Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 免疫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83385
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor顧家綺(Chia-Chi Ku)
dc.contributor.authorShi-Xuan Chengen
dc.contributor.author程識軒zh_TW
dc.date.accessioned2023-03-19T21:06:17Z-
dc.date.copyright2022-10-14
dc.date.issued2022
dc.date.submitted2022-09-22
dc.identifier.citationAdachi, T., Kobayashi, T., Sugihara, E., Yamada, T., Ikuta, K., Pittaluga, S., Saya, H., Amagai, M., & Nagao, K. (2015). Hair follicle-derived IL-7 and IL-15 mediate skin-resident memory T cell homeostasis and lymphoma. Nature medicine, 21(11), 1272-1279. https://doi.org/10.1038/nm.3962 Allan, R. S., Waithman, J., Bedoui, S., Jones, C. M., Villadangos, J. A., Zhan, Y., Lew, A. M., Shortman, K., Heath, W. R., & Carbone, F. R. (2006). Migratory dendritic cells transfer antigen to a lymph node-resident dendritic cell population for efficient CTL priming. Immunity, 25(1), 153-162. https://doi.org/10.1016/j.immuni.2006.04.017 Anderson, D. M., Johnson, L., Glaccum, M. B., Copeland, N. G., Gilbert, D. J., Jenkins, N. A., Valentine, V., Kirstein, M. N., Shapiro, D. N., Morris, S. W., Grabstein, K., & Cosman, D. (1995). Chromosomal assignment and genomic structure of Il15. Genomics, 25(3), 701-706. https://doi.org/https://doi.org/10.1016/0888-7543(95)80013-C Bauer, D., Alt, M., Dirks, M., Buch, A., Heilingloh, C. S., Dittmer, U., Giebel, B., G?rgens, A., Palapys, V., Kasper, M., Eis-H?binger, A. M., Sodeik, B., Heiligenhaus, A., Roggendorf, M., & Krawczyk, A. (2017). A Therapeutic Antiviral Antibody Inhibits the Anterograde Directed Neuron-to-Cell Spread of Herpes Simplex Virus and Protects against Ocular Disease. Front Microbiol, 8, 2115. https://doi.org/10.3389/fmicb.2017.02115 Bedoui, S., & Greyer, M. (2014). The role of dendritic cells in immunity against primary herpes simplex virus infections. Front Microbiol, 5, 533. https://doi.org/10.3389/fmicb.2014.00533 Bedoui, S., Whitney, P. G., Waithman, J., Eidsmo, L., Wakim, L., Caminschi, I., Allan, R. S., Wojtasiak, M., Shortman, K., Carbone, F. R., Brooks, A. G., & Heath, W. R. (2009). Cross-presentation of viral and self antigens by skin-derived CD103+ dendritic cells. Nature Immunology, 10(5), 488-495. https://doi.org/10.1038/ni.1724 Cliffe, A., Chang, L., Colgrove, R., & Knipe, D. M. (2014). Herpes Simplex Virus. In Reference Module in Biomedical Sciences. Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-801238-3.00080-5 Cumberbatch, M., Dearman, R. J., Griffiths, C. E. M., & Kimber, I. (2000). Langerhans cell migration [https://doi.org/10.1046/j.1365-2230.2000.00678.x]. Clinical and Experimental Dermatology, 25(5), 413-418. https://doi.org/https://doi.org/10.1046/j.1365-2230.2000.00678.x Cunningham, Anthony L., Diefenbach, Russell J., Miranda?Saksena, M., Bosnjak, L., Kim, M., Jones, C., & Douglas, Mark W. (2006). The Cycle of Human Herpes Simplex Virus Infection: Virus Transport and Immune Control. The Journal of Infectious Diseases, 194(Supplement_1), S11-S18. https://doi.org/10.1086/505359 Cyster, J. G. (1999). Chemokines and the homing of dendritic cells to the T cell areas of lymphoid organs. J Exp Med, 189(3), 447-450. https://doi.org/10.1084/jem.189.3.447 Eidsmo, L., Allan, R., Caminschi, I., van