.page57
dc.identifier.doi10.6342/NTU202201462
dc.rights.note未授權
dc.date.accepted2022-09-19
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept大氣科學研究所zh_TW
顯示於系所單位:大氣科學系

文件中的檔案:
檔案 大小格式 
U0001-1407202215074600.pdf
  目前未授權公開取用
3.94 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved