Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83427
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭如忠(Ru-Jong Jeng)
dc.contributor.authorChien-Jung Wangen
dc.contributor.author王千榕zh_TW
dc.date.accessioned2023-03-19T21:07:20Z-
dc.date.copyright2022-10-19
dc.date.issued2022
dc.date.submitted2022-09-16
dc.identifier.citation1. Yuan, H.; Zhang, S.; Lu, C.; He, S.; An, F., Improved interfacial adhesion in carbon fiber/polyether sulfone composites through an organic solvent-free polyamic acid sizing. Applied Surface Science 2013, 279, 279-284. 2. Hao, R.; Jiao, X.; Zhang, X.; Tian, Y., Fe3O4/graphene modified waterborne polyimide sizing agent for high modulus carbon fiber. Applied Surface Science 2019, 485, 304-313. 3. Jung, H.; Bae, K. J.; Jin, J.-u.; Oh, Y.; Hong, H.; Youn, S. J.; You, N.-H.; Yu, J., The effect of aqueous polyimide sizing agent on PEEK based carbon fiber composites using experimental techniques and molecular dynamics simulations. Functional Composites and Structures 2020, 2 (2). 4. Yuan, C.; Li, D.; Yuan, X.; Liu, L.; Huang, Y., Preparation of semi-aliphatic polyimide for organic-solvent-free sizing agent in CF/PEEK composites. Composites Science and Technology 2021, 201. 5. Ding, Y.; Bikson, B.; Nelson, J. K., Polyimide Membranes Derived from Poly(amic acid) Salt Precursor Polymers. 1. Synthesis and Characterization. Macromolecules 2002, 35 (3), 905-911. 6. Li, Q.; Yamashita, T.; Horie, K.; Yoshimoto, H.; Miwa, T.; Maekawa, Y., Preparation and absorption spectrum studies of aromatic and alicyclic poly(amide acid) ammonium salts in water and DMF and in films. Journal of Polymer Science Part A: Polymer Chemistry 1998, 36 (8), 1329-1340. 7. Yoda, N.; Hiramoto, H., New Photosensitive High Temperature Polymers for Electronic Applications. Journal of Macromolecular Science: Part A - Chemistry 2007, 21 (13-14), 1641-1663. 8. Kubota, S.; Moriwaki, T.; Ando, T.; Fukami, A., Preparation of positive photoreactive polyimides and their characterization. Journal of Applied Polymer Science 1987, 33 (5), 1763-1775. 9. Facinelli, J. V.; Gardner, S. L.; Dong, L.; Sensenich, C. L.; Davis, R. M.; Riffle, J. S., Controlled Molecular Weight Polyimides from Poly(amic acid) Salt Precursors. Macromolecules 1996, 29 (23), 7342-7350. 10. Mi, Z.; Liu, Z.; Yao, J.; Wang, C.; Zhou, C.; Wang, D.; Zhao, X.; Zhou, H.; Zhang, Y.; Chen, C., Transparent and soluble polyimide films from 1,4:3,6-dianhydro-D-mannitol based dianhydride and diamines containing aromatic and semiaromatic units: Preparation, characterization, thermal and mechanical properties. Polymer Degradation and Stability 2018, 151, 80-89. 11. Williams, J. C.; Nguyen, B. N.; McCorkle, L.; Scheiman, D.; Griffin, J. S.; Steiner, S. A., 3rd; Meador, M. A., Highly Porous, Rigid-Rod Polyamide Aerogels with Superior Mechanical Properties and Unusually High Thermal Conductivity. ACS Appl Mater Interfaces 2017, 9 (2), 1801-1809. 12. Fan, W.; Zuo, L.; Zhang, Y.; Chen, Y.; Liu, T., Mechanically strong polyimide / carbon nanotube composite aerogels with controllable porous structure. Composites Science and Technology 2018, 156, 186-191. 13. Liao, W. H.; Yang, S. Y.; Hsiao, S. T.; Wang, Y. S.; Li, S. M.; Ma, C. C.; Tien, H. W.; Zeng, S. J., Effect of octa(aminophenyl) polyhedral oligomeric silsesquioxane functionalized graphene oxide on the mechanical and dielectric properties of polyimide composites. ACS Appl Mater Interfaces 2014, 6 (18), 15802-12. 14. Dine-Hart, R. A.; Wright, W. W., Preparation and fabrication of aromatic polyimides. Journal of Applied Polymer Science 1967, 11 (5), 609-627. 15. Wang, C.-Y.; Li, G.; Jiang, J.-M., Synthesis and properties of fluorinated poly(ether ketone imide)s based on a new unsymmetrical and concoplanar diamine: 3,5-Dimethyl-4-(4-amino-2-trifluoromethylphenoxy)-4'-aminobenzophenone. Polymer 2009, 50 (7), 1709-1716. 16. Xiao, T.; Fan, X.; Fan, D.; Li, Q., High thermal conductivity and low absorptivity/ emissivity properties of transparent fluorinated polyimide films. Polymer Bulletin 2017, 74 (11), 4561-4575. 17. Cao, H.; Ma, X.; Sun, S.; Su, H.; Tan, T., A new photocrosslinkable hydrogel based on a derivative of polyaspartic acid for the controlled release of ketoprofen. Polymer Bulletin 2009, 64 (6), 623-632. 18. Alexandratos, S. D., Ion-Exchange Resins: A Retrospective from Industrial and Engineering Chemistry Research. Industrial & Engineering Chemistry Research 2009, 48 (1), 388-398. 19. Jalalvandi, E.; Shavandi, A., Polysuccinimide and its derivatives: Degradable and water soluble polymers (review). European Polymer Journal 2018, 109, 43-54. 20. Vajihinejad, V.; Gumfekar, S. P.; Bazoubandi, B.; Rostami Najafabadi, Z.; Soares, J. B. P., Water Soluble Polymer Flocculants: Synthesis, Characterization, and Performance Assessment. Macromolecular Materials and Engineering 2018, 304 (2). 21. Hansen, J. E.; Vogel, J. A.; Stelter, G. P.; Consolazio, C. F., Oxygen uptake in man during exhaustive work at sea level and high altitude. Journal of Applied Physiology 1967, 23 (4), 511-522. 22. Hasegawa, M.; Horiuchi, M.; Wada, Y., Polyimides Containing Trans-1,4-cyclohexane Unit (II). Low-K and Low-CTE Semi- and Wholly Cycloaliphatic Polyimides. High Performance Polymers 2007, 19 (2), 175-193. 23. Hasegawa, M., Development of Solution-Processable, Optically Transparent Polyimides with Ultra-Low Linear Coefficients of Thermal Expansion. Polymers (Basel) 2017, 9 (10). 24. Zhuang, Y.; Seong, J. G.; Lee, Y. M., Polyimides containing aliphatic/alicyclic segments in the main chains. Progress in Polymer Science 2019, 92, 35-88. 25. Zhai, L.; Yang, S.; Fan, L., Preparation and characterization of highly transparent and colorless semi-aromatic polyimide films derived from alicyclic dianhydride and aromatic diamines. Polymer 2012, 53 (16), 3529-3539. 26. Wua, G.-l.; Liub, J.-g.; Lia, Z.-b.; Geb, Z.-y.; Fanb, L.; Yang, S.-y., Synthesis and characterization of organo-soluble fluorinated polyimides from 4,4'-bis(3-amino-5-trifluoromethylphenoxy)-biphenyl and various aromatic dianhydrides. Chinese Journal of Polymer Science 2005, 23, 55-61. 27. Yin, D.; Li, Y.; Yang, H.; Yang, S.; Fan, L.; Liu, J., Synthesis and characterization of novel polyimides derived from 1,1-bis[4-(4'-aminophenoxy)phenyl]-1- [3'',5''-bis(trifluoromethyl)phenyl]-2,2,2-trifluoroethane. Polymer 2005, 46 (9), 3119-3127. 28. Choi, M.-C.; Wakita, J.; Ha, C.-S.; Ando, S., Highly Transparent and Refractive Polyimides with Controlled Molecular Structure by Chlorine Side Groups. Macromolecules 2009, 42 (14), 5112-5120. 29. Xie, K.; Zhang, S. Y.; Liu, J. G.; He, M. H.; Yang, S. Y., Synthesis and characterization of soluble fluorine-containing polyimides based on 1,4-bis(4-amino-2-trifluoromethylphenoxy)benzene. Journal of Polymer Science Part A: Polymer Chemistry 2001, 39 (15), 2581-2590. 30. Wang, C.; Li, G.; Jiang, J., Novel Soluble Polyimide Containing 4-tert-Butyltoluene Moiety: Synthesis and Characterization. Chinese Journal of Chemistry 2009, 27 (11), 2255-2260. 31. Seino, H.; Mochizuki, A.; Ueda, M., Synthesis of aliphatic polyimides containing adamantyl units. Journal of Polymer Science Part A: Polymer Chemistry 1999, 37 (18), 3584-3590. 32. Choi, H.; Chung, I. S.; Hong, K.; Park, C. E.; Kim, S. Y., Soluble polyimides from unsymmetrical diamine containing benzimidazole ring and trifluoromethyl pendent group. Polymer 2008, 49 (11), 2644-2649. 33. Mathews, A. S.; Kim, I.; Ha, C.-S., Fully aliphatic polyimides from adamantane-based diamines for enhanced thermal stability, solubility, transparency, and low dielectric constant. Journal of Applied Polymer Science 2006, 102 (4), 3316-3326. 34. Sasaki, T.; Moriuchi, H.; Yano, S.; Yokota, R., High thermal stable thermoplastic–thermosetting polyimide film by use of asymmetric dianhydride (a-BPDA). Polymer 2005, 46 (18), 6968-6975. 35. Nagata, M.; Kiyotsukuri, T.; Moriya, T.; Tsutsumi, N.; Sakai, W., Novel regular network polyimide films from mellitic acid and aliphatic and aromatic diamines or diisocyanates. Polymer 1995, 36 (13), 2657-2662. 36. Liu, H.; Zhai, L.; Bai, L.; He, M.; Wang, C.; Mo, S.; Fan, L., Synthesis and characterization of optically transparent semi-aromatic polyimide films with low fluorine content. Polymer 2019, 163, 106-114. 37. Hu, J.; Zhao, T.; Ji, X.; Peng, X.; Jin, W.; Yang, W.; Zhang, L.; Gao, J.; Dang, A.; Li, H.; Li, T., Synthesis and electrochemical property of amorphous carbon nanotubes wrapped sulfur particles as cathode material for lithium-sulfur batteries. Chemical Physics Letters 2017, 688, 59-65. 38. Liu, C.; Pei, X.; Mei, M.; Chou, G.; Huang, X.; Wei, C., Synthesis and characterization of organosoluble, transparent, and hydrophobic fluorinated polyimides derived from 3,3′-diisopropyl-4,4′-diaminodiphenyl-4′′-trifluoromethyltoluene. High Performance Polymers 2016, 28 (10), 1114-1123. 39. Yang, G.; Zhang, R.; Huang, H.; Liu, L.; Wang, L.; Chen, Y., Synthesis of novel biobased polyimides derived from isomannide with good optical transparency, solubility and thermal stability. RSC Advances 2015, 5 (83), 67574-67582. 40. Hasegawa, M.; Fujii, M.; Ishii, J.; Yamaguchi, S.; Takezawa, E.; Kagayama, T.; Ishikawa, A., Colorless polyimides derived from 1S,2S,4R,5R-cyclohexanetetracarboxylic dianhydride, self-orientation behavior during solution casting, and their optoelectronic applications. Polymer 2014, 55 (18), 4693-4708. 41. Watanabe, Y.; Shibasaki, Y.; Ando, S.; Ueda, M., Synthesis of semiaromatic polyimides from aromatic diamines containing adamantyl units and alicyclic dianhydrides. Journal of Polymer Science Part A: Polymer Chemistry 2004, 42 (1), 144-150. 42. Chern, Y.-T.; Chung, W.-H., Preparation and properties of polyamides and polyimides derived from 1,3-diaminoadamantane. Journal of Polymer Science Part A: Polymer Chemistry 1996, 34 (1), 117-124. 43. Jin, Q.; Yamashita, T.; Horie, K.; Yokota, R.; Mita, I., Polyimides with alicyclic diamines. I. Syntheses and thermal properties. Journal of Polymer Science Part A: Polymer Chemistry 1993, 31 (9), 2345-2351. 44. Hou, Y.; Chen, G.; Pei, X.; Fang, X., Synthesis and characterization of novel optically transparent and organosoluble polyimides based on diamines containing cyclohexane moiety. Journal of Polymer Research 2012, 19 (9). 