請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8337完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 施上粟(Shang-Shu Shih) | |
| dc.contributor.author | Po-Chih CHen | en |
| dc.contributor.author | 陳柏智 | zh_TW |
| dc.date.accessioned | 2021-05-20T00:52:19Z | - |
| dc.date.available | 2025-08-04 | |
| dc.date.available | 2021-05-20T00:52:19Z | - |
| dc.date.copyright | 2020-08-06 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-04 | |
| dc.identifier.citation | 1. Arcement, G.J., and Schneider, V.R. 1989. Guide for selecting Manning's roughness coefficients for natural channels and flood plains. US Government Printing Office Washington, D.C. 2. Bendea, H., Chiabrando, F., Tonolo, F.G., and Marenchino, D. 2007. Mapping of archaeological areas using a low-cost UAV. The Augusta Bagiennorum test site. XXI International CIPA Symposium. 3. Benson, M.A., and Dalrymple, T. 1967. General field and office procedures for indirect discharge measurements. U.S. Geological Survey Techniques of Water-Resources Investigations, Book 3, CHapter A1, 1-30. 4. Berndtsson, J.C. 2010. Green roof performance towards management of runoff water quantity and quality: A review. Ecological Engineering, 36(4), 351-360. 5. Bronstert, A. 2003. Floods and climate change: interactions and impacts. Risk Analysis: An International Journal, 23(3), 545-557. 6. Brunetti, G., Šimůnek, J., and Piro, P. 2016. A comprehensive numerical analysis of the hydraulic behavior of a permeable pavement. Journal of hydrology, 540, 1146-1161. 7. Burszta-Adamiak, E., and Mrowiec, M. 2013. Modelling of green roofs' hydrologic performance using EPA's SWMM. Water Science and Technology, 68(1), 36-42. 8. Campisano, A., Catania, F.V., and Modica, C. 2017. Evaluating the SWMM LID Editor rain barrel option for the estimation of retention potential of rainwater harvesting systems. Urban Water Journal, 14(8), 876-881. 9. Chaovalit, P., and Zhou, L. 2005. Movie review mining: A comparison between supervised and unsupervised classification approaches. Proceedings of the 38th annual Hawaii international conference on system sciences, 112c. 10. Chow, V.T. 1959, Open channel hydraulics. McGraw-Hill, New York. 11. Cohen-Shacham, E., Walters, G., Janzen, C., and Maginnis, S. 2016. Nature-based solutions to address global societal challenges. IUCN Commission on Ecosystem Management (CEM) and IUCN World Commission on Protected Areas (WCPA), Switzerland. 12. Cowan, W.L. 1956. Estimating hydraulic roughness coefficients. Agricultural Engineering, 37(7), 473-475. 13. Damodaram, C., Giacomoni, M.H., Prakash Khedun, C., Holmes, H., Ryan, A., Saour, W., and Zechman, E.M. 2010. Simulation of Combined Best Management Practices and Low Impact Development for Sustainable Stormwater Management 1. Journal of the American Water Resources Association, 46(5), 907-918. 14. Dixon, S.J., Sear, D.A., Odoni, N.A., Sykes, T., and Lane, S.N. 2016. The effects of river restoration on catchment scale flood risk and flood hydrology. Earth Surface Processes and Landforms, 41(7), 997-1008. 15. Donaldson. 2009. Humbo community managed forestry project. Climate Change Case Studies, World Vision, Addis Ababa, Ethiopia. 16. Doyle, M.W., Stanley, E.H., Orr, C.H., Selle, A.R., Sethi, S.A., and Harbor, J.M. 2005. Stream ecosystem response to small dam removal: lessons from the Heartland. Geomorphology, 71(1-2), 227-244. 17. Estrella, M., and Saalismaa, N. 2011. Demonstrating the role of ecosystems-based management for disaster risk reduction. UNISDR GAR Report. Geneva: Partnership for Environment and Disaster Risk Reduction. 18. Evans, R., and Boardman, J. 2003. Curtailment of muddy floods in the Sompting catchment, South Downs, West Sussex, southern England. Soil Use and Management, 19(3), 223-231. 19. Freeman, G.E., Rahmeyer, W.H., and Copeland, R.R. 2000. Determination of resistance due to shrubs and woody vegetation. Engineer Research and Development Center Vicksburg MS Coastal and Hydraulics Lab. 20. Gay, L.R., Mills, G.E., and Airasian, P.W. 1976. Educational research: Competencies for analysis and application. Merrill Columbus, OH. 21. Geronimo, F., Maniquiz-Redillas, M., Tobio, J., and Kim, L. 2014. Treatment of suspended solids and heavy metals from urban stormwater runoff by a tree box filter. Water Science and Technology, 69(12), 2460-2467. 22. Guo, Y. 2001. Hydrologic design of urban flood control detention ponds. Journal of Hydrologic Engineering, 6(6), 472-479. 23. Gutman, J. 2019. Commentary: Urban Wetlands Restoration as NBS for Flood Risk Mitigation: From Positive Case to Legitimate Practice, in the View of Evidence-Based Flood Risk Policy Making. Nature-Based Flood Risk Management on Private Land, 127-134, Springer, Berlin. 24. Haarbrink, R., and Eisenbeiss, H. 2008. Accurate DSM production from unmanned helicopter systems. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37, 1259-1264. 25. Hooke, W.H. 2000. US participation in international decade for natural disaster reduction. Natural Hazards Review, 1(1), 2-9. 26. Horcher, A., and Visser, R.J. 2004. Unmanned aerial vehicles: applications for natural resource management and monitoring. Proceedings of the Council on Forest Engineering Proceedings. 27. Kise, M., Zhang, Q., and Más, F.R. 2005. A stereovision-based crop row detection method for tractor-automated guidance. Biosystems engineering, 90(4), 357-367. 28. Kiss, T., Nagy, J., Fehervary, I., and Vaszko, C. 2019. (Mis) management of floodplain vegetation: The effect of invasive species on vegetation roughness and flood levels. Sci Total Environ, 686, 931-945. 29. Kreimer, A., and Arnold, M. 2000. World Bank's role in reducing impacts of disasters. Natural Hazards Review, 1(1), 37-42. 30. Lillesand, T., Kiefer, R.W., and Chipman, J. 2004. Remote sensing and image interpretation. John Wiley Sons. 31. MacKinnon, K., Sobrevila, C., and Hickey, V. 2008. Biodiversity, climate change, and adaptation: nature-based solutions from the World Bank portfolio. The World Bank, Washington, D.C. 32. Manning, R., Griffith, J.P., Pigot, T., and Vernon-Harcourt, L.F. 1890. On the flow of water in open channels and pipes. Trans. Inst. Civil Eng., Ireland. 33. Manual, H. 2016. HEC-RAS river analysis system. Hydraulic reference manual, Version 5.0, US Army Corps of Engineers, Institute of Water Resources, Hydrologic Engineering Center, Davis, CA. 34. McCutcheon, M., Wride, D., and Reinicke, J. 2012. An evaluation of modeling green infrastructure using LID controls. Journal of Water Management Modeling, R245-12, 193-205. 35. Millennium Ecosystem Assessment. 2005. Ecosystems and human well-being: synthesis. Island, Washington, D.C. 36. Monty, F., Furuta, N., and Murti, R. 2016. Helping nature help us: Transforming disaster risk reduction through ecosystem management. IUCN, Gland. 37. Murti, R., and Buyck, C. 2014. Safe havens: protected areas for disaster risk reduction and climate change adaptation. IUCN, Gland. 38. Nakayama. 2015. Policy Development on Eco-DRR (Ecosystem-based Disaster Risk Reduction) and EbA in Japan after the GEJE. Global Biodiversity Strategy Office, Ministry of the Environment, Japan. 39. Nash, J.E., and Sutcliffe, J.V. 1970. River flow forecasting through conceptual models part I—A discussion of principles. Journal of hydrology, 10(3), 282-290. 40. Okeke, C. 2015. Towards An Ecosystem-Based Disaster Risk Reduction (Eco-DRR) For Floods in Some Downstream Communities of the Lower Volta, Ghana. University of Ghana, Accra. 41. Patias, P., Saatsoglou-Paliadeli, C., Georgoula, O., Pateraki, M., Stamnas, A., and Kyriakou, N. 2007. Photogrammetric documentation and digital representation of the macedonian palace in Vergina-Aegeae. XXI International CIPA Symposium. 42. Pennino, M.J., McDonald, R.I., and Jaffe, P.R. 2016. Watershed-scale impacts of stormwater green infrastructure on hydrology, nutrient fluxes, and combined sewer overflows in the mid-Atlantic region. Science of the Total Environment, 565, 1044-1053. 43. Petryk, S., and Bosmajian III, G. 1975. Analysis of flow through vegetation. Journal of the Hydraulics Division, 101, 871-884. 44. Phillips, J.V., and Ingersoll, T.L. 1998. Verification of roughness coefficients for selected natural and constructed stream channels in Arizona. US Government Printing Office, Washington, D.C. 45. Püschel, H., Sauerbier, M., and Eisenbeiss, H. 2008. A 3D model of Castle Landenberg (CH) from combined photogrammetric processing of terrestrial and UAV-based images. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37, 93-98. 46. Reimerink, L. 2015. A Dutch City Makes Room for its River–and a New Identity. Citiscope. 47. Renaud, F.G., Sudmeier-Rieux K., and Estrella, M. 2013. The role of ecosystems in disaster risk reduction. United Nations University Press, Tokyo. 48. Richards, J.A., and Richards J. 1999. Remote sensing digital image analysis. Springer, Berlin. 49. Ritter, A., and Muñoz-Carpena, R. 2013. Performance evaluation of hydrological models: Statistical significance for reducing subjectivity in goodness-of-fit assessments. Journal of hydrology, 480, 33-45. 50. Ruangpan, L., Vojinovic, Z., Di Sabatino, S., Leo, L.S., Capobianco, V., Oen, A.M., McClain, M., and Lopez-Gunn, E. 2020. Nature-Based Solutions for Hydro-meteorological Risk Reduction: A State-of-the-art review of the research area. Nat. Hazards Earth Syst. Sci, 20, 243-270. 51. Shamsi, U.M.S. 2012. Modeling Rain Garden LID Impacts on Sewer Overflows. Journal of Water Management Modeling, R245-07, 113-126. 52. Shih, S.S., Yang, S.C., and Ouyang, H.T. 2014. Anthropogenic effects and climate change threats on the flood diversion of Erchung Floodway in Tanshui River, northern Taiwan. Natural Hazards, 73(3), 1733-1747. 53. Smith, G.S. 1995. Digital orthophotography and GIS. Proceedings of the 1995 ESRI User Conference, 22-26. 54. Snavely, N., Seitz, S.M., and Szeliski, R. 2008. Modeling the world from internet photo collections. International journal of computer vision, 80(2), 189-210. 55. Strickler, A. 1923. Some contributions to the problem of velocity formula and roughness coefficients for rivers, canals, and closed conduits. Mitteilungen des eidgenössischen Amtes für Wasserwirtschaft, No.16. 56. Sudmeier-Rieux, K., Ash, N., and Murti, R. 2009. Environmental guidance note for disaster risk reduction. IUCN, Gland. 57. Takagi, H. 2018. Long-Term Design of Mangrove landfills as an Effective tide Attenuator under relative Sea-level rise. Sustainability, 10(4), 1045. 58. Temmerman, S., Meire, P., Bouma, T.J., Herman, P.M., Ysebaert, T., and De Vriend, H.J. 2013. Ecosystem-based coastal defence in the face of global change. Nature, 504(7478), 79-83. 59. Tomasi, C., and Kanade, T. 1993. Shape and motion from image streams: a factorization method. Proceedings of the National Academy of Sciences, 90(21), 9795-9802. 60. Wolf, P.R., and Dewitt, B.A. 2000. Elements of photogrammetry: with applications in GIS. McGraw-Hill, New York. 61. 王順昌、陳樹群,2014,灘地植生密度對河川洪流之影響,水土保持學報,46:1183-1200。 62. 朱俊璋,2003,優型樹的型態影響景觀美質之研究,東海大學景觀學系碩士論文。 63. 李瑞陽、歐鐙元、徐嘉徽,2018,應用 UAV 影像於山坡地作物判釋之探討,航測及遙測學刊,23:245-256。 64. 邵泰璋,1999,類神經網路於多光譜影像分類之應用,國立交通大學土木工程研究所碩士論文。 65. 施上粟,2017,水利防災中水生態系統面臨的挑戰,土木水利,44:10-16。 66. 施上粟,2019,淡水河主流及其周邊河道減糙及疏濬策略研擬,經濟部水利署第十河川局委託研究。 67. 施上粟、胡通哲、任秀慧,2017,淡水河水系河川情勢調查 (3/3),經濟部水利署第十河川局委託研究。 68. 洪愷頡,2019,應用無人機影像技術於河床粒徑特性分析,國立臺灣大學土木工程學系碩士論文。 69. 黃健彰,2015,應用紋理資訊於UAV影像之近似作物判釋研究,國立中興大學土木工程學系碩士論文。 70. 楊學涑,2003,臺北地區防洪計畫紀要--淡水河治理工程小檔案,水利會訊,7:1-41。 71. 經濟部,1973,臺北地區防洪計畫建議方案。 72. 經濟部水利署水利規劃試驗所,2002,基隆河員山子分洪計畫--工程基本設計報告。 73. 經濟部水利署水利規劃試驗所,2007,基隆河流域治理規劃檢討。 74. 經濟部水利署水利規劃試驗所,2012,二重疏洪道通洪能力重新檢討總報告。 75. 經濟部水利署水利規劃試驗所,2017,淡水河水系臺北防洪執行成果初步探討。 76. 經濟部水利署第十河川局,2013,川閱淡水河:防洪治水全紀錄。 77. 臺灣省水利局,1964,淡水河防洪治本計畫書。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8337 | - |
| dc.description.abstract | 河川洪氾溢淹或外水壅高引致內水排放困難是造成都市積淹水主因之一,由於都市高度發展而吸引眾多人口居住在河岸區域,一旦脆弱度及暴露度增加將加乘此洪氾災害風險,因而傳統上多以硬性工程手段搭配疏散避難方式降低風險。但工程手段常被詬病大幅破壞生態環境,也有越來越多研究案例顯示自然環境所提供,作為支持人類社會穩定成長的生態服務功能被長期忽視,許多重要生態系統因而縮減、弱化或消失,因而近年國際間開始倡議生態系統防減災的重要性(Ecosystem-based Disaster Risk Reduction;Eco-DRR),其中自然解決方案(Nature-Based Solution;NBS)的災害管理策略是較被廣為推廣的概念,主要目的在建立韌性而宜居的共生環境。河川主深槽、洪水平原具有不同的水理及生態特性,感潮段的灘地同時具備陸域及水域的生境,與主深槽交界的水際域常是生物多樣性最高、植群結構最複雜的區域,而高灘地的水理主要受到植生結構及特徵的影響,像是植生的種類、覆蓋率、密度、高度、樹冠厚度等,因此植生是NBS洪氾管理策略中重要的生態因子及水理參數。本研究選擇二重疏洪道作為植生管理的研究區域,並使用淡水河系作為水理模式的模擬範圍,淡水河包含了整個臺北都會區,是臺灣非常重要的河流,其面臨的最大挑戰是在臺北大橋段,因其為淡水河最窄的河道段,容易發生水理瓶頸現象。一般水理演算會將植生特徵轉換為曼寧n值作為水理演算的主要參數,n值對水理現象極為敏感,但實務上常有決定n值的困擾。本研究嘗試透過無人飛行載具(Unmanned Aerial Vehicle;UAV)進行調查,使用其得到的數值模型來檢視研究區域的植生特徵,透過最大概似法結合地面物高度對正射影像進行地景的分類,藉此得到地表的基礎曼寧n值與植生位置及高度等特徵數據。並利用HEC-RAS一維模式進行淡水河水位與輸水容量的水理模擬,建立「通洪阻礙物」來產生喬木、灌木等不倒伏植生的阻水效果,並以Freeman試驗配置進行模擬驗證,研究結果表明綜合n值可由底床基礎n值與「通洪阻礙物」取代。另以驗證過的二重疏洪道植生阻礙物模型對淡水河進行模擬,分析被高度人為利用的疏洪道,其植生特徵、位置等條件對洪氾風險的影響程度;結果發現在200年重現期距的洪水下,疏洪道的分洪能力已從當初設計的9200 m3 s-1降為6546 m3 s-1,推測因人為開發及高大植生的生長與增加,影響了疏洪道的分洪能力。為了找出疏洪道糙度敏感區域,針對疏洪道上、中、下游的減糙效果進行敏感度分析,結果發現疏洪道的減糙效果為:上游>中游>>下游,在二重疏洪道植生完全清除的情況下,分洪量可增加571 m3 s-1,臺北大橋水位下降7 cm。本研究在不影響現況分流量下,提出有效的自然解決方案‐在二重疏洪道植生管理下進行濕地復育與設立,只清除上游段植生並於區域1、2、3進行濕地的復育與建立為二重疏洪道最適合的自然解決方案,除了不影響現況分洪能力,還多了生態復育與環境教育的功能。 | zh_TW |
| dc.description.abstract | River flooding is one of the significant hazards in urban areas due to the dense population living along the riverside. Once the vulnerability and exposure increase, disaster risk might be multiplied. Traditional and hard engineering-methods are often criticized for greatly damaging the ecological environment, even they provide effective prevention of flood hazards. Recent studies indicate that the ecological services and functions provided by the natural environment as support for stabilizing human society have been neglected for a long time, causing the ecosystem to shrink, weaken, or even disappear. Therefore, the importance of Ecosystem-based Disaster Risk Reduction (Eco-DRR) has been advocated in recent years. Among them, the Nature-Based Solution (NBS) is a more popular concept on disaster management strategy, which helps to build a resilient and livable symbiotic environment. The floodplain hydraulics are major concerns specifically on variant vegetation characteristics such as their types, coverage ratio, density, height, and canopy. Therefore, vegetation is an essential ecological factor and hydraulic parameter in NBS flood management strategy. This research aims at examining biological effects on impacting river flood protection using numerical model simulations by incorporating UAV surveys. The UAV images were identified as different landscapes and then converted to Manning’s n value, decreased flood conveyance area, and wetted perimeter. The water-blocking effects representing the reduced flood conveyance area by trees and shrubs were investigated through building “Blocked Obstructions” (BOs) in the HEC-RAS model. The modeling results of Freeman’s flume experiments proved that the overall n value is the sum of bed Manning’s coefficient and BOs. We then choose the Erchung Floodway in the Tanshui River system as an NBS research area. The main challenge in the Tanshui River is that a bottleneck occurred at the smallest river point near the Taipei Bridge. The flood stage of the Tanshui River and flood conveyance of Erchung Floodway were investigated. The verified vegetation obstruction model in Erchung Floodway was conducted for analyzing the degree of influence of vegetation characteristics and location on the flood risk. The results indicated that the capacity of the Erchung Floodway diversion capacity has noticeably decreased from 9,200 m3 s-1 to 6,546 m3 s-1 under the 200-year recurrence flood. The sensitivity analysis indicates that the vegetation effects on flood diversion within the Erching Floodway were: upper section > middle section >> lower section. In the case of completely clearing vegetation, the diversion capacity increased by 571 m3 s-1, and the water level of the Taipei Bridge drops by 7 cm. The upstream vegetation removal proposes a useful NBS scenario that has the functions of ecological rehabilitation and environmental education without affecting the current diversion capacity. The wetland restoration for duck and waterbirds habitat was carried out in areas 1, 2, and 3. Our findings also showed that the application of flood mitigation strategies should take into account the local ecology, environment, landscape, and socioeconomic factors, which meet the demand of the ecosystem-based disaster risk reduction. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-20T00:52:19Z (GMT). No. of bitstreams: 1 U0001-0308202013294400.pdf: 11245142 bytes, checksum: 98b0b51bc27f8bf2bdef5ee0c3d411b1 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 口試委員會審定書 # 誌謝 i 摘要 ii ABSTRACT iv 目錄 vi 圖目錄 ix 表目錄 xii 第一章 緒論 1 1.1 研究背景 1 1.2 研究目的 2 1.3 論文架構 2 第二章 文獻回顧 4 2.1 自然解決方案 4 2.1.1 生態系統防減災 6 2.1.2 自然解決方案分類及其案例 6 2.1.3 生態疏浚、減糙 8 2.2 臺北防洪變遷 10 2.3 影像處理技術 13 2.3.1 影像幾何糾正 14 2.3.2 影像分類 15 2.4 河道粗糙係數 17 2.4.1 曼寧n值 18 2.4.2 植生對粗糙係數曼寧n值之影響 23 第三章 研究方法 26 3.1 研究區域 26 3.1.1 Freeman植生水槽試驗 26 3.1.2 二重疏洪道 27 3.2 影像處理 29 3.2.1 影像蒐集與預處理 29 3.2.2 地景判釋 30 3.2.3 地面物高度判釋 32 3.3 品質評估及指標建立 33 3.3.1 誤差矩陣 34 3.3.2 抽樣調查 35 3.4 水理模式分析 36 3.4.1 模式介紹 36 3.4.2 阻礙通洪物體 39 第四章 植生水槽試驗水理模擬 40 4.1 模式建立 40 4.2 驗證結果 43 4.3 敏感度分析 45 第五章 二重疏洪道案例分析 49 5.1 地面物高度成果驗證 49 5.2 地景分類 53 5.2.1 影像蒐集 53 5.2.2 影像地物分類 59 5.2.3 分類品質評估 67 5.3 HEC-RAS水理模式 78 5.3.1 斷面建立 78 5.3.2 邊界條件 85 5.3.3 粗糙度(曼寧n值) 87 5.3.4 通洪阻礙物(植生建立) 91 5.4 水理模式驗證 98 5.5 通洪及分洪能力分析 103 5.6 水理敏感段分析 107 5.7 NBS案例模擬 108 第六章 結論與建議 113 6.1 結論 113 6.2 建議 115 參考文獻 116 | |
| dc.language.iso | zh-TW | |
| dc.title | 基於自然解決方案之都市河川洪氾平原管理—以二重疏洪道為例 | zh_TW |
| dc.title | Nature-based Solutions in Flood Management of Urban Rivers—A Case Study of Erchung Floodway | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 許少華(Shao-Hua Hsu),歐陽慧濤(Huei-Tau Ouyang),黃國文(Gwo-Wen Hwang) | |
| dc.subject.keyword | 洪氾管理,洪水平原,自然解決方案,無人飛行載具,通洪阻礙物, | zh_TW |
| dc.subject.keyword | flood hazards management,floodplains,NBS,UAV,blocked obstructions, | en |
| dc.relation.page | 121 | |
| dc.identifier.doi | 10.6342/NTU202002263 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2020-08-05 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2025-08-04 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0308202013294400.pdf | 10.98 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