Rooijen, N., Heath, W. R., & Carbone, F. R. (2009). Differential migration of epidermal and dermal dendritic cells during skin infection. J Immunol, 182(5), 3165-3172. https://doi.org/10.4049/jimmunol.0802950 Fehniger, T. A., & Caligiuri, M. A. (2001). Interleukin 15: biology and relevance to human disease. Blood, 97(1), 14-32. https://doi.org/10.1182/blood.v97.1.14 Flamand, L., Stefanescu, I., & Menezes, J. (1996). Human herpesvirus-6 enhances natural killer cell cytotoxicity via IL-15. J Clin Invest, 97(6), 1373-1381. https://doi.org/10.1172/jci118557 Grabstein, K. H., Eisenman, J., Shanebeck, K., Rauch, C., Srinivasan, S., Fung, V., Beers, C., Richardson, J., Schoenborn, M. A., Ahdieh, M., & et al. (1994). Cloning of a T cell growth factor that interacts with the beta chain of the interleukin-2 receptor. Science, 264(5161), 965-968. https://doi.org/10.1126/science.8178155 Greyer, M., Whitney, P. G., Stock, A. T., Davey, G. M., Tebartz, C., Bachem, A., Mintern, J. D., Strugnell, R. A., Turner, S. J., Gebhardt, T., O'Keeffe, M., Heath, W. R., & Bedoui, S. (2016). T Cell Help Amplifies Innate Signals in CD8(+) DCs for Optimal CD8(+) T Cell Priming. Cell Rep, 14(3), 586-597. https://doi.org/10.1016/j.celrep.2015.12.058 Henri, S., Guilliams, M., Poulin, L. F., Tamoutounour, S., Ardouin, L., Dalod, M., & Malissen, B. (2010). Disentangling the complexity of the skin dendritic cell network. Immunol Cell Biol, 88(4), 366-375. https://doi.org/10.1038/icb.2010.34 Hu, Q., Ye, X., Qu, X., Cui, D., Zhang, L., Xu, Z., Wan, H., Zhang, L., & Tao, W. (2018). Discovery of a novel IL-15 based protein with improved developability and efficacy for cancer immunotherapy. Sci Rep, 8(1), 7675. https://doi.org/10.1038/s41598-018-25987-4 Ishikawa, H., Ma, Z., & Barber, G. N. (2009). STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature, 461(7265), 788-792. https://doi.org/10.1038/nature08476 Jakob, T., & Udey, M. C. (1998). Regulation of E-cadherin-mediated adhesion in Langerhans cell-like dendritic cells by inflammatory mediators that mobilize Langerhans cells in vivo. J Immunol, 160(8), 4067-4073. Justice, M. J., Noveroske, J. K., Weber, J. S., Zheng, B., & Bradley, A. (1999). Mouse ENU Mutagenesis. Human Molecular Genetics, 8(10), 1955-1963. https://doi.org/10.1093/hmg/8.10.1955 Kashem, S. W., Haniffa, M., & Kaplan, D. H. (2017). Antigen-Presenting Cells in the Skin. Annu Rev Immunol, 35, 469-499. https://doi.org/10.1146/annurev-immunol-051116-052215 Knickelbein, J. E., Khanna, K. M., Yee, M. B., Baty, C. J., Kinchington, P. R., & Hendricks, R. L. (2008). Noncytotoxic lytic granule-mediated CD8+ T cell inhibition of HSV-1 reactivation from neuronal latency. Science (New York, N.Y.), 322(5899), 268-271. https://doi.org/10.1126/science.1164164 Kobayashi, Y., Matsumoto, M., Kotani, M., & Makino, T. (1999). Possible involvement of matrix metalloproteinase-9 in Langerhans cell migration and maturation. J Immunol, 163(11), 5989-5993. Krug, A., Luker, G. D., Barchet, W., Leib, D. A., Akira, S., & Colonna, M. (2004). Herpes simplex virus type 1 activates murine natural interferon-producing cells through toll-like receptor 9. Blood, 103(4), 1433-1437. https://doi.org/10.1182/blood-2003-08-2674 Laquerre, S., Argnani, R., Anderson, D. B., Zucchini, S., Manservigi, R., & Glorioso, J. C. (1998). Heparan