45. Yang, J.; Lee, M.-H., A Water-Soluble Polyimide Precursor:Synthesis and Characterization of Poly(amic acid) Salt. Macromolecular Research 2004, 12, 263-268. 46. Dwivedi, S.; Nag, A.; Sakamoto, S.; Funahashi, Y.; Harimoto, T.; Takada, K.; Kaneko, T., High-temperature resistant water-soluble polymers derived from exotic amino acids. RSC Advances 2020, 10 (62), 38069-38074. 47. Dwivedi, S.; Kaneko, T., Molecular Design of Soluble Biopolyimide with High Rigidity. Polymers (Basel) 2018, 10 (4). 48. Dwivedi, S.; Kaneko, T., Robustification of ITO nanolayer by surface-functionalization of transparent biopolyimide substrates. Journal of Applied Polymer Science 2018, 135 (40). 49. Li, B.; Liu, T.; Zhong, W.-H., High modulus aliphatic polyimide from 1, 3-diaminopropane and ethylenediaminetetraacetic dianhydride: Water soluble to self-patterning. Polymer 2011, 52 (22), 5186-5192. 50. Ma, Q.; Gu, Y.; Li, M.; Wang, S.; Zhang, Z., Effects of surface treating methods of high-strength carbon fibers on interfacial properties of epoxy resin matrix composite. Applied Surface Science 2016, 379, 199-205. 51. Sun, J.; Zhao, F.; Yao, Y.; Jin, Z.; Liu, X.; Huang, Y., High efficient and continuous surface modification of carbon fibers with improved tensile strength and interfacial adhesion. Applied Surface Science 2017, 412, 424-435. 52. Bessonov, M. I.; Zubkov, V. A., Polyamic acids and polyimides: synthesis, transformations and structure. 1993. 53. Shao, L.; Chung, T.; Goh, S.; Pramoda, K., Polyimide modification by a linear aliphatic diamine to enhance transport performance and plasticization resistance. Journal of Membrane Science 2005. 54. Varganici, C.-D.; Rosu, D.; Barbu-Mic, C.; Rosu, L.; Popovici, D.; Hulubei, C.; Simionescu, B. C., On the thermal stability of some aromatic-aliphatic polyimides. Journal of Analytical and Applied Pyrolysis 2015, 113, 390-401. 55. Brink, M. H.; Brandom, D. K.; Wilkes, G. L.; McGrath, J. E., Synthesis and characterization of a novel ‘3F’-based fluorinated monomer for fluorine-containing polyimides. Polymer 1994, 35 (23), 5018-5023. 56. Rivas, B. L.; Pereira, E. D.; Moreno-Villoslada, I., Water-soluble polymer–metal ion interactions. Progress in Polymer Science 2003, 28 (2), 173-208. 57. Zhao, Y.-L.; Jones, W. H.; Monnat, F.; Wudl, F.; Houk, K. N., Mechanisms of Thermal Decompositions of Polysulfones: A DFT and CBS-QB3 Study. Macromolecules 2005, 38 (24), 10279-10285. 58. Yaghmaei, S.; Khodagholian, S.; Kaiser, J. M.; Tham, F. S.; Mueller, L. J.; Morton, T. H., Chelation of a Proton by an Aliphatic Tertiary Diamine. Journal of the American Chemical Society 2008, 130 (25), 7836-7838. 59. Cai, D.; Su, J.; Huang, M.; Liu, Y.; Wang, J.; Dai, L., Synthesis, characterization and hydrolytic stability of poly (amic acid) ammonium salt. Polymer Degradation and Stability 2011.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83427-
dc.description.abstract聚醯亞胺(Polyimide, PI)由於具優異的熱、電氣和機械性質,被廣泛受到高科技領域的應用,為當今重要的工程塑膠之一。本研究利用二胺(Diamine)與二酸酐(Dianhydride),以二步法先經加成反應(Addition Reaction)聚合成聚醯胺酸高分子(Polyamic Acid, PAA),接著,利用不同種類的有機鹼(Organic Base)與羧基(Carboxyl Group)反應,藉由離子化的過程使其具親水性,形成水性聚醯胺酸高分子(Polyamic Acid Salt, PAAS),最後,再經高溫環化(Imidization)形成聚醯亞胺高分子。後續將其應用在碳纖維上漿製程中,以上漿步驟將碳纖維表面改質成含有PI之界面層,來增強與碳纖維和後續耐高溫樹脂(PPS、PA6、PEEK、PEAK)之結合性,並利用界面剪切強度(IFSS)檢測方法評估,結果顯示以本研究之PI改質之碳纖維與耐高溫樹脂(PPS、PA6)的介面性能增加 50% 左右。除此之外,利用穩定性加速測試儀(LUMiSizer)測試水性漿液的性質,結果顯示出本研究之水性聚醯胺酸漿料有良好的安定性。藉由傅立葉式紅外線光譜儀(Fourier Transform Infrared Spectrometer, FT-IR)、核磁共振儀(Nuclear Magnetic Resonance Spectrometer, NMR)、熱重損失分析儀(Thermogravimetric Analyzer, TGA)、示差掃描熱量分析儀(Differential Scanning Calorimeter, DSC)、動態光散射粒徑分析儀(Dynamic Light Scattering Particle Size Distribution, DLS)、界面電位分析儀(Zeta Potential Analyzer, Zeta)和酸鹼度計(pH Meter)來鑑定聚合物之結構、熱性質和乳液性質。綜上所述,本實驗成功地藉由使用離子化試劑進行簡單的處理,製備出貯存穩定性高的耐熱水性漿液,可以與多種高階工程塑膠匹配,而且,此聚醯胺酸水性上漿劑製備過程簡單、生產效率高,方便實現工業化的製備與應用。zh_TW
dc.description.abstractPolyimide (PI) is widely used in high-technology fields owing to its excellent thermal, electrical, and mechanical properties and is one of the most important engineering plastics nowadays. In this study, polyamic acid (PAA) solution was synthesized based on diamine and dianhydride monomers via addition reaction. The water dispersible PAA was achieved by using ionization process to obtain polyamic acid salt (PAAS) with the addition of different organic bases. In order to improve the interface properties of carbon fiber composites, water dispersible PAA was utilized as a coating layer on the carbon fiber surface. After modification with PAA, the interfacial shear strength (IFSS) of carbon fiber composites was significantly increased. In conclusion, this research has successfully developed a water-dispersible slurry with high temperature resistance and storage stability via the ionization process, making it a potential industrial application prospect in improving the interface performance of carbon fiber composites.en
dc.description.provenanceMade available in DSpace on 2023-03-19T21:07:20Z (GMT). No. of bitstreams: 1
U0001-1409202216181300.pdf: 4342567 bytes, checksum: ecce2af4039b58afbf1628a305311f54 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents誌謝 ii 摘要 iii Abstract iv 目錄 v 圖目錄 vii 表目錄 x 第一章、緒論 1 第二章、文獻回顧 4 2.1 聚醯胺酸簡介 4 2.2 聚醯亞胺簡介 8 2.2.1 聚醯亞胺的性質與應用 8 2.2.2 聚醯亞胺的合成 10 2.2.2.1 縮合法(Condensation Reaction) 10 2.2.2.2 加成法(Addition Reaction) 14 2.2.2.3 改質法 15 2.3 提升溶解性之策略 16 2.4 碳纖維強化聚合體複材 26 2.5 研究動機 29 第三章、實驗內容 32 3.1 藥品及溶劑 32 3.2 實驗儀器 40 3.3 實驗流程圖 43 3.4 合成步驟 46 3.4.1 全芳香族水性聚醯胺酸漿料之製備 46 3.4.2 半芳香族水性聚醯胺酸漿料之製備 47 第四章、結果與討論 49 4.1 不同主鏈結構的聚醯胺酸之合成與性質探討 50 4.1.1 溶解度測試 51 4.1.2 熱性質分析 52 4.2 全芳香族聚醯胺酸之性質探討 55 4.2.1 當量比對乳液和熱性質的影響 55 4.2.1.1 乳液性質分析 55 4.2.1.2 熱性質分析 56 4.2.2 對離子對乳液和熱性質的影響 59 4.2.2.1 乳液性質分析 61 4.2.2.2 熱性質分析 63 4.3 碳纖維之上漿測試 66 4.3.1 乳液性質分析 66 4.3.2 熱性質分析 67 4.3.3 表面張力測試 68 4.3.4 表面結合力測試 69 第五章、結論與未來展望 71 第六章、參考文獻 72
dc.language.isozh-TW
dc.subject複合材料界面剪切強度zh_TW
dc.subject離子化zh_TW
dc.subject水性聚醯胺酸zh_TW
dc.subject表面改質劑zh_TW
dc.subjectWaterborne polyamic aciden
dc.subjectSizing agenten
dc.subjectInterfacial shear strengthen
dc.subjectIonizationen
dc.title水性聚醯胺酸之製備與應用zh_TW
dc.titleA Study on Synthesis and Application of Waterborne Polyamic aciden
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee童世煌(Shih-Huang Tung),邱文英(Wen-Yen Chiu),吳建欣(Chien-Hsin Wu),黃英治(Ying-Chi Huang)
dc.subject.keyword離子化,水性聚醯胺酸,表面改質劑,複合材料界面剪切強度,zh_TW
dc.subject.keywordIonization,Waterborne polyamic acid,Sizing agent,Interfacial shear strength,en
dc.relation.page76
dc.identifier.doi10.6342/NTU202203405
dc.rights.note未授權
dc.date.accepted2022-09-19
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-1409202216181300.pdf
  未授權公開取用
4.24 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved