請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83353完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 郭振華 | zh_TW |
| dc.contributor.advisor | Jen-Hwa GUO | en |
| dc.contributor.author | 何明昕 | zh_TW |
| dc.contributor.author | Ming-Hsin Ho | en |
| dc.date.accessioned | 2023-03-19T21:05:24Z | - |
| dc.date.available | 2023-12-29 | - |
| dc.date.copyright | 2022-09-23 | - |
| dc.date.issued | 2022 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | [1] C. F. Huang, Y. W. Li, and N. Taniguchi, "Mapping of ocean currents in shallow water using moving ship acoustic tomography," J Acoust Soc Am, vol. 145, no. 2, p. 858, Feb 2019, doi: 10.1121/1.5090496. [2] K.-Y. Chen, "Optimum Acoustic Mapping of Coastal Currents Using Moving Vehicle Tomography," Doctorate degree, 2021. [3] M.-H. Chen, "Formation Control of Autonomous Surface Vehicles for Acoustic Tomography," Master’s degree, 2021. [4] W. Munk and C. Wunsch, "Ocean acoustic tomography: A scheme for large scale monitoring," Deep Sea Research Part A. Oceanographic Research Papers, vol. 26, no. 2, pp. 123-161, 1979. [5] K.-K. Oh, M.-C. Park, and H.-S. Ahn, "A survey of multi-agent formation control," Automatica, vol. 53, pp. 424-440, 2015, doi: 10.1016/j.automatica.2014.10.022. [6] J. M. Soares, A. P. Aguiar, A. M. Pascoal, and M. Gallieri, "Triangular formation control using range measurements: An application to marine robotic vehicles," IFAC Proceedings Volumes, vol. 45, no. 5, pp. 112-117, 2012. [7] T. Balch and R. C. Arkin, "Behavior-based formation control for multirobot teams," IEEE transactions on robotics and automation, vol. 14, no. 6, pp. 926-939, 1998. [8] M. A. Lewis and K.-H. Tan, "High precision formation control of mobile robots using virtual structures," Autonomous robots, vol. 4, no. 4, pp. 387-403, 1997. [9] R. Sepulchre, D. A. Paley, and N. E. Leonard, "Stabilization of planar collective motion: All-to-all communication," IEEE Transactions on automatic control, vol. 52, no. 5, pp. 811-824, 2007. [10] L. B. Arranz, A. Seuret, and C. C. De Wit, "Elastic formation control based on affine transformations," in Proceedings of the 2011 American Control Conference, 2011: IEEE, pp. 3984-3989. [11] L. Brinón-Arranz, A. Seuret, and C. Canudas-de-Wit, "Cooperative control design for time-varying formations of multi-agent systems," IEEE Transactions on Automatic Control, vol. 59, no. 8, pp. 2283-2288, 2014. [12] L. B. Arranz, A. Seuret, and C. C. De Wit, "Translation control of a fleet circular formation of AUVs under finite communication range," in Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference, 2009: IEEE, pp. 8345-8350. [13] A. Seuret and C. C. de Wit, "Contraction control of a fleet circular formation of AUVs under limited communication range," in Proceedings of the 2010 American Control Conference, 2010: IEEE, pp. 5991-5996. [14] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, "A survey on mobile edge computing: The communication perspective," IEEE communications surveys & tutorials, vol. 19, no. 4, pp. 2322-2358, 2017. [15] K. Sasaki, N. Suzuki, S. Makido, and A. Nakao, "Vehicle control system coordinated between cloud and mobile edge computing," in 2016 55th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE), 2016: IEEE, pp. 1122-1127. [16] D. A. Paley, Cooperative control of collective motion for ocean sampling with autonomous vehicles. Princeton University, 2007. [17] T. I. Fossen, Handbook of marine craft hydrodynamics and motion control. John Wiley & Sons, 2011. [18] T. I. Fossen, M. Breivik, and R. Skjetne, "Line-of-sight path following of underactuated marine craft," IFAC proceedings volumes, vol. 36, no. 21, pp. 211-216, 2003. [19] T. I. Fossen, "Guidance and control of ocean vehicles," University of Trondheim, Norway, Printed by John Wiley & Sons, Chichester, England, ISBN: 0 471 94113 1, Doctors Thesis, 1999. [20] T. I. Fossen, "Marine control systems–guidance. navigation, and control of ships, rigs and underwater vehicles," Marine Cybernetics, Trondheim, Norway, Org. Number NO 985 195 005 MVA, www. marinecybernetics. com, ISBN: 82 92356 00 2, 2002. [21] L. Briñón-Arranz, A. Seuret, and A. Pascoal, "Target tracking via a circular formation of unicycles," IFAC-PapersOnLine, vol. 50, no. 1, pp. 5782-5787, 2017. [22] M. Breivik, "Nonlinear maneuvering control of underactuated ships," MS thesis, 2003. [23] S. D. Yu, "Realization of a SONAR System for Moving Vehicles Tomography," Master, National Taiwan University, 2020. [24] T. C. Vinh, "Determination of added mass and inertia moment of marine ships moving in 6 degrees of freedom," International Journal of Transportation Engineering and Technology, vol. 2, no. 1, p. 8, 2016. [25] J. Almeida, C. Silvestre, and A. Pascoal, "Cooperative control of multiple surface vessels in the presence of ocean currents and parametric model uncertainty," International Journal of Robust and Nonlinear Control, vol. 20, no. 14, pp. 1549-1565, 2010. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83353 | - |
| dc.description.abstract | 移動載具聲層析需要多載具維持特定的隊形來觀測待測海域,本研究以多載具分布於圓形軌跡上並且維持特定的隊形為目標,提出了一種軌跡重規劃的方法來解決編隊過程中軌跡追蹤產生的超越目標點問題。本文之方法首先由線性轉換將固定的圓形軌跡縮放及平移來符合聲層析的取樣路徑以獲得路徑目標點,接著各載具獨立地追蹤相應的目標點來達到載具間的隊形控制。水面載具因環境干擾以及其非線性動力行為而使得軌跡追蹤過程中,容易因控制誤差而超越原設定之目標點,軌跡重規劃即藉由計算時間增量即時推進目標點,避免目標點被載具所超越。本文使用數值模擬及場域試驗驗證在外力干擾情況下此方法之有效性。 本研究設計了一套多載具系統並於台北市內湖區大湖公園實測。在編隊控制時,由於軌跡重規劃為載具針對各自之軌跡追蹤修正,在隊形上仍需群隊間之協調,以保持正確之隊形,在實作中需經由網路共享路徑交換,以具有最大時間的軌跡重規劃載具為基準,來同步所有載具相應目標點的軌跡時間。實驗結果表明了該算法於真實環境中的有效性。 | zh_TW |
| dc.description.abstract | Moving vehicle tomography (MVT) requires multiple vehicles to maintain a specific formation to observe the ocean. This study aims to develop a strategy for multi-Unmanned Surface Vehicles (USVs) to keep on a circular trajectory. The strategy is a trajectory re-planning method to correct the position errors in trajectory tracking caused by the nonlinear behaviors of the USVs and environmental disturbances. A predefined circular trajectory is usually scaled and translated by a linear transformation to conform to the sampling path of the acoustic tomography for obtaining trajectory points. Then each vehicle independently tracks their corresponding trajectory point to achieve the formation between vehicles. Surface vehicles are prone to unexpected speeds due to environmental disturbances and their inertia. This makes vehicles easy to overtake the target point due to too fast speed. Trajectory re-planning advances the target point by calculating time increments to re-direct the vehicle to avoid overturning to track the target point behind the vehicle. Numerical simulations and field tests both verify the effectiveness under external force disturbances. A multi-vehicle system was designed and tested in Dahu Park, Neihu District, Taipei City. Since the trajectory re-planning is performed by each individual vehicle, the originally defined formation must be coordinated between vehicles. In the implementation, it is necessary to share the route of the all vehicles through a vehicle network. The trajectory time of the target points between different vehicles are synchronized. The experimental results show the effectiveness of the algorithm in the field environment where the network loss and connection delay frequently take place. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T21:05:24Z (GMT). No. of bitstreams: 1 U0001-2009202219341800.pdf: 12388733 bytes, checksum: fc47762155a086fe5f42d8a99783792b (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 致謝 ii 中文摘要 v Abstract vi Contents viii List of Figures xi List of Tables xv List of Symbols xvii Chapter 1 Introduction 1 1.1. Motivation 1 1.2. Thesis Objectives 3 1.3. Literature Review 3 1.4. Scope of the Study 6 Chapter 2 Formation Control Theory 8 2.1. Cooperative Control of Collective Motion 8 2.1.1. Phase Synchronization and Balancing 9 2.1.2. Circular Formation 12 2.2. Formation Control with Trajectory Replanning 14 2.2.1. Reference Frames and Dynamic Model 16 2.2.2. Trajectory Generator 18 2.2.3. Trajectory Tracking 22 2.2.4. Trajectory Replanning 31 2.3. Simulation 44 2.3.1. Setup 45 2.3.2. Actuator Limitation 47 2.3.3. Results 51 2.4. Summary 58 Chapter 3 Multi-Vehicle System Structure 60 3.1. Hardware 62 3.1.1. Steering Mechanism 65 3.1.2. Outboard Motor 67 3.2. Multi-Vehicle Software System 69 Chapter 4 Experiment 72 4.1. Description of the Experiment 72 4.2. Parameter Tuning of Heading and Speed Controller 73 4.2.1. Heading Controller 73 4.2.2. Speed Controller 76 4.3. Trajectory Replanning for One USV 78 4.4. Formation Control for Two USVs 83 4.5. Discussions 94 4.5.1. Network latency 94 4.5.2. Computation time of numerical tool 100 4.5.3. Current field in WanHaiXiang Bay 105 4.6. Summary 112 Chapter 5 Conclusion 113 Appendix A 114 Appendix B 116 Appendix C 121 References 125 | - |
| dc.language.iso | en | - |
| dc.subject | 編隊控制 | zh_TW |
| dc.subject | 無人載具 | zh_TW |
| dc.subject | 軌跡控制 | zh_TW |
| dc.subject | 水聲層析 | zh_TW |
| dc.subject | 多載具 | zh_TW |
| dc.subject | multi-vehicles | en |
| dc.subject | trajectory control | en |
| dc.subject | unmanned vehicle | en |
| dc.subject | formation control | en |
| dc.subject | acoustic tomography | en |
| dc.title | 自主式水面載具使用軌跡重規劃即時修正圓形編隊控制軌跡誤差之研究 | zh_TW |
| dc.title | Tracking Error Correction by On-line Trajectory Replanning for the Circular Formation Control of Unmanned Surface Vehicles | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 110-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 黃千芬;楊舜涵;陳冠宇;黃盛煒 | zh_TW |
| dc.contributor.oralexamcommittee | Chen-Fen Huang;Shun-Han YANG;Edward Chen;Sheng-Wei Huang | en |
| dc.subject.keyword | 軌跡控制,無人載具,編隊控制,水聲層析,多載具, | zh_TW |
| dc.subject.keyword | trajectory control,unmanned vehicle,formation control,acoustic tomography,multi-vehicles, | en |
| dc.relation.page | 128 | - |
| dc.identifier.doi | 10.6342/NTU202203671 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2022-09-23 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 工程科學及海洋工程學系 | - |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-110-2.pdf 未授權公開取用 | 12.1 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