sulfate proteoglycan binding by herpes simplex virus type 1 glycoproteins B and C, which differ in their contributions to virus attachment, penetration, and cell-to-cell spread. J Virol, 72(7), 6119-6130. https://doi.org/10.1128/jvi.72.7.6119-6130.1998 Lee, T. L., Chang, M. L., Lin, Y. J., Tsai, M. H., Chang, Y. H., Chuang, C. M., Chien, Y., Sosinowski, T., Wang, C. H., Chen, Y. Y., Lee, C. K., Chen, J. S., Wang, L. F., Kung, J. T., & Ku, C. C. (2015). An alternatively spliced IL-15 isoform modulates abrasion-induced keratinocyte activation. J Invest Dermatol, 135(5), 1329-1337. https://doi.org/10.1038/jid.2015.17 Liu, J., Zhang, X., Cheng, Y., & Cao, X. (2021). Dendritic cell migration in inflammation and immunity. Cellular & Molecular Immunology, 18(11), 2461-2471. https://doi.org/10.1038/s41423-021-00726-4 Ma, Y., & He, B. (2014). Recognition of herpes simplex viruses: toll-like receptors and beyond. J Mol Biol, 426(6), 1133-1147. https://doi.org/10.1016/j.jmb.2013.11.012 Mackay, L. K., Rahimpour, A., Ma, J. Z., Collins, N., Stock, A. T., Hafon, M. L., Vega-Ramos, J., Lauzurica, P., Mueller, S. N., Stefanovic, T., Tscharke, D. C., Heath, W. R., Inouye, M., Carbone, F. R., & Gebhardt, T. (2013). The developmental pathway for CD103(+)CD8+ tissue-resident memory T cells of skin. Nat Immunol, 14(12), 1294-1301. https://doi.org/10.1038/ni.2744 Marcocci, M. E., Napoletani, G., Protto, V., Kolesova, O., Piacentini, R., Li Puma, D. D., Lomonte, P., Grassi, C., Palamara, A. T., & De Chiara, G. (2020). Herpes Simplex Virus-1 in the Brain: The Dark Side of a Sneaky Infection. Trends Microbiol, 28(10), 808-820. https://doi.org/10.1016/j.tim.2020.03.003 Mattei, F., Schiavoni, G., Belardelli, F., & Tough, D. F. (2001). IL-15 is expressed by dendritic cells in response to type I IFN, double-stranded RNA, or lipopolysaccharide and promotes dendritic cell activation. J Immunol, 167(3), 1179-1187. https://doi.org/10.4049/jimmunol.167.3.1179 Melchjorsen, J., Rintahaka, J., S?by, S., Horan, K. A., Poltajainen, A., ?stergaard, L., Paludan, S. R., & Matikainen, S. (2010). Early innate recognition of herpes simplex virus in human primary macrophages is mediated via the MDA5/MAVS-dependent and MDA5/MAVS/RNA polymerase III-independent pathways. J Virol, 84(21), 11350-11358. https://doi.org/10.1128/jvi.01106-10 Mishra, A., Sullivan, L., & Caligiuri, M. A. (2014). Molecular pathways: interleukin-15 signaling in health and in cancer. Clin Cancer Res, 20(8), 2044-2050. https://doi.org/10.1158/1078-0432.Ccr-12-3603 Mohamadzadeh, M., Berard, F., Essert, G., Chalouni, C., Pulendran, B., Davoust, J., Bridges, G., Palucka, A. K., & Banchereau, J. (2001). Interleukin 15 skews monocyte differentiation into dendritic cells with features of Langerhans cells. The Journal of experimental medicine, 194(7), 1013-1020. https://doi.org/10.1084/jem.194.7.1013 Overwijk, W. W., & Schluns, K. S. (2009). Functions of γC cytokines in immune homeostasis: current and potential clinical applications. Clin Immunol, 132(2), 153-165. https://doi.org/10.1016/j.clim.2009.03.512 Paludan, S. R., Bowie, A. G., Horan, K. A., & Fitzgerald, K. A. (2011). Recognition of herpesviruses by the innate immune system. Nat Rev Immunol, 11(2), 143-154. https://doi.org/10.1038/nri2937 Perera, L. P. (2000). Interleukin 15: its role in inflammation and immunity. Arch Immunol Ther Exp (Warsz), 48(6), 457-464. Pettit, D. K., Bonnert, T. P., Eisenman, J., Srinivasan, S., Paxton, R., Beers, C., Lynch, D., Miller, B., Yost, J., Grabstein, K. H., & Gombotz, W. R. (1997). Structure-function studies of interleukin 15 using site-specific mutagenesis, polyethylene glycol conjugation, and homology modeling. J Biol Chem, 272(4), 2312-2318. https://doi.org/10.1074/jbc.272.4.2312 Rubinstein, M. P., Lind, N. A., Purton, J. F., Filippou, P., Best, J. A., McGhee, P. A., Surh, C. D., & Goldrath, A. W. (2008). IL-7 and IL-15 differentially regulate CD8+ T-cell subsets during contraction of the immune response. Blood, 112(9), 3704-3712. https://doi.org/10.1182/blood-2008-06-160945 Saalbach, A., Klein, C., Schirmer, C., Briest, W., Anderegg, U., & Simon, J. C. (2010). Dermal fibroblasts promote the migration of dendritic cells. J Invest Dermatol, 130(2), 444-454. https://doi.org/10.1038/jid.2009.253 Sandau, M. M., Kohlmeier, J. E., Woodland, D. L., & Jameson, S. C. (2010). IL-15 regulates both quantitative and qualitative features of the memory CD8 T cell pool. Journal of immunology (Baltimore, Md. : 1950), 184(1), 35-44. https://doi.org/10.4049/jimmunol.0803355 Stottmann, R., & Beier, D. (2014). ENU Mutagenesis in the Mouse. Curr Protoc Hum Genet, 82, 15.14.11-10. https://doi.org/10.1002/0471142905.hg1504s82 Su, C., Zhan, G., & Zheng, C. (2016). Evasion of host antiviral innate immunity by HSV-1, an update. Virol J, 13, 38. https://doi.org/10.1186/s12985-016-0495-5 Wakim, L. M., Waithman, J., van Rooijen, N., Heath, W. R., & Carbone, F. R. (2008). Dendritic cell-induced memory T cell activation in nonlymphoid tissues. Science, 319(5860), 198-202. https://doi.org/10.1126/science.1151869 Zhang, S. Y., Jouanguy, E., Ugolini, S., Smahi, A., Elain, G., Romero, P., Segal, D., Sancho-Shimizu, V., Lorenzo, L., Puel, A., Picard, C., Chapgier, A., Plancoulaine, S., Titeux, M., Cognet, C., von Bernuth, H., Ku, C. L., Casrouge, A., Zhang, X. X., Barreiro, L., Leonard, J., Hamilton, C., Lebon, P., H?ron, B., Vall?e, L., Quintana-Murci, L., Hovnanian, A., Rozenberg, F., Vivier, E., Geissmann, F., Tardieu, M., Abel, L., & Casanova, J. L. (2007). TLR3 deficiency in patients with herpes simplex encephalitis. Science, 317(5844), 1522-1527. https://doi.org/10.1126/science.1139522 Zhang, X., Sun, S., Hwang, I., Tough, D. F., & Sprent, J. (1998). Potent and selective stimulation of memory-phenotype CD8+ T cells in vivo by IL-15. Immunity, 8(5), 591-599. https://doi.org/10.1016/s1074-7613(00)80564-6 Zhu, S., & Viejo-Borbolla, A. (2021). Pathogenesis and virulence of herpes simplex virus. Virulence, 12(1), 2670-2702. https://doi.org/10.1080/21505594.2021.1982373
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83385-
dc.description.abstract單純?疹病毒第一型(HSV-1)是感染人類常見的病原體,其感染始於黏膜組織並且可以於初次感染後終生潛伏在背根神經節(DRG)。藉由皮膚或周邊組織中的樹突細胞將HSV-1病毒抗原呈現給位於淋巴結中的初始T細胞以產生HSV-1抗原特異性T細胞是控制HSV-1感染所不可或缺的。已知IL-15具有促進樹突細胞活化、遷移與分化抗原特異性CD8+ T細胞的作用。ENU誘變191譜系小鼠(P191)體內主要表達於IL-15基因外顯子7中具有部分缺失的一種選擇性剪接異構體,稱為IL-15ΔE7。我們先前的研究中發現,與野生型B6小鼠相比,主要表現IL-15ΔE7的P191小鼠在皮膚感染HSV-1後產生的gB-抗原特異性CD8+ T細胞明顯減少其免疫功能亦有缺損。此外P191小鼠不僅募集至引流淋巴結的皮膚來源性樹突細胞較少,引流淋巴結中的周邊CD8α+ 樹突細胞與野生型小鼠相比也較少。初步實驗結果說明P191小鼠中表現較多的IL-15ΔE7對於樹突細胞的募集、存活甚至是HSV-1特異性CD8+ T細胞的增生及分化有抑制的作用。藉由免疫組織化學染色,我發現野生型小鼠在皮膚感染HSV-1後,其皮膚處的整體CD11c+ 樹突細胞在感染後第七天數量較P191小鼠少。流式細胞儀的分析結果顯示,P191小鼠皮膚處的朗格漢斯細胞及CD103+CD207+ 真皮層樹突細胞於HSV-1感染後第七天數量均較野生型小鼠多。野生型小鼠引流淋巴結中整體CD11c+ 樹突細胞數量在皮膚感染HSV-1後第七天到達高峰,而P191小鼠在感染後第七天,引流淋巴結中整體CD11c+ 樹突細胞較野生型小鼠少。進一步分析CD11c+樹突細胞亞群發現減少的數量主要源自皮膚募集的朗格漢斯細胞及週邊CD8α+ DC,意味此兩群樹突細胞亞群最可能受到IL-15ΔE7的影響。我們進一步研究並發現,P191小鼠不論是皮膚處或引流淋巴結的CD4+和CD8+ T 細胞在皮膚感染HSV-1後,數量均較野生型小鼠少。其中P191小鼠引流淋巴結中CD8+ T細胞CD44活化標記及IL-15受體CD122的表現量均較野生型小鼠少。P191小鼠皮膚感染HSV-1後減少的朗格漢斯細胞及常駐CD8α+ DC與增長較少的CD4+和CD8+ T 細胞,兩者的關聯可揭示IL-15ΔE7在產生有效的抗病毒免疫反應中具有負調控的角色。更詳細的機制則需要更多的實驗加以說明。zh_TW
dc.description.abstractHerpes simplex virus type 1 (HSV-1) is a common human pathogen. Primary infection is initiated at mucosal tissues and may establish life-long latency in the dorsal root of ganglia (DRG). Presentation of peripheral HSV-1 viral antigen by skin-derived and regional dendritic cells (DCs) is essential to prime nave CD8+ T cells in draining lymph nodes to develop HSV-1 specific CD8+ T cell immunity for HSV-1 control. IL-15 is reportedly to play critical roles both in the activation and migration of DC and helping the priming of antigen-specific CD8+ T cells. The ENU-mutagenized mice pedigree 191 (P191) is prevalent in expressing an alternatively spliced IL-15 that has a partial deletion in the exon 7, IL-15ΔE7. Results from our previous experiments found that HSV-1 skin infection of P191 mice resulted in reduced number of gB-specific CD8+ T cells compared to wild type (WT) B6 mice. Effector functions of P191 CD8+ T cells were also impaired. Not only skin-migratory DCs were less recruited to draining lymph nodes, the population size of regional CD8α+ DCs was reduced in P191 compared to WT mice. These results have led us to hypothesize that increased expression of IL-15ΔE7 in P191 mice may negatively regulate the recruitment and survival of DCs and may further affect the proliferation and differentiation of HSV-1 specific CD8+ T cells. Using immunohistochemical staining, I found that total number of CD11c+ DC was decreased in the skin of WT mice on day 7 after HSV-1 skin infection compare with P191. Analysis of flow cytometry demonstrated that the number of the Langerhans cells and CD103+CD207+ dDCs were increased in the lesional flank skin of P191 mice on day 7 after HSV-1 infection compare with WT mice. The number of CD11c+ DC in WT draining lymph nodes was peaked on day 7 after HSV-1 infection in comparison with decreased CD11c+ DC in P191 mice. Further analysis of subsets in CD11c+ DC found that the decrease was largely attributed by the number of skin-recruiting Langerhans cells and regional CD8α+ DC, implicating both DC subsets were most likely affected by IL-15ΔE7. We further investigated and found that the number of CD4+ and CD8+ T cells were reduced both in the lesional flank skin and draining lymph nodes of P191 mice after HSV-1 infection. The expression level of activation marker CD44 and IL-15 receptor CD122 were decreased in the CD8+ T cells from the draining lymph nodes of P191 mice compare with WT mice after HSV-1 infection. The correlation between reduced cell numbers of Langerhans cells and resident CD8α+ DC and the decreased expansion of CD4+ and CD8+ T cells in P191 mice after HSV-1 skin infection has suggested a negative role of IL-15ΔE7 in generating effective anti-viral immune responses. More experiments are needed to carry out to delineate detail mechanisms.en
dc.description.provenanceMade available in DSpace on 2023-03-19T21:06:17Z (GMT). No. of bitstreams: 1
U0001-2209202213312800.pdf: 8567401 bytes, checksum: ad5c91818df4f8a84a913caaa714c89a (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents口試委員會審定書 ii 誌謝 iii 中文摘要 iv Abstract vi Content viii Chapter 1 Introduction 1 1.1. Herpes simplex virus type 1 (HSV-1) 2 1.1.1. Virology of HSV-1 2 1.1.2. Pathogenesis of HSV-1 3 1.2. Immune response against HSV-1 infection 3 1.2.1. Innate recognition 3 1.2.2. The role of DC subsets in HSV-1 infection 4 1.3. Biological role of IL-15 5 1.3.1. Genomic structure 5 1.3.2. Protein structure of mature IL-15 6 1.3.3. Receptor and signaling pathways of IL-15 6 1.4. The function of IL-15 7 1.4.1. Innate immunity 7 1.4.2. Adaptive immunity 8 1.5. The role of IL-15 in differentiation of anti-HSV-1 CD8+ T cell immunity 8 1.6. ENU mutagenized mice 9 1.6.1. Pedigree 191 (P191) mice 9 1.6.2. Phenotypes of P191 mice 9 Chapter 2 Rationale 10 2.1. Previous results of P191 mice after HSV-1 infection 11 2.1.1. Prolong HSV-1 infected skin lesion and lower survival rate in P191 mice 11 2.1.2. Decreased cell number of skin-derived DC subsets in P191 mice 11 2.1.3. Impaired antigen-specific CD8+ T cell immunity in P191 mice 12 2.1.4. Abundant expression of IL-15E7 mRNA in the draining lymph nodes of P191 mice 13 2.2. Aims of this study 14 2.2.1. To analyze the different size of skin-derived DCs in P191 compared with B6 mice after HSV-1 infection 15 2.2.2. To examine the changes in skin-derived DC subsets and regional DCs in P191 mice compared with B6 mice after HSV-1 infection 15 2.2.3. To evaluate the recruitments of CD4+ and CD8+ T cells in the skin in P191 compared with B6 mice after HSV-1 infection 15 Chapter 3 Materials and methods 17 3.1. Methods 18 3.1.1. Mice 18 3.1.2. HSV-1 and HSV-1 skin infection 18 Cell culture and HSV-1 18 Quantification of HSV-1 19 HSV-1 skin infection 20 3.1.3. Immunohistochemical (IHC) staining 21 3.1.4. Cells 22 3.1.5. Flow cytometry 23 3.1.6. Statistical analysis 23 3.2. Materials 24 3.2.1. List of antibodies 24 3.2.2. Buffer and solutions 25 3.2.3. Chemical, reagent, and kits 26 Chapter 4 Results 27 4.1. Investigation of CD11c+ cells in the lesional flank skin of P191 mice by immunohistochemistry staining 28 4.2. To evaluate the best conditions isolating skin infiltrating cells 29 4.3. Determination of skin-derived DC subsets 29 4.4. The number of skin-derived DC subsets was increased in the lesional flank skin of P191 compared with B6 mice after HSV-1 infection 30 4.5. The CD4+ and CD8+ T cells were both decreased in the lesional flank skin of P191 mice after HSV-1 infection 31 4.6. The reduction of skin-derived DC subsets was observed in the draining lymph nodes of P191 compared with B6 mice after HSV-1 infection 31 4.7. The number of CD8α+ DC was greatly decreased in P191 compared with B6 mice after HSV-1 infection 32 4.8. The CD4+ and CD8+ T cell in the draining lymph nodes of P191 mice were reduced after HSV-1 infection 33 4.9. The kinetics of the fold change in skin-derived DCs from lesional skin and LN of B6 and P191 mice after HSV-1 infection 33 4.10. The number of migratory-CD11c+ DCs was accumulated in the lesional flank skin of P191 mice after HSV-1 infection 34 4.11. The output of CD4+ and CD8+ T cells from LN to the lesional flank skin was failed in P191 mice after HSV-1 infection 34 4.12. Expressions of CD44 and CD122 in CD8+ T cells were decreased in P191 after HSV-1 infection 35 Chapter 5 Discussion 37 5.1. The migratory cues of skin-derived DCs from skin to LNs 39 5.2. The role of CD8+ DCs against HSV-1 infection 39 Chapter 6 References 41 Chapter 7 Figures 47 Figure 1. HSV-1 infection increased CD11c+ cells in the lesional skin 49 Figure 2. Determination of best condition to isolate skin infiltrating cells 51 Figure 3. Detection of CD11c+ cells from the infiltrating cells of the skin and the experimental design to analyze skin-derived DC subsets between B6 and P191 mice after HSV-1 infection 53 Figure 4. The skin-derived DCs were increased in the lesional flank skin of P191 compared with B6 mice after HSV-1 infection 55 Figure 5. The CD4+ and CD8+ T cells were both decreased in the lesional flank skin of P191 compared with B6 mice after HSV-1 infection 57 Figure 6. The reduction of skin-derived DCs were observed in the lymph nodes of P191 compared with B6 mice after HSV-1 infection 59 Figure 7. The resident CD8α+ DC was reduced in the lymph nodes of P191 compared with B6 mice after HSV-1 infection 61 Figure 8. The decreased number of CD4+ and CD8+ T cells were observed in the lymph nodes of P191 compared with B6 mice after HSV-1 infection 63 Figure 9. The fold change of Langerhans cell and CD103+CD207+ dermal DCs were reduced in the lymph nodes of P191 mice but amplified in the lesional skin compared with B6 after HSV-1 infection 64 Figure 10. Suppressed recruitment of skin-derived migratory CD11c+ DCs to peripheral lymph nodes of P191 mice after HSV-1 infection 65 Figure 11. Reduced output of CD4+ and CD8+ T cells from lymph nodes to the skin of P191 mice after HSV-1 infection 67 Figure 12. The expression levels of CD44 and CD122 were reduced in P191 CD8+ T cells compared with B6 mice after HSV-1 infection 69 Figure 13. The expression levels of CD122 were reduced in P191 CD8+ T cells compared with B6 mice on day 4 after HSV-1 infection 71 Figure 14. The summarized graphs of B6 and P191 mice after HSV-1 infection 72
dc.language.isoen
dc.subject樹突細胞zh_TW
dc.subject第一型?疹病毒zh_TW
dc.subjectIL-15選擇性剪接異構體zh_TW
dc.subjectdendritic cellsen
dc.subjectHSV-1en
dc.subjectalternatively-spliced IL-15en
dc.title探討表現IL-15選擇性剪接異構體突變鼠感染第一型?疹病毒後在皮膚樹突細胞的活化及分化zh_TW
dc.titleInvestigation on HSV-1-induced activation and differentiation of dendritic cells in the skin of ENU-mutagenized alternatively-spliced IL-15 expressing miceen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李建國(Chien-Kuo Lee),黃佩欣(Pei-Hsin Huang)
dc.subject.keyword第一型?疹病毒,IL-15選擇性剪接異構體,樹突細胞,zh_TW
dc.subject.keywordHSV-1,alternatively-spliced IL-15,dendritic cells,en
dc.relation.page72
dc.identifier.doi10.6342/NTU202203811
dc.rights.note未授權
dc.date.accepted2022-09-22
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept免疫學研究所zh_TW
顯示於系所單位:免疫學研究所

文件中的檔案:
檔案 大小格式 
U0001-2209202213312800.pdf
  未授權公開取用
8.37 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved